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We show that a few-cycle pulse launched in a quadratic medium may result in a half-cycle soliton in the
form of a single hump, with no oscillating tail. The analysis involves the derivation of a Korteweg-de Vries
�KdV� equation from both a classical and a quantum mechanical simple model of matter-radiation interaction.
The sign of the electric field in the half-cycle KdV soliton is fully determined by the properties of the material,
which definitely breaks the phase invariance.
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I. INTRODUCTION

Ultrafast optics has led recently to the production of
pulses with durations down to a few optical cycles �see the
reviews �1,2��. The theoretical study of few-cycle pulses
�FCPs� propagation is the matter of extensive research: cor-
rections to the paraxial approximation �1–3�, the so-called
short-pulse equation �SPE� �4–6�. Self-compression of the
FCP and FCP soliton formation is a very important issue �7�.
The propagation of FCP solitons in Kerr media can be de-
scribed in a way completely free from the slowly varying
envelope approximation, using completely integrable models
as the modified Korteweg-de Vries �mKdV�, sine-Gordon
�sG� or mKdV-sG equations �8–10�.

However, a FCP still remains a wave packet, which pre-
sents a large number of oscillations, even if only one or two
of them have an important amplitude. A challenge is to pro-
duce an optical pulse with a single oscillation, comparable in
shape with the solitary waves which are well known in hy-
drodynamics; in other words, to clean up the FCP by sup-
pressing the oscillations around the main hump.

A second point is the phase invariance, which may appear
as a fundamental symmetry of the optics. The FCP in some
sense loses the phase invariance, and the importance of the
carrier-envelope �CE� phase has been emphasized �1�. How-
ever, although ways of stabilizing the CE phase have been
proposed �10,11�, it remains a very difficult task. Further,
even if a zero CE phase is realized, the existing setups cannot
distinguish it from a phase �: the polarity of the electric field
remains random, and its mean value on a large number of
FCPs remains zero.

Up to now, the study of FCP solitons is restricted to the
case of a cubic �Kerr� nonlinearity. For longer pulse dura-
tions, when the slowly varying envelope approximation is
valid, the study of optical solitons in quadratic nonlinear me-
dia has shown many remarkable properties with respect to
the cubic Kerr case �12,13�. First of all, the quadratic non-
linearity, in principle, allows one to observe nonlinear effects
with much lower input power than a cubic one. However,
such an effect and the formation of envelope solitons in qua-
dratic media, involve at least two components, a fundamental
frequency and a second harmonic �14�. The interaction be-
tween the two components is efficient if some phase-
matching condition is satisfied; experimentally it can be
achieved by different ways, e.g., by temperature adjustment

�15�. It has been shown that a result of this interaction is the
suppression of the collapse, which occurs in two-dimensions
in a Kerr medium, leading to the formation of two-
dimensional solitons �16�, and to the stabilization of many
types of spatial and spatiotemporal solitons �17�. Far from
the phase-matching, the so-called cascading effect leads to
an effective cubic nonlinearity �18�. However, self-
rectification and electro-optic effect remain, which are able
to stop the collapse �19�, and also can be used to control the
pulse by means of adequately matched microwaves �20�. The
question, whether and how these properties might generalize
to FCPs, naturally arises, and in a first stage, it is worth
investigating the possibility to build a theory for FCP soliton
propagation in quadratic media.

We show in the present paper that launching a FCP into a
medium with an electronic quadratic nonlinearity allows one
to produce half-cycle pulses, with no oscillating tail, a per-
fectly zero CE phase, and a definite polarity of the field. The
process breaks the phase invariance, even statistically, and
yields an optical electric field with definite polarity, and non-
zero mean value.

Our approach is based on the soliton theory. Indeed, soli-
tons, i.e., fundamental solutions of integrable equations as
Korteweg-de Vries �KdV�, mKdV, or sG involve solitary
waves, i.e., single-oscillation, half-cycle pulses. Each pulse
of this kind has a determined sign or polarity. Hence, due to
phase invariance, it is believed that such pulses cannot be
produced by an optical system, at least in the present state of
knowledge. Breather solutions of mKdV, sG, and mKdV-sG
have been given by the mathematical theory; they do not
involve such a symmetry breaking. It has been shown that
such objects were good candidates for the description of
FCPs �9,10�. We prove in the present paper that FCP soliton
propagation in a quadratic medium can be described by the
KdV equation itself, which is quadratic, and not by the cubic
mKdV equation. Note that all solitons of KdV have the same
sign, while mKdV admits both positive and negative soli-
tons. Further KdV does not present breather solutions, and it
will be shown that the KdV soliton itself, a half-cycle pulse,
will arise from the propagation of an input FCP with mean
value zero. The symmetry breaking in the wave, related to
the existence or nonexistence of a breather, originates in the
noncentrosymmetry of the quadratic medium.
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II. KORTEWEG-DE VRIES MODEL FOR QUADRATIC
FCP SOLITONS

