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We present a thorough analysis of single-atom detection using optical cavities. The large set of parameters
that influence the signal-to-noise ratio for cavity detection is considered, with an emphasis on detunings, probe
power, cavity finesse, and photon detection schemes. Real device operating restrictions for single photon
counting modules and standard photodiodes are included in our discussion, with heterodyne detection emerg-
ing as the clearly favorable technique, particularly for detuned detection at high power.
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I. INTRODUCTION

The experimental realization of Bose-Einstein condensa-
tion �1–3� and the coherent outcoupling of atoms from a
condensate to form an atom-laser beam �4–8� have paved the
way for the emerging field of quantum atom optics, where
atoms play the role analogous to photons in traditional quan-
tum optics experiments �9�. This new field holds great prom-
ise for precision measurement using atoms �10� and investi-
gations in fundamental physics �11�. Despite the many
similarities between quantum-photon optics and quantum-
atom optics, there are fundamental and practical differences.
One important practical difference, that is the focus of the
present work, is the experimental detection of individual
quanta.

Single neutral atoms have been observed and counted us-
ing a variety of techniques. For metastable atoms in highly
excited states, such as metastable helium or neon, the inter-
nal atomic energy can be used to eject electrons from a metal
surface on impact. The electron pulse can be accelerated and
detected with good signal-to-noise ratio �SNR� allowing
single-atom counting �12–14�. Neutral ground-state atoms do
not have enough energy for this process. Instead, common
detection techniques exploit the interaction of the atom with
light. Single atoms have been observed with fluorescence
detection �15–17�, and by measuring the effect on the field in
optical �18,19� and microwave cavities �20,21�.

In recent work, high finesse optical cavities have received
much attention as a detection technique �22,23�. Figure 1 is a
schematic representation of a possible measurement process.
A shot-noise limited probe laser is transmitted through an
empty cavity and the power is measured. A detection signal
is observed when an atom falls through the cavity, interacting
with the field and causing, for example, a reduction in trans-
mitted power, as shown in the hypothetical data of Fig. 1�b�.
The interaction may be measured in other ways such as a
phase shift in the probe beam or an increase in transmitted
power, as discussed in the following sections.

The signal for the cavity detection process has been con-
sidered in several studies. The work by Horak et al. investi-
gates optical cavity detection of single atoms using micro-
cavities �23–25�. The authors use a semiclassical model to

analyze the SNR of cavity based detection for a variety of
parameters. Pinske et al. use a quantum model to calculate
the SNR for an atom passing through a cavity �26�. They
consider a broader range of detection regimes, exploring the
effect of the detuning of the probe laser independently from
both the empty-cavity resonance �cavity-probe detuning� and
bare-atom resonance �atom-probe detuning�. Their results,
however, do not consider the variation of probe power, since
they are restricted to the single-atom, single photon regime.

There has, to date, been no investigation that thoroughly
explores the detection “parameter space.” Here we analyze
the SNR of cavity single atom detection over this space: we
provide contour plots for the SNR as a function of cavity
finesse, probe laser intensity, cavity-probe detuning, and
atom-probe detuning. The goal of this paper is to provide
detailed information to groups who wish to design and
implement cavity-based single-atom detection that is appro-
priate for their requirements of quantum efficiency and de-
tection bandwidth �27�.

Cavity quantum-electrodynamics �QED� is generally
separated into two parameter regimes, those of strong and
weak coupling. These define the relative strengths of cou-
pling within the system and to external reservoir modes.
Strong coupling refers to system dynamics that are largely
determined by the atom-field dipole coupling g and it is this
regime that has attracted much of the recent interest in cavity
QED. Consequently, recent investigations and experimental
designs have, for the most part, been restricted to regimes
that achieve the required strong-coupling conditions. The fo-
cus of the present work is not to investigate properties of the
strong coupling, but to analyze the cavity detection process
in order to determine the best designs and operating condi-
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FIG. 1. Single-atom detection with an optical cavity showing �a�
schematic diagram of cavity setup. �b� Typical photon counts for a
detection event. The dashed line indicates the threshold for an atom
detection event.
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tions for single-atom detection. We show, however, that
many of the same features of strong-coupling experiments
are necessary for good SNRs in single atom detection. It is
therefore worth clearly defining this regime.

For strong coupling, the exchange of energy within the
system occurs on a time scale much shorter than other pro-
cesses, so that g�max�� ,T−1�, where � is the set of deco-
herence rates for the system, and T is the interaction time. In
the atom-cavity system, �= �� ,�� with � the rate of decay of
the population of the atomic excited state �28�, and � that of
the cavity field. To achieve strong coupling, it is necessary to
ensure the atom-field interaction time T is long with respect
to other system dynamics �19�. The atom-field coupling and
the cavity decay rates are also important, and the coupling
regime is often characterized in more specific terms with two
dimensionless parameters; the critical photon number

m0 �
��/2�2

2g2

and the critical atom number

N0 �
��

g2 = C−1.

These values indicate the number of quanta necessary to sig-
nificantly influence the system. Strong coupling is usually
defined when both N0 and m0 are less than 1.

