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We study few-boson tunneling in a one-dimensional double well. As we pass from weak interactions to the
fermionization limit, the Rabi oscillations first give way to highly delayed pair tunneling �for medium cou-
pling�, whereas for very strong correlations multiband Rabi oscillations emerge. All this is explained on the
basis of the exact few-body spectrum and without recourse to the conventional two-mode approximation.
Two-body correlations are found essential to the understanding of the different tunnel mechanisms. The
investigation is complemented by discussing the effect of skewing the double well, which offers the possibility
to access specific tunnel resonances.

DOI: 10.1103/PhysRevA.78.013621 PACS number�s�: 03.75.Lm, 03.65.Xp, 05.30.Jp

I. INTRODUCTION

Using ultracold atoms, it has become possible to study
hallmark quantum effects—such as tunneling—at an unprec-
edented level of precision and control �1–4�. One prime ex-
ample is tunneling of matter waves, where Bose-Einstein
condensates have facilitated the observation of Josephson os-
cillations �5–7� and the complementary nonlinear self-
trapping �5,8,9�. In the case of Josephson oscillations, the
atoms—initially prepared mostly in one well—simply tunnel
back and forth between two potential wells in analogy to a
current in a Josephson junction. However, above a critical
interaction strength, the atoms essentially remain trapped in
that well for the experimental lifetime even though they repel
each other.

While the above effects have been observed for macro-
scopic coherent matter waves, many tools such as optical
lattices have promoted a trend to study smaller systems with
a few atoms only. Permitting a high degree of control, they
offer the chance to study finite-size effects and this way al-
low for a deeper understanding of the microscopic mecha-
nisms in ultracold atoms. As an example, the recently evi-
denced stability of repulsively interacting atom pairs as they
move in a lattice �10�, as well as the direct observation of
their first- and second-order tunneling dynamics �11�, should
be seen as few-body counterparts of the above self-trapping
transition. This motivates a thorough theoretical investiga-
tion of the few-boson tunneling mechanisms.

However, while those effects are confined to the regime of
relatively weak interactions, interatomic forces can be ad-
justed experimentally over a wide range, e.g., by exploiting
Feshbach resonances �12�. In particular, it is well known that
in one dimension �1D� one can tune the effective interaction
strength at will via a confinement-induced resonance �13�,
which makes it possible to explore the limit of strong corre-
lations. If the bosons repel each other infinitely strongly, they
can be mapped to noninteracting fermions �14�, in that the
exclusion principle serves to mimic the hard-core interaction.

While the bosons share local aspects with their fermionic
counterparts, nonlocal properties such as their momentum
distribution are very different. Sparked also by the experi-
mental demonstration �15–17�, this fermionization has at-
tracted broad interest �see �18–26�, and references therein�.

In this light, the question naturally arises whether the no-
tion of tunneling can be pushed to the strongly interacting
fermionization limit. Indeed, a recent study has shown that a
fermionized atom pair tunnels coherently almost like a single
atom �27�. In this paper, we give a systematic account of how
few-boson tunneling evolves in the crossover from weak to
strong correlations. Moreover, we extend that study to two-
atom tunneling resonances occurring in asymmetric wells.

Our paper is organized as follows. Section II introduces
the model and briefly reviews the concept of fermionization.
In Sec. III, we give a concise presentation of the computa-
tional method. The subsequent section is devoted to the re-
sults on tunneling in a symmetric double well for two atoms
�Secs. IV A–IV C� and more atoms �Sec. IV D�. Finally, we
illuminate the effect of tilting the double well in Sec. V.

II. THEORETICAL BACKGROUND

A. Model

The subject of this paper is the double-well dynamics of a
few atoms �N=2–4�, which shall be described by the many-
body Hamiltonian �see �24� for details�

H = �
i=1

N �1

2
pi

2 + U�xi�� + g�
i�j

���xi − xj� .

Here the double-well trap U�x�= 1
2x2+h�w�x� is modeled as a

superposition of a harmonic oscillator and a central barrier
shaped as a Gaussian �w�x�=e−x2/2w2

/�2�w �of width w
=0.5, where harmonic-oscillator units are employed through-
out�. The effective interaction in 1D can be represented as a
contact potential �13�, but is mollified here with a Gaussian
��=0.05 so as to alleviate the well-known numerical difficul-
ties caused by the � function. We focus on repulsive forces,
i.e., g� �0,��.

