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The polarization and spatiotemporal dynamics of coherent pulses propagating in a doped birefringent non-
linear fiber are modeled with the inclusion of the local Lorentz field. The numerical solutions describe the full
set of equations for circularly polarized components of a coherent optical pulse coupled to the inhomoge-
neously ensemble of doped resonance atoms. The local field is shown to degrade the stability of the 4�-decay
process. The development of a steady-state signal from the series of multiple photon echoes generated in active
fiber is observed in simulations.
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I. INTRODUCTION

A fiber doped by resonance impurities is an attractive ob-
ject for investigation for many reasons. An implantation of
the impurities can alter the optical properties of the fiber in
the desired direction. A fiber doped by Er3+ ions can serve as
an active medium for the fiber amplifier, if an external pump-
ing is able to invert the population of resonance levels. A
self-induced transparency �SIT�, discovered in �1� in the bulk
sample was the most impressive manifestation of the coher-
ent optical pulse interaction with resonance atoms. The the-
oretical aspects of SIT in the doped fiber were discussed in
�2,3�, particularly in �2� the inverse scattering transformation
method was applied to the coupled system of vector nonlin-
ear Schrödinger �NLS� and Bloch equations in the problem
of propagation and collision of polarized solitary pulses in
doped fiber. After the publication of Nakazawa et al. �4,5�,
where SIT was observed experimentally in the Er3+-doped
fiber, the interest to the coherent propagation of the short
optical pulses switched to the field of ultrashort pulse �USP�
amplification �5–9�, the search of new propagation regimes
�10,11�, and the analysis of further generalization of the
models of resonance and nonresonance subsystems �12–14�.
As for instance, in �15�, the dynamics of USP was theoreti-
cally studied in quadratically nonlinear resonance plasmonic
metamaterial. On the other hand, the perceptible detuning
from resonance reduces the problem to the NLS equations
with generally nonuniform coefficients �16�.

The brightest demonstration of the coherent time delayed
interaction of USP with resonant fiber was reported in
�17,18� in the form of photon echo effect. Later, accumulated
photon echo was experimentally obtained in the active fiber
amplifier �19�.

Optical fibers reveal the birefringence owing to their very
nature. Each of the components of the polarized radiation
propagates in fiber with its individual phase �and group� ve-
locity. Therefore, the relationship between the polarization
states varies and the vector of the electrical field may rotate
in the course of pulse propagation. When the intensity of
radiation reaches a sufficiently high level the nonlinear cor-
rections to the refractive index starts playing noticeable role

�20�. Consequently, the velocities of the different polariza-
tion modes of the pulse alter �21�. For such intensities Kerr
cross modulation becomes sufficiently strong to make the
birefringence a nonlinear process when the beat period may
even grow in an unlimited way �22,23�. Under the certain
high level of the input pulse power the nonlinear effects
�24–28� can conquer the linear birefringence.

The recent technological development of photonic band-
gap �PBG� optical fibers �29�, where light is guided inside a
hollow core by the mechanism of Bragg reflection, permits
us to reduce the Kerr nonlinearity of the host material by
several orders of magnitude with respect to conventional in-
dex guiding silica core fibers. Filling the core of the PBG
fiber with a resonant atomic or molecular gas makes it prac-
tical to observe coherent wave propagation effects �30�, such
as electromagnetically induced transparency, over relatively
long lengths �31,32�. Indeed, the nonlinear index coefficient
of PBG optical fibers is several orders of magnitude smaller
than that for conventional silica fibers �33�.

The implantation of resonance impurities alters the optical
properties of fiber. If the duration of the pulse is much longer
than polarization relaxation time and population difference
relaxation time, then the additional absorption and saturation
of absorption occur. The character of the absorption changes
�34� if the pulse is shorter than the relaxation times. The
absorption decreases with the increase of pulse amplitude
until a complete vanishing, when the SIT conditions are
achieved. If the energy levels of the doped atoms are degen-
erated over the projections of angular momentum, the propa-
gation conditions for different polarization modes may also
be different leading to the additional birefringence. In the
femtosecond range of pulse duration the difference in the
group velocities of the polarization modes becomes suffi-
cient. The pulse experiences a split into two diverging sepa-
rated signals �the walk-off effect�.

With the increase of impurity density beyond the gaseous
concentration, just like the transfer to the greater magnitudes
of dipole moments of resonance particle the necessity in ac-
counting the near dipole-dipole interaction �35� arises. Such
an interaction leads to the local field effect featured by the
dynamical shift of resonance frequency proportional to the
population difference �36�. Even for a wide inhomogeneous
absorption line, such a frequency sweep can cause the partial
loss of coherency. A competition between the dephasing and
interatomic dipole-dipole interaction, causing the appropriate*soelyutin@email.mephi.ru
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detuning from resonance, leads to the incoherent soliton for-
mation �37�.