The critical photon number is the number of intracavity
photons necessary to saturate the atom in a resonant transi-
tion. For our purposes, it is not an important value since we
are unconcerned with the number of photons needed for a
successful detection process. The critical atom number refers
to the necessary number of atoms required to significantly
affect the cavity field. For single-atom detection, it is desir-
able to work with N0�1, since this implies the presence of a
single atom will have a significant influence on the cavity
transmission and be easily measured. N0 is often inverted,
and referred to as the cooperativity parameter C �18�.

Single-atom detection need not be performed in the strong
coupling regime—where both N0 and m0 are small—as has
been highlighted in work by several authors �24,29�. The
main objective is to minimize N0 subject to real world ex-
perimental constraints.

Short cavities may be used to increase g2, which scales as
the inverse of cavity volume. As a result, short cavities lead
to a reduction of m0. Cavity length does not, however, influ-
ence N0, since � scales as the inverse of cavity length.
Motivated by the strong-coupling regime, and at times by
the complementary requirements of restricted geometry in
chip experiments, recent work in cavity QED has tended
towards very short cavities, tens to hundreds of micrometers
�19,23,29–32�. Although limiting cavity length will not im-
prove single-atom detection, it is possible to reduce the mode
volume in ways that do help. Reducing the beam diameter in
the cavity is one such possibility �23,29�.

As well as reducing cavity length, considerable efforts
have been made to produce cavities with ultrahigh finesse.
This results in reduced cavity linewidth � without an accom-
panying reduction in g, so is an ideal way to manipulate N0.

Whispering gallery mode cavities have reached a finesse of
F�107 �33� and open optical cavities with finesses in excess
of F=3�105 have been demonstrated using custom built
mirrors �19,32�. Custom design and fabrication can be a
costly and arduous task, however reasonably high finesses of
around F�104 are within reach even with commercial mir-
rors �34�. Although this is a trade-off in mirror quality for
ease and expense of construction, we will show that it is still
possible to achieve a good SNR for single atom detection
using such a finesse, provided the system is operated in ap-
propriate regions of parameter space. Determining where
these regions are is the motivation for this work, as covered
in the following sections.

The layout of the paper is as follows. Section II intro-
duces the atom-cavity field model for an ideal detector using
direct photon counting. The SNR in the entire parameter
space is then analyzed in Sec. III. In Sec. IV A, we introduce
the limitations of real photon detectors based on single pho-
ton counting modules, and consider the implications for the
cavity operating regime. An alternative photon detection
scheme based on heterodyne detection is presented in Sec.
IV C. Section IV C discusses the susceptibility of the detec-
tion process to frequency noise in the system, for different
operating conditions, and finally, in Sec. IV D, we consider
the conversion of SNR to detector quantum efficiency and
other limits to detection quality.

II. CAVITY QED MODEL

The system we are interested in is illustrated in Fig. 1�a�.
It consists of a single two-level atom with an excited state
resonance at �a coupled to the TEM00 mode of an optical
cavity with frequency �c.

The system is driven with a classical �coherent� field at
�0. Dissipation occurs via spontaneous decay of the atomic
excited state � and cavity field decay �. The cavity decay
comprises transmission through input and output mirrors as
well as scattering losses: �=�in+�out+�loss giving a cavity
linewidth �full width at half maximum �FWHM�� of 2�.

The Hamiltonian for this system is that of the driven
Jaynes-Cummings model �35�. In a reference frame rotating
with the driving field

Ĥ = �	â†â + �
�̂+�̂− + �g�r̃��â�̂+ + â†�̂−� + ���â + â†� .

�1�

Here â† and â are the creation and annihilation operators for
the cavity mode and �̂+= 	+ 
�−	 and �̂−= 	−
�+	 are the
atomic pseudospin �raising and lowering� operators for the
two-level atom.

The position-dependent atom-field coupling constant
is given by g�r̃�=g0U�r̃�, where U�r̃� is the normalized
magnitude of the electric field. For a Gaussian standing
wave of waist size w0 and cavity length L, U�r̃�
=cos�2
z /��exp�−r2 /w0

2�. The effective mode volume, inte-
grated over the cavity length, is V=
w0

2L /4. The single-
photon electric field coupling constant for this mode is g0
���2�c / �2��0V�, where � is the dipole moment of the
atom aligned in the field. Provided the cavity does not sig-
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nificantly alter the free space atomic decay rate � �the Purcell
effect�, the coupling can also be expressed as g0=��0c� /V
for atomic cross section �0=3�2 / �2
�.

The coupling of the cavity field to external modes is �
=�n0��2+	2�, where n0 is the empty-cavity photon number.
	=�c−�0 and 
=�a−�0 are the cavity-probe and atom-
probe frequency detunings, respectively.

Expectation values for system operators are determined
from the steady-state solution to the master equation

d

dt
��t� = −

i

�
�Ĥ,�� + ��2â�â† − â†â� − �â†â�

+
�

2
�2�̂−��̂+ − �̂+�̂−� − ��̂+�̂−� . �2�

We model the cavity mode with a truncated Fock state
basis 	0
 , 	1
 , 	2
 , . . . , 	m
, that is valid provided m is signifi-
cantly larger than the mean intracavity photon number. The
result is a set of 2m linear equations that are solved to find
the steady-state density matrix �.