To prepare the initial state ��0� with a population
imbalance—in our case, such that almost all atoms reside in
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the right-hand well only—we make that side energetically
favorable by adding a linear external potential −dx �with
sufficiently large d	0.1–1, depending on N and g� and let
the system relax to its ground state �0

�d�0�. To study the time
evolution in the symmetric double well �Sec. IV�, the asym-
metry d will be ramped down to d→0 nonadiabatically �we
typically choose a ramp time �	1�. By extension, it is pos-
sible to take any final asymmetry limt→� d�t��0, which al-
lows us to look at the case where one well is energetically
offset �Sec. V�.

B. Fermionization

A peculiarity of 1D systems is that bosons with infinitely
strong repulsive point interactions, g→�, become impen-
etrable. Mathematically, this means that its configuration
space becomes disconnected into regions 
xi�xj ∀ i� j�, a
feature which allows the system to be solved exactly via the
Bose-Fermi map �14� that establishes an isomorphy between
the exact bosonic wave function �g→�

+ and that of a �spin-
polarized� noninteracting fermionic solution �0

−,

��
+ = A�0

−, �1�

where A=�i�j sgn�xi−xj�. The mapping rests on general
grounds and is valid for both stationary and explicitly time-
dependent states. Since A2=1, their �diagonal� densities as
well as their energy E will coincide with those of the corre-
sponding free fermionic states. That makes it tempting to
think of the exclusion principle as mimicking the interaction
�g→��, which is why this limit is commonly referred to as
fermionization.

III. COMPUTATIONAL METHOD

Our goal is to investigate the few-atom quantum dynam-
ics in the crossover to the highly correlated fermionization
limit g→� in an exact fashion. This is numerically challeng-
ing, and most studies on the double-well dynamics so far
have relied on two-mode models �6,28–31� valid for suffi-
ciently weak coupling. Here we adopt the multiconfiguration
time-dependent Hartree �MCTDH� method �32–34�. Its prin-
cipal idea is to solve the time-dependent Schrödinger equa-
tion

i�̇�t� = H��t�

as an initial-value problem by expanding the solution in
terms of direct �or Hartree� products 	J
 j1

� ¯ � 
 jN
,

��t� = �
J

AJ�t�	J�t� . �2�

The �unknown� single-particle functions 
 j �j=1, . . . ,n� are
in turn represented in a fixed primitive basis implemented on
a grid.

Note that in the above expansion not only the coefficients
AJ but also the single-particle functions 
 j are time depen-
dent. Using the Dirac-Frenkel variational principle, one can
derive equations of motion for both AJ ,
 j �33�. Integrating
this differential-equation system allows us to obtain the time

evolution of the system via �2�. This has the advantage that
the basis 
	J�t�� is variationally optimal at each time t. Thus
it can be kept relatively small, rendering the procedure very
efficient. We stress that � obeys bosonic permutation sym-
metry even though the direct-product basis does not; this is
ensured by correct symmetrization of the expansion coeffi-
cients.

Although designed for time-dependent simulations, it is
also possible to apply this approach to stationary states. This
is done via the so-called relaxation method �35�. The key
idea is to propagate some wave function ��0� by the non-
unitary e−H� �propagation in imaginary time�. As �→�, this
exponentially damps out any contribution but that stemming
from the true ground state like e−�Em−E0��. In practice, one
relies on a more sophisticated scheme termed improved re-
laxation �36,37�, which is much more robust especially for
excitations. Here ���H��� is minimized with respect to both
the coefficients AJ and the orbitals 
 j. The equations of mo-
tion thus obtained are then solved iteratively by first solving
for AJ with fixed orbitals and then optimizing 
 j by propa-
gating them in imaginary time over a short period. That cycle
will then be repeated.

IV. SYMMETRIC DOUBLE WELL

Let us first focus on the tunnel dynamics in a symmetric
well �d=0�. Our primary focus is on how the tunneling
changes as we pass from single-particle—i.e., uncorrelated—
tunneling �g=0� to tunneling in the presence of correlations
and finally to the fermionization limit �g→��. It is natural to
first look at the conceptually clearest situation where N=2
atoms initially reside in the right-hand well �Sec. IV A�, with
an eye toward the link between tunneling times and the few-
body spectrum �Sec. IV B� as well as the role of two-body
correlations �Sec. IV C�. With this insight, we tackle the
more complicated dynamics of N=3,4 , . . . atoms in Sec.
IV D.

