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In connection with the experiments recently achieved on doped crystals, biological samples, doped optical
fibers, and semiconductor heterostructures, we revisit the theory of the propagation of a pulse-modulated light
in a saturable absorber. Explicit analytical expressions of the transmitted pulse are obtained, enabling us to
determine the parameters optimizing the time-delay of the transmitted pulse with respect to the incident pulse.
We finally compare the maximum fractional delay or figure of merit so attainable to those which have been
actually demonstrated in the experiments.
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I. INTRODUCTION

Dynamics of saturable absorbers is often well reproduced
by using a two-level model with a coherence relaxation time
very short compared to the population relaxation time. The
propagation of laser pulses in the medium is then simply
described by two equations coupling the light intensity and
the difference of populations. As far back as 1965, Gires and
Combaud �1� used this model to analyze the transmission of
laser pulses through dye solutions. They considered pulses of
duration long compared to the population relaxation time,
but this approximation is relaxed in subsequent works �2–5�.
Calculations made by Selden in this more general case en-
abled him to explain not only the narrowing of the transmit-
ted pulse but also its skewing and the time delay of its maxi-
mum �5�. Selden also studied the transmission of a laser
beam when its intensity is slightly modulated by a low fre-
quency sine wave �6�. He showed that the effect of the satu-
rable absorber is to increase the modulation depth and to
introduce a phase delay of this modulation. The experimental
data obtained by Hillman et al. on ruby �7� are in full agree-
ment with his predictions on the modulation depth. Although
often overlooked, the above mentioned theories �2–6� are
applicable to most of the recent experiments achieved on
various saturable absorbers, including doped crystals �8–13�,
biological film and solution �14,15�, quantum wells �16,17�,
quantum dots �18–20�, and doped optical fibers �21,22�. De-
veloped to attain pulse velocities as slow as possible, these
experiments are currently analyzed in terms of coherent
population oscillations �CPOs�, homogeneous hole burning
�23�, and group velocity. As extensively discussed in Refs.
�24–26�, such an analysis is questionable. In most cases �27�,
the population oscillations are not created in the medium
under the combined action of two independent coherent
beams �23� but results from the intensity modulation of a
single incident beam. The phenomenon is thus insensitive to
phase and frequency fluctuations of the optical field. The
group velocity, attached to a given optical frequency and
obtained by expressing that the phase of the field is station-
ary near this frequency, then loses its relevance. We also

remark that the identification of the group velocity to the
ratio of the medium thickness over the time-delay of the
pulse maximum, often made in the literature, is incorrect. As
a matter of fact, the saturable absorption and the CPO ap-
proaches are based on the same approximations, namely, that
the coherence relaxation time is infinitely short compared to
the population relaxation time, the Rabi period, and the in-
verse of the deviations of the laser frequency from the line
frequency. In the CPO approach, analytical results have only
been obtained in the particular case of a weak sine-wave
modulation. The fact that the saturable absorption approach
then gives exactly the same results �17,25,28� shows that the
two approaches are equivalent. However, the saturable ab-
sorption approach is more straightforward �it avoids the pas-
sage through the refractive index� and, as shown in the fol-
lowing, is more efficient since it provides analytical results
in much more general situations, in particular, not only when
the pulse acts as a probe but also when its interaction with
the medium is fully nonlinear. Finally the saturable absorp-
tion approach better corresponds to the experimental condi-
tions where the inverse of the pulse duration is generally
much smaller than the fluctuations of the optical carrier fre-
quency.

For the first time to our knowledge, we provide in the
present paper explicit analytical expressions of the transmit-
ted pulse with a special attention paid to its delay with re-
spect to the incident pulse and to the optimization of this
delay. In Sec. II, we recall the general equations describing
the propagation of intensity-modulated light in a saturable
absorber. The case of pulses superimposed to a continuous
background with a small modulation index is examined in
Sec. III. The nonlinear propagation of pulses in the absence
of background and the general case �pulses and background
of arbitrary intensity� are respectively studied in Secs. IV and
V. We finally compare in Sec. VI the fractional delays attain-
able with saturable absorbers to those which have been ac-
tually demonstrated.