In the present paper the coherent transient effects accom-
panying the propagation of USP of polarized light in an op-
tical birefringent and resonance impurity-doped fiber will be
numerically considered. The model is described by the self-
consistent system of the nonlinear equations for polarization
components of optical field and an ensemble of two-level
atoms. The energy levels are degenerate over projections of
angular momentum ja and jb �ja=1 and jb=0�. Disregarding
the linear birefringence and the walk-off effect, the model
reveals an example of a completely integrable system
�2,3,12�, where one could ideally observe the coexistence of
self-induced transparency �SIT� and optical solitons �38�.
But in realistic doped fibers for the moderately intense pulse
it can hardly happen as the disparity in the spatial scales and
the pulse energy for the SIT solitary waves and optical soli-
tons in a nonlinear fiber is very substantial: one 2� SIT pulse
corresponds to the hundreds of NLS solitons in power. This
issue was extensively discussed in a series of papers �39–41�.

The general problem then apparently reduces to two char-
acteristic cases: �a� the weak effect of the resonant absorp-
tion and refraction on the coupled solitonlike pulse propaga-
tion in nonlinear birefringent fiber, and �b� the effect of linear
and nonlinear birefringence on the coherent propagation of
polarized solitary waves in a short fiber, when at least the
dispersion of group velocities can be treated as a weak effect.
This latter case is the main concern of the current paper.

The objective of this paper is to demonstrate how the
endemic fiber host material attributes, birefringence, material
dispersion, and Kerr nonlinearity, affect the spatiotemporal
dynamics of the optical coherent effects. As the examples of
such effects, the self-induced transparency and photon echo
developing in an extended resonance inhomogeneously
broadened medium will be considered.

In what follows the model will be formulated in the form
of field equations for an ultrashort optical pulse propagating
in fiber coupled to the system of Bloch equations for the
resonance medium �Sec. II� via resonance polarization. The
model includes a local field effect as a distinguishing feature,
which is necessary to be reckoned with if the ultrashort vec-
tor solitary optical pulse travels throughout a dense reso-
nance medium, i.e., the medium with a relatively high dopant
concentration or/and a large value of impurity dipole mo-
ment. The numerical estimates of the observed effects �Sec.
III� precede the discussion on the modeling of polarized soli-
tary pulse propagation in a nonlinear resonant fiber �Sec. IV�
supplemented with the demonstration of the multiple photon
echo effect in an extensive nonlinear birefringent dispersive
medium possessing resonance impurities �Sec. V�.

II. POLARIZED WAVES IN CUBIC MEDIUM WITH
RESONANT IMPURITIES

The model consists of an inhomogeneously broadened en-
semble of two-level degenerate atoms coupled to the electro-
magnetic field in the dipole and semiclassical approximation.
Atoms with the energy transition in resonance with the car-
rier frequency are embedded in a dispersive, birefringent

host fiber, whose cubic-nonlinear �Kerr� response is instan-
taneous �42�. It is assumed that the dielectric medium is iso-
tropic, third harmonic generation can be neglected, and the
second-order nonlinear susceptibility is identically zero.

A. Field equations

The polarization state of electromagnetic wave evolution
in fiber is described by a superposition of two linearly polar-
ized electric fields. The directions of these linear polariza-
tions are parallel to the principal axes x and y of the birefrin-
gent fiber, which are termed slow and fast axes. Following
the detailed procedure stated in �20,43�, one can derive the
normalized field equations for the polarized optical pulse
propagating in fiber in the form

i
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+ i
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In the system �1� the quantities e1,2�� ,�� are the normalized
counterrotating polarization components of the field,
P1,2�� ,�� is the resonance polarization of the impurities,
� ,�-normalized spatial and temporal variables are connected
with the physical values as z=�L, �= �t−z /v�t0

−1, t0 is the
characteristic time scale, which can be set either as the input
pulse duration tp or the time of the reversible relaxation of
polarization T2

�, and L is the normalizing length. The retarded
time frame moves at the mean velocity v of the two polar-
ization components of an optical pulse, i.e., v−1= �vx
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The effective nonlinear interaction parameter �eff in Eq. �2�
is the appropriate material susceptibility element averaged
over fiber mode function.