A. From uncorrelated with pair tunneling

Absent any interactions, the atoms should simply Rabi
oscillate back and forth between both wells. This can be
monitored by counting the percentage of atoms in the right-
hand well, pR�t�= ���x����t�=�0

���x ; t�dx �� being the one-
body density� or, correspondingly, the population imbalance
�= pR− pL=2pR−1. Figure 1�a� confirms that pR harmoni-
cally oscillates between 1 and 0. By contrast, if the atoms
repel each other, then the tunneling process will be modified.
For g=0.2, one sees that the tunneling oscillations have be-
come a two-mode process: There is a fast �small-amplitude�
oscillation which modulates a much slower oscillation in
which the atoms eventually tunnel completely �pR�0�. In
case g is increased further, we have found that the tunneling
period becomes indeed so long that complete tunneling may
be hard to observe. For instance, at g=1.3 �not displayed
here� the period is as large as 2103. What remains is a very
fast oscillation with only a minute amplitude—this may be
understood as the few-body analog of quantum self-trapping,
as will be discussed in Sec. IV B. As we go over to much
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stronger couplings �see g=4.7�, we find that the time evolu-
tion becomes more complex, even though this is barely cap-
tured in the reduced quantity pR �Fig. 1�a��. What is striking,
though, is that near the fermionization limit �see g=25� again
a simple picture emerges: The tunneling, whose period
roughly equals that of the Rabi oscillations, is superimposed
by a faster, large-amplitude motion. This intriguing result
states that the strongly repulsive atoms coherently tunnel
back and forth almost like a single particle. As an illustra-
tion, snapshots of the density at different t are displayed in
Fig. 1�b�: At t=0, the fragmented pair starts out in the right-
hand well, and gradually tunnels to the left-hand well until
the fermionized pair state reemerges on the left at t�106.

B. Spectral analysis

In order to understand the oscillations, let us regard the
evolution of the few-body spectrum 
Em�g�� as g is varied
�Fig. 2�b��. In the noninteracting case, the low-lying spec-
trum of N=2 atoms is given by distributing all atoms over
the symmetric and antisymmetric single-particle orbital of
the lowest doublet �illustrated in Fig. 2�a��. This yields the
N+1 energies


Em = E0 + �m��0��m = 0, . . . ,N� ,

where ��0�=�1−�0 is the energy gap between these two or-
bitals or, in other words, the width of the lowest band. As-
suming that for sufficiently small g still only N+1=3 levels
are populated in ��t�=�me−iEmtcm�m, then the imbalance
��t����x�−��−x����t� �and likewise pR� can easily be
computed to be

��t� = ��01� cos��01t� + ��12� cos��12t� , �3�

where �mn=Em−En and ��mn�=4��m���x���n�cmcn is deter-
mined by the participating many-body eigenstates. Note that
the term �mn�= �02� vanishes since, by antisymmetry, only
opposite-parity states are coupled. At g=0, due to the levels’
equidistance, only a single mode with Rabi frequency �01
=�12=��0� contributes. For very small interaction energies
compared to ��0�, the equidistance is slightly lifted, so that
the Rabi oscillations are modulated by a tiny beat frequency
�01−�12 �not shown�. However, as the interaction is in-
creased further, the two upper lines E1,2 virtually glue to one
another to form a doublet, whereas the gap to E0 increases
�Fig. 2�b�, inset�.

This level adhesion, already calculated for N�5 in Ref.
�26�, may be understood from a naive lowest-band two-mode
model �see �6� for details�: As g is increased, the on-site
interaction energy eventually overwhelms the tunneling en-
ergy ��0�, and the eigenstates evolve from number states
�N0

�0� ,N1
�0�� in the delocalized �anti�symmetric orbitals �a=0,1

�0�

into superpositions of number states �NL ,NR� in the left-
and/or right-localized orbitals 
L�R�

�0� = 1
�2

��0
�0���1

�0��. It goes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400

po
pu

la
tio

n
p R

time t(a)

0

0.1

0.2

0.3

0.4

0.5

-4 -3 -2 -1 0 1 2 3 4

de
ns

ity
ρ(

x)

x(b)

t= 0
t= 38
t= 53
t=106

FIG. 1. �Color online� Two-atom dynamics. �a� Population of
the right-hand well over time, pR�t�, for different interaction
strengths g=0 �—�, g=0.2 �---�, g=4.7 �¯�, and g=25 �- · -�. �b�
Snapshots of the one-body density ��x� for different times t in the
strongly correlated case g=25. �All quantities in harmonic-
oscillator units throughout, see text.�
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FIG. 2. �Color online� �a� Single-particle spectrum 
�a� of a
double well with barrier height h=8. �b� Two-particle spectrum as a
function of the interaction strength g. Inset: Doublet formation with
increasing g.
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without saying that any two such degenerate number states
�� ,N−��� �N−� ,�� violate parity symmetry and only serve
to form a two-dimensional energy subspace, which for non-
zero ��0� corresponds to the doublets in Fig. 2�b�.