A. Classical approach

1. Derivation of KdV

We consider first a classical model of an elastically
bounded electron oscillating along the polarization direction
x of the wave. The latter propagates in a direction z perpen-
dicular to x, in such a way that the transverse variations can
be neglected. The evolution of the position x of an atomic
electron is described by an anharmonic oscillator �damping
is neglected�

d2x

dt2 + �2x + ax2 =
− e

m
E , �1�

where � is the resonance frequency, −e is the electron
charge, m is its mass, and E is the wave electric field com-
ponent along x. The evolution of E is described by the Max-
well equations, which reduce to

�z
2E =

1

c2�t
2�E + 4�P� , �2�

where P=−Nex is the polarization density, N being the den-
sity of atoms.

Transparency implies that the characteristic frequency �w
of the considered radiation �in the optical range� strongly
differs from the resonance frequency � of the atoms; hence
it can be much higher or much lower. We consider here the
latter case, i.e., we assume that �w is much smaller than �.
This motivates the introduction of the slow variables

� = ��t −
z

V
�, � = �3z , �3�

� being a small parameter. The delayed time � involves
propagation at some speed V to be determined. It is assumed
to vary slowly in time, according to the assumption �w��.
The pulse shape described by the variable � is expected to
evolve slowly in time, the corresponding scale being that of
variable �.

A weak amplitude assumption is needed in order that the
nonlinear effects arise at the same propagation distance scale
as the dispersion does. Hence we expand

E = �2E2 + �3E3 + �4E4 + ¯ , �4�

as in the standard KdV-type expansions �21�. P is expanded
in the same way. The leading order, i.e., Eq. �1� at order �2

and Eq. �2� at order �4, gives

P2 =
Ne2

m�2E2, �5�

and

V = c�1 +
4�Ne2

m�2 �−1/2

. �6�

Then it is seen that E3 can be taken as zero. At next order ��4

in Eq. �1��, we get

P4 =
Ne2

m�2E4 −
Ne2

m�4�t
2E2 +

aNe3

m2�6 �E2�2. �7�

Reporting into Eq. �2� at order �6, the terms in E4 cancel
using Eq. �6�, and we obtain the KdV equation

��E2 = A��
3E2 + B���E2�2, �8�

with the coefficients

A =
4�VNe2

2mc2�4 , B =
− 4�VaNe3

2m2c2�6 , �9�

for the dispersion and nonlinearity, respectively. We empha-
size the fact that Eq. �8� is satisfied by the electric field itself,
and not by some envelope: there is no carrier. It is important
to notice that, since Eq. �8� is not an envelope equation, the
third order time derivative does not represent a third order
dispersion. As shown in Ref. �22�, it includes at least the
second and third order dispersions.

2. Coefficients of KdV

The dispersion relation of model �1-2� is well known and
easily computed. The refractive index is

n = �1 +
4�Ne2

m

1

�2 − �2�1/2

. �10�

We check that V=c /n. Defining the wave vector by k
=�n /c, we check by straightforward computation that the
dispersion coefficient is

A =
1

6
� d3k

d�3�
�=0

=
1

2c
� d2n

d�2�
�=0

. �11�

Expression �11� is exactly the same as in the case of the
mKdV model accounting for FCP propagation in a Kerr me-
dium �9�. Notice that, due to the long-wave approximation,
the dispersion coefficient A only involves the second deriva-
tive of n, as the second order dispersion d2k /d�2��� in the
case of envelope solitons. The nonlinear susceptibility corre-
sponding to model �1-2� reads as �23�

��2��2�,�,�� =
aNe3

m2

1

��2 − �2�2��2 − 4�2�
�12�

�recall that the damping is neglected�. Hence

B =
− 2�

nc
���2��2�,�,����=0. �13�

It is analogous to the expression obtained for the mKdV
model �9�, which involves ��3��� ;� ,� ,−��, and is valid for
a cubic Kerr nonlinearity.