The atom is detected inside the cavity via its influence on
the cavity field and subsequently the cavity transmission.
The number of photons detected at the output mirror in a
measurement interval � is N=n�out�, where n= �â†â
 is the
steady-state intracavity photon number. For an empty cavity
Nempty=n0�out�. The signal for an atom detection event is the
difference in these photon numbers and, assuming the statis-
tics remain Poissonian during an atom transit, the SNR of the
measurement is

S =
�Nempty − N�
�Nempty + N

. �3�

The assumption of Poissonian noise can break down in ex-
treme regimes of high finesse and large atom cavity coupling
where anti-bunching and squeezing can occur �36�. We will,
however, concentrate on regimes, particularly with respect to
intracavity photon number, where these effects are minimal.

III. DETECTION PARAMETER SPACE

By “parameter space” for single atom detection, we refer
to variations in cavity probe 	 and atom-probe 
 detunings,
cavity finesse, and probe power. In this section we present
numerical data for the SNR of atom detection with a maxi-
mally coupled atom-cavity system �g�r̃�=g0�. We find these
data are naturally separated into two broad detection re-
gimes: resonant detection at low probe powers, and non-
resonant detection at higher powers. These regions of param-
eter space are addressed separately in III A and III B.

A. Resonant detection

Initially we consider the resonant condition, a point in
parameter space where all three system frequencies are co-
incident; �0=�c=�a.

The system we model is for the 87Rb D2 �52S1/2
→52P3/2� transition ��=780 nm� with �=2
�6 MHz �37�.
The cavity length is L=100 �m, and mode waist w0
=20 �m. For a cavity with approximately planar mirrors the

described geometry does not cover a significant solid angle
around the atom. Consequently, spontaneous emission is to
external modes rather than the single cavity mode and the
Purcell effect can be ignored. The system has an atom-field
coupling of g0�2
�26 MHz and a cavity decay rate that
scales inversely with finesse. We have chosen to present data
for these parameters because they are in the range of realistic
experimental design �32�, however, the qualitative results
that are presented in this work are common to a wide range
of design choices.

The data presented here are for an impedance-matched
cavity, where �out=�in=1 /2�, and the empty-cavity trans-
mission is 100%. In an experimental setup, it is the input
probe power rather than transmitted power that is kept con-
stant during an atom detection event, so data are param-
etrized in terms of this input photon flux. In the results pre-
sented, we consider �loss=0, a reasonable approximation for
cavities of moderate finesse. We also note that one can im-
mediately gain a factor of �2 in the SNR, Eq. �3�, by using
an undercoupled cavity with �in��out
�.

Figure 2 shows how the SNR varies with probe power and
cavity finesse. In Fig. 2�a�, the dashed line traces the “posi-
tion” of maximum SNR. Figure 2�b� shows the cross section
along this line, indicating how the optimum SNR improves
with finesse and the probe power that is necessary to achieve
this optimum. For a given finesse, there is a clear optimum
power at which to operate, shown for F=104 in Fig. 2�c�.

At F�3000, there is a transition in the system’s behavior;
as this value is approached from the low-finesse side, the
optimum SNR occurs at lower probe power, while in the
limit of high finesse, the reverse is true, and increasing cavity
finesse beyond 3000 requires increases in power to achieve
the maximum SNR. The transition can be understood in con-
text of the critical atom number N0 and we can separate the
plot into regions of �i� high and �ii� low critical atom number.

1. High critical atom number: Atom as a saturable
absorber

In the low-finesse limit, the critical atom number is large
��1�, so multiple atoms are necessary to substantially influ-
ence the cavity transmission. An equivalent statement is to
say that in this regime the effect of a single atom is only
perturbative. In this limit, the atom can be modeled classi-
cally as a saturable absorber with absorption cross section �
that scales, on resonance, as

� =
�0

I/Isat + 1
.

I is the intensity of light incident on the atom and Isat is the
atomic saturation intensity.

We can describe the detection process as follows. In free
space the detected signal s is a measure of the atom’s effect
on a photon beam, and is proportional to the photon flux F
and the ratio of the atomic cross section to the beam area A:

s = F
�

A
.
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With the atom and probe beam inside a cavity, several
changes are observed. Each photon now passes the atom
more than once, effectively increasing F. The atom therefore
has a greater chance of absorbing each photon, and has a
more significant effect on the probe beam when the absorp-
tion happens inside a cavity. As the finesse increases, so too
does the number of round trips for each photon before it
decays from the cavity mode, so the signal improves with
finesse.

A second effect of the intensity amplification by the cav-
ity, is a reduction in atomic cross section. Increases in finesse
therefore mean that the external probe power necessary to
saturate the atom �inside the cavity� is reduced, and the

maximum SNR requires lower power as the finesse in-
creases, in accordance with the dashed line in region �i� of
Fig. 2�a�.