With these considerations on the weak-interaction behav-
ior in mind, Eq. �3� asserts that for times t�T122� /�12,
we only see an oscillation with period T01�T12, offset by
��12�, which on a longer time scale modulates the slow tun-
neling of period T12. For small initial imbalances, we have
���01� /��12��� �c0 /c2��1; so for short times we observe the
few-body analog of Josephson tunneling. In our case of an
almost complete imbalance, in turn, ���12�� dominates, which
ultimately should correspond to self-trapping, viz., extremely
long tunneling times. These considerations convey a simple
yet ab initio picture for the few-body counterpart of the
crossover from Rabi oscillations to self-trapping.

It is obvious that the two-frequency description above
breaks down as the gap to higher-lying states melts �see Fig.
2�b��, even though for two atoms no actual crossings with
higher states occur, as opposed to N�3 �26,38�. The conse-
quences for the spectrum are twofold: �i� The quasidegener-
ate doublet will break up again, and �ii� states emerging from
higher bands will be admixed. For the imbalance dynamics,
�i� implies that the “self-trapping” scenario will give way to
much shorter tunnel periods again, while �ii� signifies a
richer multiband dynamics. An indication of this may be
seen in Fig. 1 for g=4.7, but it most clearly manifests toward
fermionization, g=25.

In the fermionization limit g→�, the system also be-
comes integrable again via mapping �1�. As an idealization,
assume that at t=0 we set two �noninteracting� fermions in
the right-hand well, where they would occupy the lowest two
orbitals, namely 
R

���, �=0,1. Expressing this �fermionic�
number state ��0�= ���=0,1âR

����†�0� through the single-
particle eigenstates �n= 
na�

�����− via âR
���= 1

�2
�â0

���+ â1
���� leads

to

��t = 0� =
1

2 �
a0,a1�
0,1�

�1a0

�0�;1a1

�1��−,

where 1a�

��� denotes occupation of the symmetric �a�=0� or
antisymmetric �a�=1� orbital in band �. The frequencies
�n,n�=En−En� contributing to ��t� follow in a straightfor-
ward fashion:

�n,n� = �
�,a�

�a�

����na�

��� − na�
����� = �

�

�����n1
��� − n1�

����
=0,�1

�4�
Moreover, let us focus on the imbalance dynamics. Since
��nn���0 only for opposite-parity states n ,n�, the sum must
contain only an odd number of terms. For the special case of
two atoms, we obtain the simple result that the only partici-
pating frequencies are ��0� �the lowest-band Rabi frequency,
corresponding to the longer tunneling period� and ��1� �the
larger tunnel splitting of the first excited band�. This links the
strongly interacting dynamics to the noninteracting Rabi os-
cillations.

C. Role of correlations

In order to unveil the physical content behind the tunnel-
ing dynamics, let us now investigate the two-body correla-
tions. Noninteracting bosons simply tunnel independently,
which is reflected in the two-body density �2�x1 ,x2�. As a
consequence, if both atoms start out in one well, then in the
equilibrium point of the oscillation it will be as likely to find
both atoms in the same well as in opposite ones. This is
illustrated in Fig. 3, which exposes snapshots �2�x1 ,x2 ; t�� at

the equilibrium points �where ��t��=! 0� and visualizes the
temporal evolution of the pair �or same-site� probability

p2�t� = ���x1���x2� + ��− x1���− x2��t

= �

x1·x2�0�

�2�x1,x2;t�dx1dx2.

As we introduce small correlations, the pair probability does
not drop to 0.5 anymore—at g=0.2 it notably oscillates
about a value near 100%. This signifies that both atoms can
essentially be found in the same well in the course of tun-
neling, which is apparent from the equilibrium-point image
of �2. In plain words, they tunnel as pairs. At this point, it is
instructive to revisit the eigenstate analysis above: While the
g=0 eigenstates �1,2 are delocalized, at intermediate g=0.2
they have basically evolved into superpositions �NL=2,NR
=0�� �0,2� of pair states localized in each well. In this light,
the dynamics solely consists in shuffling the population back
and forth between these two pair states.