In definitions �2� �x ��y� is the linear propagation con-
stant of the slow �fast� mode of the birefringent fiber. We
assume that the propagation constants slightly vary from
some average value � such that �x=�+�� and �y =�−��.
It is assumed for simplicity that the dispersion on both prin-
cipal axes of the birefringent fiber is equal to 	x�	y =	, as
well as coefficients �x��y =�, where

	x,y = �1/2�d2�x,y/d
2 = 	, �x,y = 
0
2/2c2�x,y ,

and 
0 is the carrier frequency.
Parameter q in the last term in Eq. �1� is responsible for

the interaction of field with resonance atoms; E0 is the value
of the normalizing field. The characteristic length of the fiber
effects are
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, Lc =

1

��
, Lk = ���effE0

2�−1, Ld =
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2

�	�
t0
2
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2 ,

�3�

The spatial length Ld parametrizes the dispersion of the
group velocities. The polarization modes coupling is scaled
by Lc. The corresponding terms in Eq. �1� couple the right
and left circular components of the electromagnetic wave
implying the linear birefringence effect. The nonlinear ef-
fects of self- and cross-modulation are revealed on the spatial
length Lk. The difference of the group velocities causes a
spatial divergence of the differently polarized components of
the optical pulse �walk-off effect� on the characteristic length
Lg.

B. Matter equations

Equations that describe the dynamics of the density ma-
trix of the two-level atom, complement the system �1� to a
full set of model equations. It is supposed that the energy
levels of these atoms are degenerate over the projections of
angular momentum, ja and jb, where subscripts a and b de-
note the upper and the lower energy states, respectively. For
definiteness it is set that ja=1 and jb=0. For the slowly vary-
ing elements of density matrix �̂, describing the transition
between the two states �a ,m	= �ja=1, m= �1	 and �b	= �jb
=0, m=0	, the following notations are introduced:

�12 = 
a,− 1��̂�a, + 1	, �13 = 
a,− 1��̂�b	 ,

�23 = 
a, + 1��̂�b	 ,

�11 = 
a,− 1��̂�a,− 1	, �22 = 
a, + 1��̂�a, + 1	,

�33 = 
b��̂�b	, �kl = �lk
� , l,k = 1,2,3.

Initial conditions are �33�0�=1, �22�0�=�11�0�=0, �12�0�
=�13�0�=�23�0�=0. In terms of this quantum state basis, the
resonant atomic transition ja=1→ jb=0 is characterized by
the dipole momentum operator elements d13=d23=d31

� =d32
�

=d.
In the dense resonant media �36� with a perceptible near-

dipole-dipole interatomic interaction the Bloch equations for
density matrix components should be modified to include the
local field effect considering the difference between the mac-
roscopic averaged field e
�� ,��, which is coupled to the mac-
roscopic polarization in the medium by Maxwell wave equa-
tions, and the microscopic local field ẽ
�� ,��, which drives
the resonance atoms. The relationship between both fields is
chosen in a simple Lorentz-Lorenz approximation �the last
equation in Eqs. �4��, where structure factor � is determined
by the properties of the resonance particle environment. It
often contains a factor 4� /3 attributed to the homogeneous
distribution of dipoles in bulk samples. With the assumption
that the pulse duration is much shorter than all irreversible
relaxation times, the generalized system of Bloch equations
can be written as follows:

�p


��
= i�p
 − if��


�

ẽ
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= e
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	, 
,
� = 1,2. �4�

Here na is the concentration of the impurity atoms; the angle
brackets 
 	 mean the summation over all atoms with the
frequency detuning �=�
t0 from the center of an inhomo-
geneously broadened line.

The new notations are introduced in Eqs. �4� as follows:

�12 = m21, �21 = m12, �11 = m11, �22 = m22,

�33 = n, p1 = − �13, p2 = − �23,

with the initial conditions for the population of the ground
level n�0�=1; for polarization, p
�0�=0, and it is set as
m

��0�=0. The Lorentz field correction, as is seen from
Eqs. �4�, causes the dynamical frequency shift proportional
to the inversion in addition to the subsidiary nonlinearities
introduced in coherent polarization. That can obviously lead
to the partial loss of coherency in the pulse propagation and
is able to affect the temporal form of the propagating pulses.

The dimensionless variables p
 in Eqs. �4� correspond to
the polarization terms in Eq. �1� by the relationship

�Lq

E0
�P
 =

L

Lr
P
 =

L

Lr

p
	 =

1

�r

p
	 , �5�

where q=2�
0nadeff /cnref�
0�, Lr= fLr
�2��. The characteristic

length for an SIT 2� pulse to develop is

Lr
�2�� = �cnref����deff

2 
0nat0�−1, �6�

and the coefficient f =deffE0t02−1�−1=E0E2�
−1 in the system

�4� is an effective normalized frequency of oscillation of the
material variables of resonance medium affected by the field
of amplitude E0. Parameter E2� is an amplitude of the SIT
2� pulse, deff means the dipole matrix element averaged over
the fiber mode function, and nref is the refraction index of the
host material.