II. GENERAL ANALYSIS

We consider a resonant light beam propagating in the z
direction through a saturable absorber modeled as a two-
level system. As indicated before, we assume that the coher-*bernard.segard@univ-lille1.fr
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ence relaxation time is infinitely short compared to the popu-
lation relaxation time, the Rabi period, and the inverse of the
deviations of the laser frequency from the line frequency. It
is then possible to adiabatically eliminate the polarization in
the Bloch-Maxwell equations in order to obtain the two
coupled equations �1–4�

�
�N

�t
= N�1 + I� − 1, �1�

�I

�z
= − �IN . �2�

In these expressions, � is the population relaxation time, N is
the population difference normalized to its value at equilib-
rium, t is the time retarded by the propagation time in the
host medium �negligible compared to the delays considered
in the following�, I is the beam intensity normalized to the
saturation intensity �29�, and � is the absorption coefficient
in the linear regime. Combining Eqs. �1� and �2� we easily
get the nonlinear wave equation

�

�z
��

�I

�t
+ I + ln I + �z� = 0 �3�

and the transmission equation

�
�Iout

�t
+ Iout + ln Iout + �L = �

�Iin

�t
+ Iin + ln Iin, �4�

where L is the absorber thickness and Iout �Iin� is the normal-
ized intensity of the output �input� wave. When the input
intensity is constant or very slowly varying at the scale of �,
Eq. �4� is reduced to the well-known saturation equation
�2–4,7�

Iout + ln Iout + �L = Iin + ln Iin. �5�

Although established with a two level model, this equation
fits very well the transmission curve of multilevel saturable
absorbers. This result is illustrated Fig. 1, where we compare
the predicted transmission to that actually measured on a
erbium-doped optical fiber �30�.

III. CASE OF SMALL MODULATION INDEX

We consider first the important case where the pulses
�containing the useful signal� are superimposed to a large dc
background C. The input and output intensities, respectively,
read Iin�t�=Cin+sin�t� with sin�t��Cin and Iout�t�=Cout
+sout�t� with sout�t��Cout. Making a calculation at the first
order in sin�t� and sout�t� and taking into account Eq. �5�
relating Cout and Cin, we get

dsout

dt
+

sout

�b
=

Cout

Cin
�dsin

dt
+

sin

�a
� , �6�

where �a=1 / �1+Cin� and �b=1 / �1+Cout�. Assuming that
sin�−��=0, the general solution of Eq. �6� may be written

sout�t� =
Cout

Cin
�sin�t� + � 1

�a
−

1

�b
�e−t/�b�

−�

t

sin���e�/�bd�	 .

�7�

The impulse response h�t� �31� is obtained by taking sin�t�
=��t� where ��t� is the Dirac function. We get

h�t� =
Cout

Cin
���t� + � �b − �a

�a
�U�t�

�b
e−t/�b	 , �8�

where U�t� is the unit step function. Finally the transfer func-
tion �31�, Fourier transform of h�t�, reads

H��� =
Cout

Cin
�1 +

�b − �a

�a�1 + i��b�� 

Cout�b�1 + i��a�
Cin�a�1 + i��b�

. �9�

The latter result can also be directly derived from Eq. �6� by
taking sin�t��ei�t �25� and is obviously applicable to the par-
ticular case of a sine-wave modulation, often used in the
experiments. It is consistent with the previous calculations
made in this case �6,8,25� and with the experimental results.
The phase delay of the intensity modulation introduced by
the medium has a maximum 	
m=tan−1���a−�b� /2��a�b�
for �=1 /��a�b. We remark that 	
m�� /2, the upper limit
being approached for Cin1 and Cout�1. Consequently the
time delay td of the output modulation can never exceed 25%
of the modulation period T.