2. Low critical atom number: Coupled resonators

In contrast with the low-finesse regime, the high-finesse
regime requires increasing probe powers with increasing fi-
nesse in order to achieve the maximum SNR. In region �ii� of
Fig. 2�a� the critical atom number N0 is less than 1, so a
single atom significantly influences the system. The smaller
N0 becomes, the more significant an effect a single atom will
have. In this regime, we consider the quantum-mechanical
model in more detail. That model considers the coupling of
two resonators, the bare two-level atom and the empty
cavity, giving coupled �dressed� states 	n+ 
 and 	n− 
 that
are linear combinations of the uncoupled states 	n+ 

=sin �	n−1
	e
+cos �	n
	g
 and 	n− 
=cos �	n−1
	e

−sin �	n
	g
. The Jaynes-Cummings energy spectrum of
these modes has eigenenergies given by

E�n�� = ��c�n − 1/2� �
1

2
��4g2n + �	 − 
�2, �4a�

that reduce, in the case of resonant atom and cavity driving
	=
=0, to

E�n�� = ��0�n − 1/2� � �g�n . �4b�

A good review of the dressed states for this resonant condi-
tion is given in Ref. �38�.

Figure 3 shows the mode splitting of the dressed atom-
cavity system. When the driving laser is resonant with the
uncoupled system, it is detuned from the dressed state reso-
nances in an intensity-dependent manner. The detuning ��n�
is found by considering the addition of a photon from the
probe beam ���0� to the excited modes in the coupled
system
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FIG. 2. �Color online� SNR S for resonant atom detection with
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��n� = E�n + 1�� − �E�n�� + ��0� = � �g��n + 1 − �n� .

The detuning is largest at low power. As n increases, the
difference between �n+1 and �n is reduced ��n+1−�n
→0 as n→��, so at sufficiently high excitation ��n� van-
ishes and the resonant condition of the uncoupled system is
recovered. Consequently, in the high-power limit, there is no
discernible difference between the transmission of an empty
cavity and the cavity during an atom transit, and the signal is
lost. It might therefore be expected that the best SNR is
obtained at low excitation, however, the relative shot noise
improves with increasing photon flux, so in fact the optimum
SNR occurs at an intermediate power that is a compromise
of these limits.

��n� must be considered in the context of the system de-
cay rates that determine the linewidth of the dressed modes.
Figure 4 shows the mode splitting for F=103, 104, and 105,
at probe powers of 1 and 200 photons /�s.

In a system with large decay rates, or low finesse �Fig.
4�a��, the dressed state resonant frequencies are not distinctly
different from the empty cavity resonance. Since there is
little contrast, the signal is lost easily with increases in int-
racavity photon number �Fig. 4�b��. As the finesse increases,
the dressed state energies become more distinct from the
uncoupled resonance �Fig. 4�e��. In the high-finesse regime,
the probe power must be increased considerably before the
high-intensity detuning limit ��n+1−�n→0� comes into ef-
fect. Consequently, increasing finesse requires increasing
probe powers to achieve the maximum SNR, as indicated in
region �ii� of Figs. 2�a� and 2�b�.

If we choose to limit the probe power with which the
cavity is driven �the flux limit of single photon counting
modules is discussed in Sec. IV A�, then the SNR no longer
improves with finesse, as shown in Fig. 2�d�. In this high-
finesse regime, the mode splitting results in a complete
black-out of cavity transmission during an atom transit
�shown as the long arrow �i� in Fig. 4�e��. Further increases
in finesse narrow the resonances but cannot improve the sig-
nal that is already maximized. In this regime, the SNR only
improves by increasing the probe power.

Although the regimes of high and low critical atom num-
ber �regions �i� and �ii�, respectively� are best understood in
quite different ways, they do have one important feature in
common: the best SNR occurs around the point of atomic
saturation. In the case of high critical atom number, keeping
the circulating power inside the cavity near the saturation
intensity means reducing the input power as the finesse in-
creases, as described in Sec. III A 1. In the low critical atom
number regime, the atom detunes the cavity from the driving
field. Consequently much of the probe light incident on the
cavity is reflected and the atom does not experience an en-
hancement in circulating power due to the cavity. In order to
saturate the atom in this regime, ever increasing amounts of
power are required as the cavity finesse is increased.

B. Nonresonant detection

By detuning the probe, we open the possibility of both
“positive” and “negative” signals. The sign is arbitrarily de-
fined by Eq. �3�, and is not important; both positive and
negative signals have been observed in previous cavity de-
tection work �31�. The arrows on Fig. 4�e� show examples of
the sign and magnitude of the signal for various detunings.
Arrows pointing down are an indication of positive signals,
since they correspond to decreases in cavity transmission,
while an upwards pointing arrow implies an increase in
transmission during an atom detection event. For a resonant
probe �i�, the signal is always seen as a reduction �“dip”� in
transmitted power, since the atom effectively detunes the
system from resonance. A dip may also be observed if the
probe is detuned from the empty cavity �ii�. Alternatively, if
the probe is detuned to a position corresponding to a reso-
nance of the dressed system, the atom will bring the system
onto resonance with the detuned probe, resulting in an in-
crease �“peak”� in the power transmitted �iii�.