The coupled system of Maxwell-Bloch equations �1� and
�4� provides the mathematical basis for numerical simulation
of the circularly polarized short pulses propagation in a non-
linear waveguide doped by resonance impurities. The sys-
tems �1�–�4� contain a certain complexity as the field
ẽ
�� ,��, acting on an individual atom, depends in its turn on
the averaged polarizability 
p
	, which makes the problem
self-consistent. An application of the appropriate iteration
procedure with the desired accuracy at the output permitted
one to overcome this problem.

The results of calculations were the absolute value of the
complex amplitudes e1,2�� ,�� of the counter-rotating right-
and left-handed oppositely polarized fields. Following �21�,
the polarization state of the field in optical pulse was exam-
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ined in terms of ellipticity ��� ,��= ����−1�����+1�−1 and azi-
muth angle ��� ,��=arg��� /2 between the axis of the polar-
ization ellipse and the slow principal axis of the birefringent
fiber, where �=e1e2

−1 is a complex quantity. The charac-
teristic values of � are �=0 for the linear polarized light, �
= +1 for the purely right-hand circularly polarized light, and
�=−1 for the purely left-hand circularly polarized light. The
launched pulses are assumed to have the sech form as fol-
lows:

e1,2�0,�� = em1,2 sech��� − �0�/�� ,

where the dimensionless pulse duration �= tpt0
−1; �0 is the

temporal coordinate of the center of the input pulse.

III. NUMERICAL ESTIMATES

The silica-based monomode fiber host material group ve-
locity dispersion D=4�c	�0

−2 �44� at �0=1.55 �m is typi-
cally D=15 ps nm−1 km−1, the nonlinear index n2
�10−13 CGS, then 	= �d2� /d
2� /2�10−28 s2 cm−1. The
nonlinear interaction parameter �eff�n2nref /2��2.3
�10−14 CGS. Then, with the input pulse duration tp
=0.1 ps, the dispersion length �3� is Ld= tp

2	−1�102 cm.
The polarization modes coupling effect reveals at the dis-
tance Lc= ����−1��0�2��n�−1�25 cm, where it is set as
�n�10−6 �45�.

The effect of group velocity mismatch becomes notice-
able at the characteristic distance �3� Lg=2vxvy�vy −vx�−1tp
�2ctp�n−1�6�104 cm. The spatial scale of the Kerr self-
and cross-modulation process Lk �3� depends on the field
amplitude E0: Lk�nref�0���effE0

2�−1.
The balance between the fiber group-velocity dispersion

and nonlinear pulse compression is achieved when Lk=Ld.
That gives the value of the amplitude of the one-soliton so-
lution of the NLS equation ENLS= �	nref�0�1/2��t0

2�eff�−1/2

�0.5�104 CGS for a 0.1 ps pulse duration. The corre-
sponded length scale is Lk

�NLS��70 cm. The NLS one-soliton
peak intensity can be estimated as INLS=c�ENLS�2 /8��4
�109 W /cm2.

We adopt the value of deff�5�10−21 CGS �transition
4I13/2→ 4I15/2 in Er3+ ions� and the impurity concentration
na�1018 cm−3 that are valid for realistic samples �4�. Let us
also set the value of the reversible relaxation time T2

�� t0
�0.1 ps �6� encountered for the silica glass environment.

The quantity Lr
�2��= �nref��0��2�2nadeff

2 t0�−1�5�102 cm
is the distance in the resonance sample, where the reciprocal
reaction of the medium in the form of polarization and popu-
lation differences develops to produce a number of coherent
transients such as self-induced transparency �SIT� �1�, pho-
ton echo �17–19�, optical nutations, and breather waves. For
the signals with a small pulse area �34,46� � parameter Lr

�2��

serves as the length of absorption. The pulse area of the NLS
soliton is extremely small �NLS=�deff�

−1t0ENLS=3�10−3�
in comparison with �SIT=2�. The amplitude of a 0.1 ps 2�
pulse is E2�=2�deff

−1t0
−1�4�106 CGS. The peak intensity of

the pulse reaches the magnitude of I2��2�1015 W /cm2.
This well-known result �4� implies that the SIT soliton re-
quires a power approximately six orders of magnitude larger
than that for the NLS soliton, or that one 2� SIT pulse cor-

responds to the hundreds of NLS solitons by power.
As soon as the resonance interaction is considered as the

basic effect, it is convenient to set the resonance absorption
length as a characteristic spatial scale Lr= fLr

�2��=L, with the
appropriate choice of normalizing field E0=E2��f =1�. If, in
spite of the evident discrepancy in pulse power, we assume
that the fundamental NLS soliton is concurrently the SIT 2�
pulse, then the condition deffENLSt0�−1�2 holds. The latter
imposes a stringent restraint on the relationship between ma-
terial constants deff�

−1��0	�−1�eff
−1�1/2�2, followed by an ex-

otic length of resonance absorption for the chosen concentra-
tion of the active centers Lr

�2��=nref�0
2	�8�3nat0�eff��−1�8

�10−3 cm. For the above characteristic values of the mate-
rial constants the effective dipole moment deff
=2���� /	n�0�1/2�3.5�10−18 CGS exceeds the referred
value �4� by more than three orders. Only by assuming the
concentration of the resonance impurities to be na
�1014 cm−3, can one obtain a more or less reasonable value
of Lr

�2���80 cm. An additional condition of the balance be-
tween Kerr nonlinearity and the dispersion broadening �Lk
=Ld� leads to the final estimate Lk=Ld�100 cm, Lc
�24 cm, and Lg�6000 cm. The relative parameters then
are �d=�k�1.25, �c�0.3, �r�1.0, �g�75, f =1.0, and E0
=5�104 CGS. The numerical modeling of such a complete
situation will be presented later in Sec. V �Fig. 11�.

The coherent effects in doped fibers, such as self-induced
transparency, 4�-pulse breakup, �-pulse amplification �4,5�,
and photon-echo effect �18,19� were observed experimen-
tally in the meter range fiber length. In �4,5� Nakazawa with
co-workers used the excitation pulses with several hundred
ps duration to reduce the high intensity of the SIT 2� pulses.
Moreover, in order to observe pure SIT and to remove mul-
tiple NLS soliton effect, the fiber with low dispersion was
chosen in experiments. However, in line with the scope of
the current paper, the subpicosecond pulse duration domain
is more interesting as the dispersion may not always be con-
sidered as the negligible effect then and, besides that, the
excitation pulses duration is getting comparable with the in-
homogeneous lifetime T2

�. The above-mentioned problems in
numerical estimates, which evidently arise in this range of
pulse parameters, could be eased off by an appropriate selec-
tion of fiber host material and by the sort of dopant, e.g., by
reducing the nonlinear interaction parameter � and/or by ma-
nipulating the dispersion parameter 	.

The normalized Lorentz field correction � �Eq. �4�� can be
estimated in terms of “co-operative” time tcp=��4�nadeff

2 �−1,
which is the time the polarization induced by the field of the
traveling pulse in an ensemble of two-level systems emerges,
and the characteristic time of the problem t0, namely, �
=ELor /E2�= �4� /3��t0 /8�tcp�. The value of this parameter is
not very large in a subpicosecond domain unless there is a
very large magnitude of dipole moments inherent to such
objects as quantum dots. In the following numerical analysis,
in order to make effects more perceptible, the Lorentz cor-
rection reaches the value of several units. The previously
cited numerical estimates imply that the conditions for ob-
servation of the distinctive nonlinear propagation effects do
not generally match to parameters under which the pro-
nounced coherent transients evolve. The numerical simula-
tions, which follow in the next section, are focused on the
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resonance coherent interaction, while fiber host material ef-
fects are introduced not all at once, but in most cases singly,
in order to reveal the individual effect. This approach is jus-
tified with the increased opportunity to manage the wave-
guide parameters in the intensively studied porous photonic
band gap optical fibers, especially those filled with resonance
gas �29–33�.

IV. COHERENT PULSE PROPAGATION IN DOPED FIBER

It is instructive to start with a simple example when there
are no fiber effects involved, and the pulse area of the input
sech pulse is equal to 2�. The quantum coherency on a cer-
tain transition then brings about a net self-induced transpar-
ency �Fig. 1�a�� effect. The local field correction introduced
in Eq. �3� provides a dynamical shift to the optical resonance
of impurities. Under such conditions, a solitary pulse of self-
induced transparency ends up as a soliton. The respective
nonlinear phase modulation against the inhomogeneous line
background leads to the dispersive broadening of the pulse
shape �Fig. 1�b��. The pulse basically keeps the coherency in
its interaction with the system of resonance impurities. The
optical signal draws a curvilinear trajectory in the �� ,��
plane �Fig. 1�c��, experiencing a noticeable slowing down
due to the progressing amplitude decrease. The curious fea-

ture of the process is the incoherent response in the form of
weak residual quasiharmonic radiation detached from the
main pulse body.

The simulation in Fig. 2 exhibits the boundary conditions,
when the pulse, launched to the homogeneously broadened
resonance medium, is linear polarized. In Fig. 2�a� the pulse
propagates as a steady-state solitary wave. Each of the circu-
lar polarization modes interacts with its individual transition
of a degenerated two-level system. Meanwhile, as is seen
from Fig. 2�b�, the Lorentz field exerts a strong influence on
the pulse behavior as it brings a dynamical frequency shift
driving a homogeneous ensemble of two-level atoms off the
resonance with the propagating field. Thus, there is a deficit
of pulse steadiness already in a shallow depth in resonance
medium, where a small-scale modulation structure in the
pulse-after-action area delivers a reciprocal reaction of reso-
nance atoms. An abrupt fall of the pulse amplitude is evi-
dently due to the lack of energy, which is transferred off the
pulse by the resonance interaction process. This automati-
cally reduces the influence of the local field effect and par-
tially restores the coherency. The progressively spreading
pulse shape carries the temporal modulation, which could
originate from the beat between quantum coherencies on the
adjacent transitions.