B. Quantum mechanical approach

1. Second derivation of KdV

We consider a set of two-level atoms with the Hamil-
tonian
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H0 = 	��a 0

0 �b
� , �14�

where �=�b−�a
0 is the frequency of the transition. The
evolution of the electric field E �we restrict to one field com-
ponent for the sake of simplicity� is described by the wave
equation �2�. The light propagation is coupled with the ma-
terial by means of a dipolar electric momentum � directed
along the same direction x as the electric field, according to

H = H0 − �E , �15�

and the polarization density

P = N Tr���� �16�

along the x direction, N being the volume density of atoms,
and � the matrix density. The latter obeys

i	�t� = �H,�� + R , �17�

where R is a phenomenological relaxation term. In the case
of cubic nonlinearity, it has been shown that it was negligible
�9�, and it will be neglected here. In the absence of perma-
nent dipolar momentum,

� = � 0 �

�� 0
� �18�

is off-diagonal, and the quadratic nonlinearity is zero.
The quadratic nonlinearity can be phenomenologically ac-

counted for as follows: it corresponds to a deformation of the
electronic cloud induced by the field E, hence to a depen-
dency of the energy of the excited level b with respect to E:
a Stark effect. The nonlinearity is quadratic if this depen-
dency is linear, as

�b → �b − 
E . �19�

This can be included phenomenologically in the Maxwell-
Bloch equations by replacing the free Hamiltonian H0 with

H0 − 
E�0 0

0 1
� . �20�

The equations are exactly the same if the dipolar momentum
� is replaced with

� = � 0 �

�� 

� , �21�

i.e., Eq. �20� is equivalent to the assumption that the excited
state b has a nonzero permanent dipolar momentum 
.

To simplify computations, we use the same rescaling as in
Ref. �9�, so that the constants c, N, 	, and 4� are replaced
with 1. Then Tr��� is not 1 anymore but �=4�N	c. We
denote the elements of a matrix M by indices a,b,t,u accord-
ing to

M = �Ma Mt

Mu Mb
� . �22�

We use the same slow variables and power expansion as for
the classical model, with

�0 = �� 0

0 0
� . �23�

Apart from this term the expansion begins at order �2.
Equation �17� at order �2 gives

�2,t =
��

�
E2, �24�

�2,a, b remaining free. We deduce

P2 =
2����2

�
E2. �25�

Reporting Eq. �25� into Eq. �2� at order �4, we get the value
of the velocity

V = �1 +
2����2

�
�−1/2

. �26�

The expression of V is exactly the same as in the mKdV case
�9�, since the linear part of the model is exactly the same.

At order �3, Eq. �17� shows that �2,a=�2,b=0 and

�3,t =
��

�
E3 −

i��

�2 ��E2, �27�

from which we deduce

P3 =
2����2

�
E3. �28�

Hence the wave equation �2� at order �5 does not give any
further information.

Equation �17� at order �3 gives useless expressions in-
volving �3,a,b and

�4,t =
��

�
E4 −

i��

�2 ��E3 −
��

�3 ��
2E2 +


��

�2 �E2�2, �29�

from which we deduce

P4 =
2����2

�
E4 −

2����2

�3 ��
2E2 +

2
����2

�2 �E2�2. �30�

Reporting Eq. �30� into the wave equation �2� at order �6 we
get, after cancellation of the terms involving E4, and one
integration with respect to � �the field and derivatives are
assumed to vanish at infinity�,

��E2 =
V����2

�3 �t
3E2 −


V����2

�2 ���E2�2. �31�

Equation �31� is exactly the KdV equation �8�, with the dis-
persion and nonlinear coefficients �in physical units�

A =
4�N���2

nc	�3 , B =
− 4�N
���2

nc	2�2 , �32�

respectively, the refractive index being
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n =	1 +
8�N���2

	�
. �33�

The dispersion relation is the same as in the Kerr case �9�,
and the same expression of A still holds; it coincides with
Eq. �11�.

2. Coefficients of KdV in the quantum mechanical approach

The dispersion relation is the same as in the Kerr case �9�,
and the same expression of A still holds; it coincides with
Eq. �11�.