Strictly speaking a sine wave does not contain any infor-
mation and, e.g., the previous delay td may also be seen as an
advance T− td. An unambiguous demonstration of delay �or
advance� requires to use pulses of finite duration and energy.
Ultraslow “velocities” L / td can be achieved by using dense
media with long relaxation times �14,15�. However, in view
of potential applications, the important issue is not merely to
achieve ultraslow light but to produce delays as large as pos-
sible compared to the duration of both the input and the
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FIG. 1. Transmission at 1530 nm of a erbium-doped optical
fiber as a function of the incident power. The parameters are L
=7.5 m and �L=6.8. The points are experimental �30� and the
continuous line is obtained from Eq. �5� by adjusting the saturation
power Psat. The best fit is obtained for Psat=−7.30 dBm, that is,
Psat=0.186 mW. The erbium concentration is small enough in or-
der that energy transfer up-conversion is negligible and that the
absorption is fully saturable.
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output pulses. In the following we will thus characterize the
slow light systems by their figure of merit or generalized
fractional delay

F = td/max��in,�out� , �10�

where �in ��out� is the full width at half maximum of the input
�output� pulse. Our definition is identical to the usual one
�F= td /�in� when �out��in or �out��in.

We consider input pulses such that sin�t� is continuous,
bell-shaped, symmetric, and centered at t=0. General prop-
erties of the output pulse sout�t� can be derived from the
relations sout�t�=h�t� � sin�t� or Sout���=H���Sin���, where
Sout��� and Sin��� are, respectively, the Fourier transforms
of sout�t� and sin�t�. Since sin�t� is centered at t=0, the center-
of-mass tc.m. of sout�t� coincides with that of h�t�. We get

tc.m. =

�
−�

+�

th�t�dt

�
−�

+�

h�t�dt

= �b − �a. �11�

Since �a=� / �1+Cin� and �b=� / �1+Cout�, tc.m. will be always
smaller than the relaxation time �, this limit being only at-
tained when Cin1 and Cout�1. The largest pulse delays are
expected in these conditions but one should remark that, due
to the distortion �asymmetric broadening�, the delay td of the
pulse maximum may strongly differ from tc.m.. Equations �7�
and �8� show that the distortion will be negligible when �in
�b �long pulses�. We have then td� tc.m. and thus F�1.
More generally td will be as large as possible if the first term
of Eq. �7� �not delayed� is small compared to the second one,
that is again when Cin1, Cout�1, and thus tc.m.��. We
then get sout�t��Coutg�t� with

g�t� = �U�t�
�

e−t/�	 � sin�t� =
e−t/�

�
�

−�

t

sin���e�/�d�

= T −1� Sin���
1 + i��

	 , �12�

where T −1 is a shorthand notation of the inverse Fourier
transform. When �in�� �short pulses�, Eq. �12� shows that
td=O��in� while �out�� ln 2 �the duration of U�t�e−t/�� and
thus F�1, as previously. A maximum of the fractional delay
is expected for �in=O��� but its determination obviously re-
quires to specify the pulse shape.

We consider first the realistic case of pulses having a
strictly finite duration �hereafter cos pulses�, such that sin�t�
=Ain cos2��t /2�in� for −�in� t��in and sin�t�=0 elsewhere
�Fig. 2�. Equation �12� then leads to

g�t� �
Ain

2
�1 +

cos� �t
�in

� + ��
�in

sin� �t
�in

� − ���
�in

�2e−�t+�in�/�

���/�in�2 + 1
	
�13�

for −�in� t��in, g�t�−�in�=0 and g�t��in�=g��in�e−�t−�in�/�.
As expected, sout�t� has an exponential fall at the end of the
input pulse �t��in�. The time delay td of the maximum is
given by the implicit equation

sin��td

�in
� = ���

�in
��cos��td

�in
� + e−�td+�in�/�	 . �14�

Asymptotic calculations show that td���1−�2�2 /2�in
2 � for

�in� and that td��in�1−2�in
1/2 /��1/2� for �in��. When

� /�in varies from 0 to �, td /�in increases from 0 to 1 while
�out increases from �in to � ��out�� ln 2, see above�. Starting
from 0, the fractional delay F, equal here to td /�out, begins to
increase before to decrease to 0, in agreement with our gen-
eral predictions �see inset of Fig. 2�. It attains its maximum
Fmax=31% for � /�in=0.9. This maximum is very flat since
Fmax�29% for 0.6�� /�in�1.5. Figure 2 shows the inten-
sity profiles of the output pulses obtained for � /�in=0.2, 0.9,
and 5.