FIG. 1. Self-induced transparency of a circularly polarized wave
in an inhomogeneously broadened medium. �a� The local field ef-
fect is off, �b� the local field effect is on, and �c� the gray scale map
of the process. �=0.5, em1=�, em2=0.0, �=1.0, f =1.0, �r

=1.0, �d=� , �c=� , �k=� , �g=�.

FIG. 2. Self-induced transparency of a linear polarized wave in
a homogeneously broadened medium. �a� The local field effect is
off; �b� the local field effect is on. �=0.75, em1,2=2−1/2, �=0. Other
parameters are similar to those in Fig. 1.
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The propagation of the light pulse in birefringent fiber is
accompanied by the two-way coupling between the orthogo-
nal counter-rotating polarization modes with the spatial beat
period 2�����−1 �Fig. 3�. This process is featured by the
characteristic length �c in the field equations �1�. The cross
terms in the model equations �1� responsible for birefrin-
gence makes it possible to initiate a circularly polarized
wave in one polarization channel by inputting the pulse with
opposite polarization. It is remarkable that the coherent in-
teraction of the propagating field with the resonance impuri-
ties hardly affects the process of the birefringent beat. The
coherent process of 4�-pulse breakup is accompanied by the
periodical intermode coupling with the spatial period of en-
ergy transfer �b=��c equal to about 12 units �Fig. 3�.

The local field is revealed largely in the slowing down
and damping of the component with the smaller amplitude
�Figs. 4�a�–4�d��, which is similar to Fig. 1�b�. The gray
scale map of ellipticity � �Fig. 3 �upper panel�� shows that
this function is uniform over the pulse temporal spread and
oscillates in the course of its propagation in fiber �21�. The
polarization state alters from a linear polarization ��=0� to a
circular polarization of the opposite direction �from �= +1
�white� to �=−1 �black��. The azimuth angle � �not shown�
changes from −� /4 to � /4. The ripples by both sides of the
pulse propagation area in Fig. 3 �upper panel� are the result
of the numerical fluctuations provoking the random switcho-
vers of ellipticity � on the wings of pulses, where the field of
both types of polarizations is extremely weak.

By disregarding the frequency dependence of the index
difference between the x and y polarized modes, one obtains
lc / lg�� /2��ctp�. Therefore, it is possible to neglect the
pulse walk-off effect for the pulse width in a picosecond
range as this phenomenon occurs over a distance, which is
much longer than the linear beat length of fiber. However,
the polarization mode dispersion can be important in the
femtosecond pulse duration domain. For example, for a sig-
nal pulse at the carrier wavelength �=1500 nm and time
duration tp=10 fs, the ratio lc / lg�0.08, and the characteris-
tic distance of the group velocities mismatch becomes com-

parable with the length of resonance interaction Lr.
The effect of spatial divergence of the differently polar-

ized components initiated by a solitary circularly polarized
pulse is demonstrated in Fig. 5. The wave radiation process
�Figs. 5�a�–5�c�� in the time moments following the pulse
results from the resonance interaction with the impurity at-
oms �34,46�. The retardation is scaled by the “cooperative”
time tcp=��4�nadeff

2 �−1. In the range of parameters adopted
in the model, the inequality tcp� t0 holds. The walk-off effect
manifests only as a residual trace clearly because of the ex-
penditure of pulse energy for the interaction with the en-
semble of resonance dopants. The polarization properties of
the light pulse are displayed in the gray scale map in Fig.
5�b�. The out-of-phase counterpolarized radiation occurs in
the later time moments due to the resonance coherent inter-
action with the adjacent transition �Figs. 5�a� and 5�c��. That
gives rise to a strong modulation of ellipticity �Fig. 5�b�� of
the polarized wave field �47�.

The local field effect �Figs. 5�d�–5�f�� causes the fre-
quency shifts and the degradation of coherency in the inter-
action of the field with the resonance medium, accompanied
by the phase modulation of the polarization components of
the spreading field and the small-scale fluctuations of ellip-
ticity �Fig. 5�e��.

For the pulses of the 100 fs range and typical material
constants, the length of coherent interaction Lr

�2�� is compa-

FIG. 3. The influence of the linear birefringence effect on the
coherent processes of 4�-pulse breakup in an inhomogeneously
broadened resonance medium. f =1.0, �=0.0, �r=1.0, �d=� , �c

=4.0, �k=� , �g=�.