Combining the choice of probe power with the possibility
of detunings dramatically increases the parameter space for
atom detection. We therefore limit the remaining discussion
to the cavity design already introduced �cavity length L
=100 �m, and waist w0=20 �m�, and consider a modest
finesse F=104. Additional data for this cavity and a different
cavity are available online �39�.

Figure 5 presents a selection of data for the SNR, with the
resonant condition of Sec. III A represented by the position
A in the center of Figs. 5�a� and 5�b�. Other positions corre-
spond to nonzero detunings. At low probe power, the best
SNR occurs on-resonance and for higher powers, the maxi-
mum shifts to detuned operating conditions. Figure 5�c�
shows the SNR as a function of power for positions A, B,
and C in Fig. 5�a� and 5�b�.
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FIG. 4. Relative photon transmission T for the atom-cavity sys-
tem as a function of probe detuning. Dashed traces are for the
empty cavity and solid lines represent the dressed modes. The cav-
ity finesse F is �a�, �b� 103; �c�, �d� F=104; and �e�, �f� 105. The left
plot for each value of F is for a driving flux of 1 photon /�s, the
right is for 200 photons /�s.
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The “global maximum” for the SNR �i.e., the best SNR
obtainable over the whole parameter space� is the peak of
�13 that occurs on resonance A. Nonetheless, it may be
advantageous to work with red-detuned �
�0� conditions,
due to the benefits of the dipole force that can be used to
manipulate the atom’s position in the cavity �40�.

The mode splitting shown in Fig. 4 is a useful picture for
the dressed states of a resonant system. It is also a good
description of the dressed states of a system with equal de-
tunings 
=	 accessed when the probe laser frequency is

scanned but the cavity is kept resonant with the atom
��c=�a� but for more general detunings and at high power
the split modes do not provide useful intuition for the atom’s
influence on the system.

Figure 5�d� shows the output flux for the empty cavity and
the coupled atom-cavity system at a driving flux of
104 photons /�s with the data normalized to the empty cavity
transmission. The probe frequency is scanned giving atom-
probe and cavity-probe detunings indicated on the top and
bottom axes. For these detuning and power conditions, the
atom has a dispersive effect, shifting the cavity resonance as
shown by the solid line in Fig. 5�d�. At the resonant peak
there is almost no change in transmitted power, since here
the amplitude gradient is zero, but on the side of the reso-
nance the small frequency shift means a signal is observed,
indicated with the short arrow in the inset of Fig. 5�d�. The
signal relative to the empty cavity transmission is small, but
since it occurs at high probe power the relative shot noise is
also small so the SNR can be large. In Fig. 5�c�, the magni-
tude of the optimum SNR at position B is �9. This is not as
good as the SNR achievable on-resonance but is still very
satisfactory.

Work by Horak et al. �24� considered the SNR for far-
detuned detection in a different way. The dispersive interac-
tion of the atom with the cavity field can be measured as a
phase shift, rather than a variation in transmission amplitude.
The phase angle measures the difference between the phase
of the cavity transmission and the driving laser. For the
empty cavity, the phase angle is zero at the resonant fre-
quency and it is here that the phase gradient is largest. The
frequency shift that the atom induces therefore has the great-
est effect on the phase at the transmission peak, rather than
side of the resonance where the amplitude gradient is maxi-
mum.

IV. SIGNAL DETECTION PRACTICALITIES

A. Single-photon counting modules

In Sec. III we presented data for an ideal atom detection
system where all the transmitted photons at the cavity output
mirror are detected. In practice, this will never be the case,
and optimization of atom detection is critically influenced by
the photon measurement process.

A typical single-photon counting module is an avalanche
photodiode �APD�, for example, SPCM-AQR-14 �41�. This
type of device has been employed in experiments by several
research groups �15,19,32�. The quantum efficiency �QE� of
an APD is typically around 50% at 780 nm, but is nonlinear
with power. We will, however, continue to assume an effi-
ciency of 50%, noting that this generous value is limited to
low photon flux. An acceptable incident photon flux limit is
about 20 photons /�s, giving an APD count rate of
10 photons /�s. The net result of 50% efficient detection is a
reduction by a factor of �2 in the SNR. The detector flux
limit means that, even for the moderate finesse of F=104

considered here, we cannot reach the probe power required
for optimal detection.

B. Heterodyne detection

So far we have considered the detection of cavity trans-
mission by direct photon counting. Saturation of real single
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FIG. 5. �Color online� SNR S for a range of cavity and atom
detunings. F=104, other parameters as in Fig. 2. The probe power
is �a� �40 photons /�s, �b� �6300 photons /�s. �c� SNR as a func-
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photon detectors means we are obliged to limit the probe
power, and consequently cannot access the optimum SNR of
an ideal atom detector. An alternative is to use heterodyne
detection that does not saturate at the probe power discussed
here �30�. A possible setup is indicated in Fig. 6.