The second order susceptibility is computed as follows:
we report into Eqs. �15�–�17� the following harmonic electric
field excitation,

E = �E�ei�t + e−i�t� , �34�

and expand the density matrix as

� = �0 + ��1�t� + �2�2�t� + ¯ , �35�

with the same �0 as above. We obtain at first order �1,a,b=0
and

�1,t = C+ei�t + C−e−i�t, �36�

with

C� =
�E

	�� � ��
. �37�

At order �2, Eq. �17� is easily soved to yield �2,a,b=0 and

�2,t = K+e2i�t + K−e−2i�t + K0, �38�

with

K� =

�E2

	2�� � 2���� � ��
. �39�

The second order susceptibility is related to the polarization,
though

P = �2��2��2�;�,��E2e2i�t + ¯ �40�

=�2N Tr�K+�� + K−
���e2i�t + ¯ , �41�

and hence

��2��2�;�,�� =
N
���2E2

	2 � 1

�� + 2���� + ��

+
1

�� − 2���� − ��� . �42�

The nonlinear coefficient B of the KdV equation expresses as

B =
− 2�

nc
���2��2�;�,����=0. �43�

We obtain exactly the same expression as for the classical
model.

C. Generalization

It can be reasonably conjectured that the KdV model with
the expression of the coefficients in terms of the linear re-

fractive index and second order susceptibilities is valid in
more general and realistic situations than the simple models
considered in this paper.

The latter assumes a single resonance line, at some fre-
quency �. The long-wave approximation used to derive KdV
assumes that the typical frequency �, which is comparable to
the inverse �
1 /T of the duration T of the solitary wave, is
small with respect to �. With � belonging to the visible
range, it means that the resonance line of the material be-
longs to the uv.

Expression �11� of the dispersion coefficient is expected
to generalize as far as � is far from any resonance line of the
material. The expression �43� of the nonlinear coefficient is
valid, in principle, if only one transition in the uv is involved
by the quadratic nonlinearity. If several transitions are in-
volved, all nonlinear terms will have the same form as in Eq.
�8�, and the coefficients will combine together to yield Eq.
�43� again. Regarding the transition lines, which are far be-
low �, it has been seen in the cubic case �9� that they re-
quired a much higher power input than the uv transitions to
produce an observable nonlinear effect. Hence they are ex-
pected to be negligible, at least in certain materials.

The values of the dispersion coefficient and ��2� are taken
at �=0. Due to the perturbative approach, this means in fact
that they are taken at a value of � well below the resonance
line �, as is assumed to be the inverse �=1 /T of the pulse
duration, typically in the visible range.

Notice that we have here a pure quadratic nonlinearity for
a single wave, and that no effective third order nonlinearity
due to cascaded second order ones is involved. This makes a
sharp contrast with the nonlinear propagation of parametric
solitons within the slowly varying envelope approximation.
In particular, no phase matching is required.

III. HALF-CYCLE QUADRATIC FCP SOLITON

A. KdV soliton

The fundamental soliton of KdV is expressed in the
present case as

E2 =
k3ncp2

− 2���2�sech2 �p� +
2

3
k3p3�� , �44�

where we have set

k3 = � d3k

d�3�
�=0

, �45�

and

��2� = ���2��2�;�,����=0. �46�

It is shown in Fig. 1�c�. It differs from the soliton of mKdV
�Fig. 1�a��, which is a sech and not a sech2. It can be ob-
tained by direct integration �24�, by the Hirota method �25�,
or by the inverse scattering transform �IST� �26,27�. The sta-
bility and robustness of the fundamental soliton �44� is en-
sured from the IST for any positive p. The corresponding
solutions are proven to be the fundamental modes of the
KdV equation, in the sense that any input decomposes into a
combination of a finite number of solitons and Fourier-type
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modes called “radiation,” which evolve separately, conserv-
ing their characteristics all the propagation long.

For the sake of convenience, below we use the standard
dimensionless form of the KdV equation �8�,

uZ + 6uu� + u��� = 0, �47�

which is obtained by means of he linear transform Z=−A�,
u= �B /6A�E2. Direct numerical simulation illustrates and
confirms the mathematical result: for KdV, a FCP-type input
decays into solitons, with a definite sign �Figs. 2 and 3�. For
a short enough FCP, the number of solitons is only 1 or 2. In
the latter case, the two solitons have different velocities, and
are conserved when they interact �Fig. 4�. The number of
emitted solitons depends on the CE phase of the initial FCP
at the entrance of the quadratic medium �see Fig. 5�.