Similar results are obtained in the classical case of
Gaussian pulses. Taking sin�t�=Ain exp�−t2 /�p

2� with �p

=�in /2�ln 2, we get

g�t� � Ain
�p

��

2�
�1 + erf� t

�p
−

�p

2�
�exp�−

t

�
+

�p
2

4�2�	 ,

�15�

where erf�x� is the error function. The optimal � /�in �1.05� is
close to that obtained with cos pulses and Fmax is nearly the
same �29%�. The main difference is that the delay td is no
longer limited by �in. Delays td��in can be obtained when
� /�in1. Asymptotic calculations then show that td

=�p�ln� �

�p
��

��1/2. A delay td��in is attained for � /�in�17.
The output pulse is then very broad ��out�12�in and F
�8%�. When the double condition Cin1 and Cout�1 is not
met, the term proportional to sin�t� in sout�t� �see Eq. �7�� is
not negligible and �b��. The fractional delay is reduced
accordingly. Considering, e.g., cos pulses with Cin=1 and
Cout=1 /10 �attained by taking �L�3.2�, we find Fmax
�9% instead of 31% in the ideal case.

IV. PULSES WITHOUT BACKGROUND

We consider now the case where Cin=0, without restric-
tion on the pulse amplitude. The medium being initially at
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FIG. 2. Intensity profile of the output pulses obtained in the case
of small modulation index for � /�in: �a� 0.2, �b� 0.9, and �c� 5. The
profile of the input pulse �cos pulse� is given for reference �dashed
line�. The time unit is its full width at half maximum �in. Inset:
Fractional delay as a function of the ratio � /�in.

SLOW LIGHT IN SATURABLE ABSORBERS PHYSICAL REVIEW A 78, 013817 �2008�

013817-3



equilibrium �N�−��=1�, Eqs. �1� and �2� show that N�t�
�0 and sout�t��sin�t� at every time. If the input pulse has a
strictly finite duration �as the cos pulses�, sout�t� will thus
stop at the same time that sin�t�. This result strongly contrasts
with that obtained in the previous section �see Fig. 2�.

When the input pulse is very short ��in���, the popula-
tion difference cannot follow the rapid change of the inten-
sity and, roughly speaking, retains its initial value �sudden
approximation�. From Eq. �2�, we then retrieve the result
corresponding to the linear regime, namely, sout�t�
=exp�−�L�sin�t�. The pulse is only attenuated �neither dis-
torted nor delayed�. Conversely, when the input pulse is very
long, sout�t� and sin�t� are related by Eq. �5�. The output pulse
remains symmetric and centered at t=0 �no delay� but may
be strongly narrowed �5�. Finally, when �in and � are compa-
rable, the output pulse will be at once narrowed, delayed and
skewed. To study the general case, we consider the function
Z�t� introduced by Selden �4�:

Z�t� = ln sout�t� − ln sin�t� + �L . �16�

The transmission equation �4� then reads

�
dZ

dt
+ Z = sin�t��1 + e�Z−�L�� = sin�t� − sout�t� �17�

with the initial condition Z�−��=0. For given sin�t�, Eq. �17�
shows that Z�t� and thus the shape of the output pulse will be
independent of the optical thickness �L as early as the latter
is large enough in order that sout�t��1 and sout�t��sin�t� at
every time. The pulse delay is expected to have then attained
its maximum. We have checked this point by numerically
solving Eq. �17�. Since we are mainly interested in maximiz-
ing the fractional delay, we will assume in the following that
the previous condition on �L is actually met. Equation �17�
is then reduced to