Input fields Â and b̂ are combined on a 50-50 beam split-

ter. Here, Â= â��out� is the field at the cavity output mirror

and b̂=�e−i� is that of a strong coherent local oscillator,
whose frequency is shifted from the probe laser by �. The
phase of the local oscillator can then be expressed as �
=�t+�, where � is the explicit frequency difference and �
is an arbitrary phase difference. We require the heterodyne
signal to detect the influence of the atom on the transmitted
probe power. The process must be independent of any varia-
tions in �. To avoid an involved locking procedure, mixing
the signal with appropriate sin��t� and cos��t� components
removes the phase dependence as follows.

The beam-splitter output fields ĉ=1 /�2�Â+ b̂� and d̂

=1 /�2�Â− b̂� are measured as currents at photodiodes PD1
and PD2:

ĉ†ĉ =
1

2
�Â†Â + b̂†b̂ + Â†b̂ + b̂†Â� ,

d̂†d̂ =
1

2
�Â†Â + b̂†b̂ − Â†b̂ − b̂†Â� .

Subtracting these photocurrents we find

ĉ†ĉ − d̂†d̂ = ��Â†e−i� + Âei�� .

Mixing the signal with sine and cosine functions that oscil-
late at �t gives terms

Î = cos��t� � ��Â†e−i��t+�� + Âei��t+���

= ��/2��X̂−� + X̂−�2�t+��� , �5�

Q̂ = sin��t� � ��Â†e−i��t+�� + Âei��t+���

= ��/2��X̂−��+
/2� + X̂−�2�t+�−
/2�� , �6�

where we have used the amplitude X̂+= �Â†+ Â� and phase

X̂−=−i�Â− Â†� quadratures of Â and expressed the results

with X̂�= X̂+ cos���+ X̂− sin���. Equations �5� and �6� are
used to generate the final measurement

�Î
2 + �Q̂
2 = ��2/4���X̂+
2 + �X̂−
2� = �2�Â
�Â†
 . �7�

Terms with 2�t dependence in Î and Q̂ are vacuum terms
�42,43�. They do not contribute to the signal but add to the

noise which is determined by examining the variance of Î
and Q̂. The variance VÎ��	Î�2 is given by the variances of
the measured and vacuum fields V�= ��X−��2
− �X−�
2, and
V2�t+�= ��X−�2�t+���2
− �X−�2�t+��
2, respectively:

VÎ = �Î2
 − �Î
2 = ��2/4��V� + V2�t+�� = �2/2,

with an identical result for VQ̂. Here we have assumed the
field remains coherent, so the variances of the measured and
vacuum fields are both 1: V�=V2�t+�=1.

The total noise on the measurement is

	��Î
2 + �Q̂
2� = ��2�Q̂
	Q̂�2 + �2�Î
	Î�2 = �2�2�Â
�Â†
 .

�8�

The expressions for the measurement �Eq. �7�� and noise
�Eq. �8�� replace N=�out��â†â
 in Eq. �3�, and a similar ap-
proach is taken for the empty cavity where �â
0�â†
0
= �â†â
0=n0. The SNR for atom detection with a heterodyne
setup is therefore of a slightly different form to that of direct
detection

Shet =
��out��n0 − �â
�â†
�

�2�n0 + �â
�â†
�
. �9�

The noise includes the usual factor of �2 of heterodyne mea-
surements �42,43�. However, the SNR for heterodyne detec-
tion is not necessarily smaller by �2 than for direct detection,
since the signal and noise now both contain expectation val-
ues of different quantum operators.

Figure 7 shows a comparison of the detection schemes.
The solid curves are for detection of �â†â
, using an APD,
and the dashed curves represent heterodyne detection;
�â†
�â
. Traces that peak at low probe power are for the
resonant condition and those that peak at higher power rep-
resent detection in the detuned region marked C in Fig. 5. In
Fig. 7�a�, the comparison is between ideal direct detection
and ideal heterodyne detection, using photon detectors with
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FIG. 6. �Color online� Schematic representation of heterodyne
photodetection.
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FIG. 7. �Color online� A comparison of the SNR, S �solid� and
Shet �dashed�, for atom detection with �a� ideal photon counting and
ideal heterodyne detection and �b� an APD with 50% QE and a
saturation flux of 20 photons /�s, and a realistic heterodyne setup
using 95% efficient photodiodes. Traces at high power are for de-
tection at the detuned position C in Fig. 5. Parameters as for Fig. 5.
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100% QE. For resonant detection the maximum SNR is simi-
lar in both detection schemes, although the probe power that
is necessary to achieve it varies somewhat.

Figure 7�b� includes the quantum efficiencies of real de-
tectors; APD efficiency is 50% and the photodiodes used in
the heterodyne setup are assumed to be �95% efficient. The
shaded region indicates the probe powers that are inacces-
sible to real APDs due to their flux limit. These realities
show a significant difference between the two detection
schemes. On-resonance, the best SNR for the flux-limited
APD is �8, whereas using heterodyne detection at a higher
power can achieve a SNR of �12.

For nonresonant detection the maximum SNR of APD and
heterodyne detection are, in principle, very similar. However,
since the maximum occurs at high power, APDs are less
appropriate for detection in that regime.