However, in every case �i� single-oscillation �half-cycle�
pulses are produced and �ii� the sign of u, i.e., the sign of the
electric field, is always the same. Indeed, the relative sign of
u and E2 is that of B /A and cannot be modified by a real
linear transform. For the two-level model, we have B /A

=−
� /	, i.e., it is proportional to the dipolar momentum of
the excited state. In the classical model, we can see that
B /A=−2ae / �m�2�, which has the same physical origin. In
the general case B /A involves both the quadratic nonlinearity
and the dispersion. Hence the polarity of the optical electric
field is fully determined by the direction of the polarization
of the atoms, and the dispersion.

B. mKdV equation possesses breathers while KdV does not

We have shown that the fundamental FCP soliton in a
quadratic medium is a sech2 solitary wave, and not a wave
packet. The latter are described in the frame of the mKdV,
sG, and mKdV-sG models by breather solutions. Although
the properties of breathers are well known, we believe that it
is worth recalling them for the readers that are not specialists
of soliton theory. Expression �44�, due to algebraic proper-
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FIG. 1. �Color online� �a� Soli-
ton solution to mKdV. �b�
Breather solution to mKdV: the
FCP soliton in Kerr media. �c�
Soliton solution to KdV: the FCP
soliton in quadratic media. �d� The
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singular.
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FIG. 2. �Color online� Evolution of an initial FCP into KdV
solitons and dispersive waves.
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FIG. 3. �Color online� Evolution of an initial FCP into a KdV
soliton and dispersive waves. The input �dashed blue line� and out-
put �solid red line� wave profiles correspond to Fig. 2. The lines
represent the electric field E2 itself, and not an envelope.
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ties, solves the KdV equation �8� for any complex value of
the soliton parameter p. The N-soliton solution has the same
property, and an adequate choice of the parameters allows
one to build a breather solution from the two-soliton solu-
tion. However, neither realness, nor regularity, nor stability,
nor robustness, is ensured this way. The breather solution to
the mKdV equation �Fig. 1�b�� is regular and describes FCP
solitons �8–10�. KdV also possesses breatherlike solutions,
constructed by the same procedure, but these solutions are
singular �28� �Fig. 1�d��.

Recall that the equivalence between KdV and mKdV, due
to the Miura transform �29�, holds if complex solutions are
considered, but not if we consider real fields. The two mKdV
equations

ut + 6�u2ux + uxxx = 0, �48�

with � equal to either +1 or −1, cannot be reduced one to the
other if u is real, and the Miura transform is real for �=−1
only. The mKdV equation valid for FCP soliton propagation
in a two-level medium �9�, or more generally in a medium
with focusing cubic Kerr nonlinearity, is the one with �
= +1, which admits real regular breathers.

It has been proven �30� that in the case of mKdV, a
breather was preferentially formed from a “symmetric” ini-
tial data, while a soliton arose if the input broke the symme-
try. Hence FCP solitons �of wave-packet type� form in a
cubic focusing medium, and half-cycle single-oscillation
solitons are very rare. Further, the mKdV soliton may have
both signs with equal probabilities, since Eq. �48� is invariant
through u→−u. Hence a train of half-cycle solitons in a
cubic medium would contain as much positive solitons as
negative ones, and resemble an oscillating train.

As a consequence of the nonexistence of a regular
breather to KdV, in a medium with quadratic optical nonlin-

earity, the fundamental soliton systematically arises, and al-
ways has the same sign; that is, half-cycle single-oscillation
solitons will be produced, and they always have the same
polarity. This is closely related to the noncentrosymmetry
required for quadratic nonlinearity.

Notice that the mKdV equation with �=−1 can describe
FCP propagation in a medium with defocusing cubic Kerr
nonlinearity. Since it does not admit any regular breather, the
general input will decay into a train of solitons, i.e., half-
cycle pulses. However, the solitons will have random sign,
and the train remains close to an oscillating wave.

IV. CONCLUSION

Half-cycle optical pulses, which are KdV solitons, form
when a FCP is launched into a quadratic nonlinear medium.
They consist of a single hump, without any satellite oscilla-
tion. They always have an absolute phase zero, in the sense
that the field polarity is completely determined by the prop-
erties of the medium. As a consequence, the mean value of
the optical electric field is not zero. This latter property
might find applications in the frame of optical poling.
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FIG. 4. �Color online� An input FCP evolves into two half-cycle
solitons and radiation. The two half-cycle solitons have different
velocities, higher than that of the radiation. They interact keeping
their characteristics. The figure is drawn for an input CE phase
equal to 0.8�.
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