�
dZ

dt
+ Z = sin�t� �18�

with the analytical solutions

Z�t� =
e−t/�

�
�

−�

t

sin���e−�/�d� , �19�

sout�t� = e−�Lsin�t�eZ�t�. �20�

We see that Z�t�=g�t�, where g�t� is the function introduced
in Sec. III �Eqs. �12�, �13�, and �15��. Consequently the de-
lays td considered in Sec. III are now the delays tZ of the
maximum of Z�t� and thus of sout�t� /sin�t�. Moreover, sin�t�
being centered at t=0, Eq. �20� shows that the new delay td
of the pulse maximum will be smaller than tZ and that, for an
input pulse of given shape, td ��out� will be the larger
�smaller�, the larger is the amplitude Ain.

For a given amplitude Ain, the shape of the output pulse
and the fractional delay F= td /�in only depends on the ratio
� /�in. For long pulses ��in��, Eq. �18� takes the approxi-
mate form Z�t+���sin�t�. We then get tZ��, sout�t�
�e−�Lsin�t�exp�sin�t−��� and, since dsin /dt=0 for t=0, td /�
�Ain / �Ain+1�. For � /�in→0, F→0 as expected and sout�t�
tends to the value given by Eq. �5� so long as �L is actually

large enough in order that sout�t��1. Conversely when
� /�in→�, dZ /dt→0, Z�t�→Z�−��=0, sout�t�→e−�Lsin�t�
�as in the general case� and, again, F→0. Finally, a maxi-
mum of F �increasing function of Ain� will be obtained for an
intermediate value of � /�in.

Figure 3 shows the intensity-profiles of the output pulse
obtained with cos pulses for Ain=1, 10, and 100 �keep in
mind that Ain is the peak intensity of the input pulse normal-
ized to the saturation intensity�. For each Ain, � /�in is opti-
mized in order to lead F to its maximum Fmax. Note that the
narrowing of the output pulses is significant but that their
skewing is moderate �fall steeper than the rise�. We have
systematically explored how Fmax, the corresponding �out /�in
and tZ /�in depend on the saturation for Ain ranging from 0.2
to 10000 �Fig. 4�. Since sin�t� stops at t=�in, the fractional
delay cannot exceed unity. In fact, the limit Fmax=1 is very
slowly approached for very large values of Ain. Asymptotic
calculations then show that Fmax�1− �128 /�4Ain�1/5, this
maximum being attained for � /�in��2Ain

2 /�2�1/5. Even for
Ain as large as 10000, Fmax is only 0.83.
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FIG. 3. Intensity profile of the output pulses obtained in the case
of an input pulse without background for Ain: �a� 1, �b� 10, and �c�
100 with � /�in= �a� 0.6, �b� 1.5, and �c� 4.2 �the value maximizing
the fractional delay in each case�. The profile of the input pulse �cos
pulse� is given for reference �dashed line�.
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maximizing F and Fmax itself are well approximated by the
asymptotic formula � /�in��2Ain
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− �128 /�4Ain�1/5.
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Comparable results are obtained with Gaussian pulses for
reasonable peak intensities of the input pulse, say for Ain
�50 �Fig. 5�. For larger Ain, some differences appear be-
cause the Gaussian pulses have infinite wings. There is thus
no theoretical limit to tZ and td. For example, Fmax slightly
larger than 1 is attained for Ain=10000.