C. Noise susceptibility

The SNRs presented in our data are determined using
photon statistics that are always shot-noise limited. The abil-
ity to achieve this depends on the stability of the system as
well as the choice of operating regime. The operating condi-
tion least sensitive to frequency noise is the resonant position
�	=0� at the peak of the cavity transmission line since here
small changes in detuning have little effect on the transmit-
ted power. Detuned detection at the side of the transmission
line, as suggested in Fig. 5�d�, is more sensitive to frequency
noise since here the gradient on the amplitude is large so
even small fluctuations in cavity detuning can significantly
influence the power transmitted.

In the previous sections, two broad detection regimes
have been presented. Section III A covered the SNR behav-
ior for resonant detection where the observed signal is seen
as a significant drop in amplitude at the transmission peak
due to Jaynes-Cummings mode splitting. In Sec. III B the
signal is observed from a point on the side of the transmis-
sion line where the signal is due to a small frequency shift of
the line that causes a change in transmitted light at the de-
tection frequency.

Frequency noise enters the system via variations in the
probe laser frequency as well as the cavity length, so, to
eliminate noise, these components must be extremely stable.
The cavity design emphasized in this work has a length of
100 �m and finesse F=104, giving a linewidth of almost
1 GHz. Assuming frequency locking on the order of 1 MHz,
amplitude fluctuations at the position of the signal marked by

the short arrow in Fig. 5�d� are roughly one part in 1000. The
transmitted power at this position is �5000 photons /�s,
with shot noise of about one part in 100, so the amplitude
fluctuations due to frequency-locking limitations are well be-
low the shot noise limit. For longer cavities or for cavities
with higher finesse, however, the transmission linewidth de-
creases, so the relative frequency stability drops significantly.

For some operating conditions and cavity designs the in-
fluence of frequency noise may therefore become difficult to
eliminate. In such cases, if the noise can be measured, it can
be simply subtracted from the signal. Measuring the noise
via an error signal is an ideal solution, since a possible
mechanism for locking the laser, atom, and cavity setup in-
volves the use of a far-detuned stabilization laser and “trans-
fer cavity” in addition to the probe beam. This technique is
described in Ref. �40�. The second laser could provide the
necessary error signal to be subtracted from the measure-
ment.

D. Detection efficiency

1. Discriminator position

Having identified regions of parameter space that maxi-
mize the SNR, a further question for signal analysis regards
the separation of a detection event from the shot noise of the
empty cavity transmission, indicated with the dotted “dis-
criminator” line in Fig. 1�b�. Variations in the number of
photons counted in a measurement interval of 20 �s, for an
empty cavity, are photon shot-noise fluctuations. So far, we
have considered the same to be true of the number of counts
from the cavity during an atom transit, and the two Poisso-
nian distributions are related by the SNR. The QE and false
count rate of the atom detection depend on the value chosen
to distinguish between these photon distributions. For a reso-
nant signal, where the detected photon number during an
atom transit is less than that of an empty cavity, raising the
discriminator increases the QE since it includes more of the
distribution of “signal” counts, but more of the empty-cavity
counts are also included, so the false counts increase.

The QE �false count rate� is the integration of the Poisso-
nian photon distribution about N �Nempty� from zero up to the
value at the discriminator position. Figure 8 shows how the
QE and false counts vary as the discriminating value is
changed, for high and low SNR �Figs. 8�a� and 8�b�, respec-
tively�.

When the empty-cavity and signal count rates are well
separated, as in Fig. 8�a�, it is clear the discriminator must lie
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in the range between the two photon distributions. Provided
this range is large enough, a position can be assigned �for
example� at least three standard deviations from each distri-
bution �3�e below Nempty and 3� f above N, where �e �� f� is
the standard deviation of the number of photons measured
from the empty �full� cavity�, giving a QE greater than 99%,
and probability of false counts less than 1%. As the number
of standard deviations is increased, the detection quality im-
proves. The necessary SNR depends on the desired detection
quality; for a discrimination position p standard deviations
�p�� from the center of each photon count distribution, the
minimum SNR required is �2p.

In Fig. 8�b�, for low SNR, the photon count distributions
are not well separated and it is difficult to find a position for
the discriminator that is a good compromise between QE and
false counts. Such statistics do not represent ideal detection
conditions. However, the false counts must be considered in
context of the atom flux. For a large �true� atom count rate, a
high false count rate becomes more acceptable. In such a
case, the discriminator may be positioned to include a sig-
nificant fraction of the empty-cavity count distribution about
Nempty.

2. Limits to efficiency

It is important to note the limitations of our model with
respect to detection efficiency. We have considered maximal
coupling between the atom and cavity field �g�r̃�=g0�, ne-
glecting any variation in coupling strength �and correspond-
ing signal strength� that occurs when the atom transits the
cavity away from the intensity maximum of the light field. In
a real system, this variation critically effects the QE. If the
low field intensity around the nodes of a standing-wave cav-
ity can be avoided, the coupling strength seen by each atom
can be made substantially more uniform. This can be
achieved in two ways.