FIG. 4. ��a� and �b�� Gray scale map of the processes, depicted
in Fig. 3. ��c� and �d�� The effect of local field ��=0.5� onto that of
4�-pulse decomposition in an inhomogeneously broadened reso-
nance medium.
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rable with the dispersion length Ld and so the dispersion
process cannot be ignored. The dispersion of group velocities
of different spectral components of USP distorts the coherent
effect of 4�-pulse decomposition �Fig. 6�a��. This proves in
the temporal broadening and generation of quasiharmonic
radiation from the area of pulse propagation, though the
traces of the coherent process of 4�-pulse decay remain �Fig.
6�b��. The ripples on the contour of the spreading pulses are
partially the artifact, as there is a reflection of quasiharmonic
waves on the rigid boundaries back to the computational
grid. The availability of local field effect changes dramati-
cally the spatiotemporal dynamics of propagating signals.
The absorption line shift, which is proportional to the popu-
lation difference, drives the two-level atoms out the reso-
nance, thus making the interaction of the field and resonance
impurities inefficient with the corresponding loss of coher-
ency. The result is shown in Fig. 6�c�, where the well-
pronounced picture of the effect of dispersion substitutes the
coherent linear polarized 4�-pulse decomposition is dis-
played in Fig. 6�a�.

Figure 7 exhibits a numerical modeling of the situation
that is somewhat extreme, when the group velocity disper-
sion due to the frequency-dependent refractive index of the
fiber is weaker than a Kerr nonlinear self-phase modulation.
That takes place in short ordinary fibers not sufficient for

dispersion to develop, or the enhancement of nonlinearity
can be achieved in photonic band-gap fibers filled with active
gas �30�. In order to enforce the effect, the normalized length
of the Kerr nonlinearity is chosen shorter than the reference
length of resonance absorption �k=0.1�r. The intensity-
dependent nonlinear phase modulation brings the typical
changes in temporal shape of the pulse: the small-scale spike
structure on the trailing edge of the pulse and the predictable
steep slope of the leading edge. Nevertheless the collapse of
the pulse shape, which would have been forecasted in this
situation, does not occur. The trailing edge is obviously
wider as the result of a different type of dispersion owed to
resonance interaction with the inhomogeneous ensemble of
two-level atoms. The demonstrative coherent interaction pro-
cess of 4�-pulse decomposition �Fig. 7�a��, having started at
the input of fiber, does not develop further due to a strong
phase modulation �Fig. 7�b��. As there is no radiation in the
temporal domain after the pulse action, one could assume
that the resonance atoms are restored in the initial state and
the coherence of the light-medium interaction is not violated.
The incorporation of local field effect into the model leads to
the noticeable alterations in pulse dynamics �Fig. 7�c��. The
defect of resonance, ensued from the frequency shifts of the
individual two-level system summarized over the inhomoge-
neous line, releases the dispersion in resonance subsystem,

FIG. 5. ��a–c�� The walk-off effect for a cir-
cularly polarized input 2�-pulse in an inhomoge-
neously broadened resonance medium in the ab-
sence of Lorentz-field corrections ��=0�. ��d–f��
The same as in �a�–�c� in the presence of the local
field effect ��=1.0�. �r=1.0, �d=� , �c=� , �k

=� , �g=1.0, f =1.0.
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which manifests in a weak quasiharmonic radiation at the
pulse after-action moments of time.

V. PHOTON-ECHO EFFECT IN RESONANT FIBER

Echo studies are particularly advantageous in fiber geom-
etry since long interaction lengths are available, phase
matching is intrinsically satisfied, and the small core size
results in modest power requirements. Photon-echo �48� is
generated in an inhomogeneous ensemble of resonance par-
ticles. The pulse of coherent spontaneous radiation is the
result of the dephasing under the action of the first USP and
the subsequent rephasing of radiators under the action of a
second pulse at the time moment approximately double to
the time interval between pulses.

While propagating down a fiber the echo pulse is devel-
oping into a full-scaled signal with the energy sufficient for
the excitation of subsequent multiple echoes. This effect is
clearly introduced in Fig. 8, where the equidistant series of
echo pulses follows the � /2 and � excitation pulses. As soon
as the modulus of field amplitude is plotted in Fig. 8, some

extra humps between the echo pulses show traces of the
negative nutational surges of field amplitude. The remarkable
and new feature of Fig. 8 is that at the distance of several
absorption lengths, where the excitation pulses exhaust, the
energy, coupled to the fiber at the entrance, completely re-
pumps in coherent spontaneous radiation of the primary
photon-echo signal and multiple echoes. In the depth of the
medium, the echoes merge to develop into a steady-state
pulse with low amplitude and a high speed of retardation.
The introduction of birefringence in multiple echo gives rise
to a different effect, when the photon echo appears in the
conjugated polarization channel �Fig. 9�, which has not been
initially activated by a pair of USPs. The signals of multiple
echo participate in the process of back and forth coupling
between two polarization states with the appropriate beat pe-
riod.