At this point, one should recall that the previous fractional
delays Fmax will be actually attained only if the optical thick-
ness is large enough in order that sout�t��sin�t� at every time,
that is if exp�Zmax−�L��1 where Zmax=Z�tZ�. This condi-
tion is satisfactorily met for �L=Zmax+3. When Ain is small
�large�, the optimum � /�in is also small �large�. In the first
case Z�t+���sin�t� �see above� and Zmax�Ain�1. In the
second one, we easily get the asymptotic forms Zmax

�rAin�in /� with r=1 for cos pulses and r=�� /2�ln 2
�1.06 for Gaussian pulses �1�Zmax�Ain�. For intermediate
values of Ain, Zmax�min�Ain ,rAin�in /�� and the condition
sout�t��sin�t� will be met in every case by taking

�L = min�Amin,rAmin�in/�� + 3. �21�

Provided that � /�in is actually optimized to attain Fmax, the
second condition of validity of our calculation, namely,
sout�t��1, is then automatically fulfilled.

V. PULSE AND BACKGROUND OF ARBITRARY
INTENSITY

Comparing the results obtained with input pulses super-
imposed to a large background �Sec. III� and with pulses
without background �Sec. IV�, we see that the former are
broadened in the medium with a rise significantly steeper
than the fall �Fig. 2� whereas the latter are narrowed with a
fall steeper than the rise �Fig. 3�. We may then hope that
better results will be obtained by using pulses superimposed
to a suitably adjusted background. We thus consider in this
section the case where Iin�t�=Cin+sin�t� without restriction
on the amplitudes of Cin and sin�t�. As previously and for the
same reasons, we assume that �L is large enough in order
that Iout�t��1 and Iout�t�� Iin�t� at every time. By redefining
Z�t� as Z�t�=ln Iout�t�−ln Iin�t�+�L−Cin, we find that Eq.

�18� is unchanged and thus that Z�t�=g�t� as previously. In
other respects the new definition of Z�t� leads to

Cout + sout�t� = �Cin + sin�t��e�Cin+g�t�−�L�. �22�

Since sin�t�, sout�t�, and g�t� cancel for t= ��, Cout
=Cin exp�Cin−�L� in agreement with Eq. �5� in the limit
Cout�1 considered here. Finally sout�t� reads

sout�t� = �Cin�eg�t� − 1� + sin�t�eg�t��e�Cin+�L�. �23�

When Cin=0, we retrieve the result given in the previous
section �Eq. �20��. Conversely when the modulation index is
small, eg�t�−1�g�t� and we get

sout�t� = �sin�t� + Cing�t��
Cout

Cin
�24�

a result consistent with Eq. �7�, again in the limit Cout�1
where �b��.

Equation �23� enables us to determine the profiles of the
output pulses for arbitrary values of the ratio Cin /Ain. We
give Fig. 6 different profiles obtained when the input peak-
intensity is fixed �Cin+Ain=10�. For each value of Cin /Ain,
� /�in has been optimized in order to maximize F. As ex-
pected the addition of a background widens the output pulse.
It does not significantly enlarge the attainable fractional de-
lay, which very slightly increases as a function of Cin /Ain
before falling down to the value calculated in the small
modulation-index limit �see inset of Fig. 6�. However, we
remark that the resemblance of the output pulse to the input
one can be improved by the presence of a background �see
the profile of the output pulse obtained for Cin /Ain=0.54. The
latter effect has been recently demonstrated in a saturable
gain system �32�. The qualitative behavior shown Fig. 6 is
general and is observed for any bell-shaped input pulse.

VI. SUMMARY AND DISCUSSION

We have theoretically studied the transmission of a pulse-
modulated light in a saturable medium modeled as an en-
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FIG. 5. Same as Fig. 4 in the case of Gaussian pulses. The ratio
� /�in maximizing F is 0.6, 1.5, 5.0, 14, and 42, respectively, for
Ain=1, 10, 100, 1000, and 10000.
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semble of two-level atoms with a coherence relaxation time
extremely short compared to the population relaxation time.
This model of saturable absorber gives theoretical results in
good agreement with the experimental results obtained in the
currently called CPO based slow light experiments. This was
already pointed out in Ref. �25� about the representative ex-
periments achieved on ruby �8�, Er3+ :Y2SiO5 crystal �13�,
biological bacteriorhodopsin �14�, and quantum dots �18�.
We checked that it is also true for the extensive experiments
recently realized on erbium-doped optical fibers �22�. More
specifically, we verified that, except for ultrahighly doped
fibers �ion density exceeding 3�1025 m−3�, the maximum
phase delays 	
m attained for a sine-wave modulation and
the corresponding modulation frequency are in agreement
with those given by the model �see the discussion following
Eq. �9��.