�i� For a nonresonant red-detuned probe, the electric di-
pole force can be used to pull the atoms through the intensity
maxima of the cavity mode. The dipole potential is propor-
tional to the field gradient, so the rapid intensity changes of a
standing-wave can create a strong force along the cavity axis.
On the basis of our modeling, we expect the regime around
point B in Fig. 5 would provide both a strong axial dipole
potential and a reasonable SNR that is reduced by a factor of
about 1.4 compared to best case resonant detection. There is
also a weaker dipole force in the radial direction due to the
Gaussian beam profile. In principle, this could increase the
effective width of the atom detector. Assuming reasonable
atom speeds of about 1 m /s, however, the radial dipole force
is not strong enough to substantially influence the atom tra-
jectories. This is true both for the regimes considered here
and in other work �40�.

�ii� Only linear cavities have axial mode structure. A
traveling-wave ring cavity has a field that is uniform along
the cavity axis. Consequently all atoms transiting the field
on-axis generate signals of the same strength. In this con-
figuration, there is little to be gained from using red-detuned
light since the dipole force acting on the atoms will only be
in the radial direction and, as discussed above, unable to
significantly influence atom trajectories. A traveling-wave

cavity therefore seems highly suited to resonant detection
where the SNR is maximized. The downside is that the lack
of standing-wave structure yields a mode volume twice that
of a linear cavity with the same round-trip length. This re-
duces g0 by a factor of �2. Our modeling indicates that for
both resonant and detuned detection with optimum probe
power, traveling-wave cavities lose a factor of 1.3 to 1.5 in
SNR compared to standing-wave cavities with otherwise
identical properties. It is also problematic that real multilevel
atoms need circularly polarized light to drive a closed two-
level transition. Due to the birefringence of the dielectric
mirrors used in high finesse cavities, planar ring cavities
have vertical and horizontal polarization modes that are non-
degenerate. To force a resonant circular polarization mode
would mean some polarization compensation inserted into
the cavity, or a complex 3D geometry that is symmetric with
respect to the linear polarization modes.

In summary, nonresonant detection allows one to use a
linear cavity with a standing wave and higher g0, but one is
forced to consider red-detuned detection, which has lower
potential SNR than the resonant system. Alternatively, a ring
cavity with no standing wave, is better suited to resonant
detection, but comes at a cost of potential SNR due to the
reduction in g0, and is in practice difficult to set up. The end
result is that both options give similar performance.

Although there are many experimental details that we
have not considered in the present work, our model is still
useful for comparing real setups. For example, Öttl et al.
detected single atoms in a 87Rb atom-laser beam using a high
finesse �F=3.5�105� optical standing-wave cavity, with L
=178 �m, w0=25.5 �m �40�. Their detection made use of
the dipole force to channel the atoms through antinodes of
the cavity field, and optimum detection efficiency occurred
for detunings of 
=3� and 	=0.5� with a driving photon
flux of 70 photons /�s. In our simulations, these cavity pa-
rameters and operating conditions suggest an ideal SNR for
single atom detection of about 10. Their cavity is appropriate
for many experiments besides single atom counting since it
accomplishes strong coupling conditions �32�. The cavity de-
sign that we have discussed in this paper has a finesse that is
an order of magnitude lower �F=104� than the cavity pre-
sented in the work by Öttl et al. Nonetheless, we have dem-
onstrated that for our moderate finesse, there exist operating
regimes, in both resonant and detuned conditions, where the
achievable SNR is as good as that of the higher finesse cav-
ity. The critical difference between the optimum operating
regimes used in Ref. �40� and those shown in this work, is
the use of high probe powers necessitating detection with a
heterodyne setup.

V. CONCLUSIONS

In this work, we have presented a thorough analysis of
single-atom detection using optical cavities. The parameter
space considered includes cavity-probe and atom-probe de-
tunings as well as variable probe power, and we have shown
that the SNR for single-atom detection is critically dependent
on the choice of operating regime within this space.

Our modeled data suggest the parameter space be divided
into two regimes: resonant and nonresonant detection. Reso-
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nant detection with moderate to high-finesse cavities �sys-
tems with low critical atom number� is best described with
the Jaynes-Cummings mode splitting. Nonresonant detection
results in a frequency pulling of the cavity transmission line.

The best SNR occurs on-resonance. However, very rea-
sonable SNRs are also available with nonresonant condi-
tions, provided the atom and cavity detunings are chosen
wisely and combined with appropriately high probe powers.
With a standing-wave configuration, red-detuned detection
brings the benefit of the dipole potential that improves the
effective atom-cavity coupling, however, equivalent SNRs
are achieved with resonant detection in a traveling-wave ring
cavity.

We have shown maximizing the SNR for both resonant
and nonresonant conditions requires photon fluxes that are in

excess of APD saturation limits, so heterodyne detection is
always a more desirable detection technique. Working in
high power regimes means that for a cavity of moderate fi-
nesse F=104 we can achieve a SNR comparable or better
than those achieved in previous experiments using cavities
with significantly higher finesse.
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