Under the Kerr effect �Fig. 10� the duration of the excita-
tion pulses shortens and the temporal shape of the weak first
pulse suffers distortion and damping. The excitation pulses
do not shift along the computational time grid; Kerr nonlin-
earity suppresses the weak nutations characteristic for coher-

FIG. 6. �a� Linear polarized 4�-pulse breakup net effect on a
homogeneous line ��=0�; �b� the same effect in the presence of
dispersion ��=0�; �c� the effect of local field correction on the
process that is shown in panel �b�. �=5.0, em1,2=21/2, �r=1.0, �d

=5.0, �c=� , �k=� , �g=� , f =1.0.

FIG. 7. �a� Linear polarized 4�-pulse breakup net effect on an
inhomogeneous line; �b� the same input pulse coupled to the Kerr
medium; �c� the effect of local field correction on the process that is
shown in panel �b�. �=1.0, em1,2=21/2, �r=1.0, �d=� , �c

=� , �k=1.0, �g=� , f =1.0.
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ent interaction with resonance medium �see Figs. 8 and 9�.
The first pulse is getting too weak to noticeably excite the
spectral components of the resonance line; so the perceptible
multiple photon-echo effect is observed only in the short
distance of propagation in resonant fiber and then it vanishes.

Photon-echo effect keeps its identity in the presence of the
full set of main fiber effects: birefringence, Kerr-nonlinearity,
material dispersion, and walk-off effect. Figure 11 clearly
shows the rise of primary photon-echo in fiber, in which the
birefringence initiates the photon-echo effect in the conju-
gated polarization state. The cubic nonlinearity causes a
squeezing of temporal shape of the propagating pulses ac-
companied with the well-recognized oscillations on the
wings of the excitation pulse due to dispersion.

VI. CONCLUSION

In conclusion, the propagation of USPs of elliptically po-
larized light in nonlinear doped birefringent fiber has been
numerically examined. The resonance impurities in the form
of two-level atoms are included in the model in addition to
the full set of fiber effects. The local field effect is phenom-
enologically taken into account. The coherent resonance in-
teraction of USPs with an inhomogeneously broadened sub-
system of resonance impurities is considered as the basic
phenomenon influenced by the conventional fiber factors:
host material dispersion, cubic nonlinearity, birefringence,
and walk-off effect. The numerical modeling has been

performed for two types of coherent transients: self-induced
transparency, specifically the 4�-sech pulse breakup, and the
photon-echo effect. By choosing the type of polarization of
the launched pulses, one can excite either a separate transi-
tion in the degenerated two-level quantum system or both
adjacent transitions. The presence of linear birefringence and
spatial divergence of differently polarized components of op-
tical pulse �walk-off effect� leads to the coupling of coherent
radiation to the conjugated polarization mode. Remarkably,
the linear birefringence would not affect a steadiness of the
4�-decay process if there is no Lorentz-field correction.

The local field effect provokes the dynamical frequency
shift on the background of a wide resonance absorption line,
which broadly leads to the partial loss of coherency espe-
cially well seen in small-scale spatiotemporal variations of
ellipticity in the field of a propagating wave. The group-
velocity dispersion effect is not able to destroy a coherent
transient but it imposes the inherent temporal broadening and
the oscillations on the shape of the USP. The nonlinear Kerr
effect suppresses the coherent process of pulse breakup as a
result of significant squeezing of pulse shape and the short-
ening of its duration.

FIG. 8. Pure multiple photon-echo effect in one polarization
mode in an optically extended medium. f =1.0, �=0.0, �r

=1.0, �d=� , �c=� , �k=� , �g=�.

FIG. 9. Multiple photon-echo effect in an optically extended
medium in the presence of linear birefringence. f =1.0, �=0.0, �r

=1.0, �d=� , �c=4.0, �k=� , �g=�.
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The most interesting result in photon-echo numerics is the
emergence of a steady-state signal out from the series of
multiple photon echoes forming in an optically extended me-
dium of active fiber. Attention should be also drawn to the
fact that due to the intrinsic fiber birefringence there is a
possibility to excite photon echo of the conjugated polariza-
tion mode, even if this mode is not activated by the input
pulses. The temporal and polarization features of the conven-
tional coherent transients, considered in this work, may be-
come important in light of renewed interest in fiber optics
due to the development of photon-crystal fiber and metama-
terial physics.
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