Thanks to the relative simplicity of the transmission equa-
tion of the model system �Eq. �4��, it has been possible to
obtain explicit analytical expressions of the output pulse and
to optimize the figure of merit or fractional delay F of the
system �Eq. �10��. Our main findings are as follows. When
the input pulse sits on a much larger dc background Cin �in-
tensity normalized to the saturation intensity�, the output
pulse is asymmetrically widened with a rise steeper than the
fall. This behavior is qualitatively analog to that of the usual
slow light systems �see, e.g., Ref. �33�� but the pulse shape
may be much more asymmetric, with an exponential or
nearly exponential fall �Fig. 2�. The fractional delay F de-
pends on Cin, on the linear optical thickness �L �which de-
termines the intensity of the output dc background Cout� and
on the ratio � /�in of the population relaxation time over the
width of the incident pulse. It attains its maximum Fmax
�30% �slightly depending on the precise shape of the input
pulse� when Cin1, Cout�1, and � /�in�1. When Cin=1 and
Cout=1 /10 ��L�3.2�, Fmax falls down to 9%. Larger frac-
tional delays are obtained by using input pulses of large peak
intensity Ain without background. Contrary to the previous
case the output pulse is now narrowed with a fall moderately
steeper than the rise �Fig. 3�. The largest fractional delays are
attained when Ain is as large as possible �Figs. 4 and 5�
provided that the optical thickness is itself very large �Eq.
�21��. Note that the ratio � /�in maximizing F also increases
with Ain. In the reference case Ain=10, Fmax�36% for
� /�in�1.5 and �L�10.7 �34�. Finally, for a fixed value of

the overall peak intensity of the input beam, the addition of a
dc background does not significantly enhance the fractional
delay but may improve the symmetry of the output pulse
�Fig. 6�.

In fact, there are few time-resolved experiments on satu-
rable absorbers giving direct evidence of pulse delays
�8,10,12,18,21,22�. The obtained fractional delays �as de-
fined Eq. �10�� are all smaller than 20%. There are different
reasons for that. The main one is that the input intensities Cin
and/or Ain are too small, typically of the order of 1, at the
best of a few units. Second the linear optical thickness is not
adapted. Third the pulse duration is not optimized. The
erbium-doped optical fiber seems a good candidate for the
demonstration of a larger fractional delay. The saturation
power is low ��0.5 mW� and normalized intensities Cin
and/or Ain of 100 can be easily achieved. A fractional delay
of about 60% �Fig. 3�c�� would then be attained with an
input pulse of duration �in�0.23��2.4 ms and a linear op-
tical thickness �L�23. The latter would be obtained in a
fiber of reasonable length �L�4 m� with an ion density �
�2�1025 m−3 �22� for which the saturation model is valid.
Note that larger fractional delays �up to 1.5 with our defini-
tion� have been demonstrated in undoped fibers by exploiting
Brillouin scattering �35� but this result is obtained with much
longer fibers.

We finally remark that the pulse-delay mechanisms in a
saturable absorber strongly differ from those involved in the
“pure” slow-light experiments �36�. The former are nonlinear
and non coherent whereas the latter are linear and coherent.
Moreover the propagation phenomena are essential in the
second case whereas they are absent in the first one. This
point is illustrated by our calculations made for an input
pulse of strictly finite duration �Sec. IV�. We have shown that
the output pulse then stops at the same time as the input one.
On the contrary the propagation effects are responsible of an
important delay in the linear case. This explains in particular
the very large fractional delays attained in media with an
electromagnetically induced �37� or a natural �38,39� trans-
parency window.
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