Figure 3 in hindsight also casts a light on the fast �small-
amplitude� modulations of pR encountered in Fig. 1�a�,
namely by linking them to temporary reductions of the pair
number p2. Thus it is fair to interpret them as attempted
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FIG. 3. �Color online� Top: Probability p2�t� of finding two at-
oms in the same well for g=0,0.2,25. Bottom: Snapshots of two-
body correlation function �2�x1 ,x2� at equilibrium points, ��t��=0,
for g=0 �t�=44�, g=0.2 �t�=128�, and g=25 �t�=53�—from left to
right.
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one-body tunneling. Along the lines of the spectral analysis
above, this relates to the contribution from the ground state,
in which the two atoms reside in opposite wells and which
does not join a doublet. Since ��x1���x2�+��−x1���−x2� is
parity symmetric, only equal-parity matrix elements contrib-
ute to p2, which yields p2�t��1–2p�02� sin2��02t /2�.

It is clear that, as before, the time evolution becomes
more involved as the interaction energy is raised to the fer-
mionization limit �cf. g=25�. The two-body correlation pat-
tern is fully fragmented not only when the pair is captured in
one well �corresponding, e.g., to the upper right-hand corner
x1 ,x2�0�, but also when passing through the equilibrium
point t=53. These contributions from higher-band excited
states also reflect in the evolution of p2�t�, which is deter-
mined by the two modes ��=��0����1�. Over time, p2
passes through just about any value from 1 �pair� to almost
zero �complete isolation�. In analogy to free fermions, it is
again tempting to understand this involved pattern as two
fermions tunneling independently with different frequencies.

D. Many-body effects

Although having focused on the case of N=2 atoms so
far, the question of higher atom numbers is interesting from
two perspectives. On the one hand, at stronger interactions
many results become explicitly N dependent, including dis-
tinctions between even or odd atom numbers �24,26�. On the
other hand, in a setup consisting of a whole array of 1D traps
as in �15–17�, number fluctuations may automatically admix
states with N�2.

1. Complete imbalance

For N�3, the weak-interaction behavior does not differ
conceptually. In fact, Eq. �3� carries over,

��t� = �
m�n

��mn� cos��mnt� ,

but with the sum now running over 0�m�n�N. Strictly
speaking, the dynamics is thus no longer determined by two
but rather in principle N�N+1� /2 modes �mn�—although
about one-half of these fail to contribute by symmetry. None-
theless, the basic pattern can be understood from the two-
atom case, as will become clear in the following.

For g=0, assume an ideal initial state with all atoms in the
right-localized orbital �R= 1

�2
��0+�1� of the lowest band.

The weight coefficients cN�N0�= �N0 ,N− �N0���0�� with re-
spect to the eigenstates �N0 ,N1� have a binomial distribution

�cN�N0��2 =
1

2!N� N

N0
� 	

N→�

��N0
�N0 − N̄0�

which for larger N asymptotically equals a Gaussian, with a
sharp peak ��N0=�N /2� near d. In this light, only these few
states should contribute. Again, the equidistance of the levels
guarantees a simple imbalance oscillation with ��0�. For in-
teraction energies small compared to ��0�, the Rabi oscilla-
tions will again be modulated by beats, similar to the case
N=2.

As we move to larger values g	0.2, the higher-lying of
the N+1 levels have again merged into doublets �26�. In

particular, the highest eigenstate pair was conjectured to be
roughly of the form �NL=N ,NR=0�� �0,N� �in the limit h
→��. The idealized state distribution should be peaked at
just these two vectors, whose energy splitting in the bare
two-mode model has been estimated as �	�2NU / �N
−1�!��2��0� /U�N �29�, where U denotes the on-site interac-
tion energy. Thus the tunnel period is expected to grow ex-
ponentially as N→�, a trend which may be roughly extrapo-
lated from Fig. 4 �insets�. Ultimately, this should connect to
the condensate dynamics valid for N�1 �6,28–30�, when
tunneling becomes inaccessible for all intents and purposes.
Of course, realistically, neighboring states will also be ex-
cited, which makes the time evolution richer. However, the
separation of time scales leads to the characteristic interplay
of fast, small-amplitude oscillations �related to attempted
single-particle tunneling� and a much slower tunnel motion,
as observed in Fig. 4.

Things become more intricate if we leave the two-mode
regime, cf. g=4.7. As has been demonstrated in �26�, �anti-
�crossings with higher-lying states �which connect to higher-
band states at g=0� occur for N�3. Given our experience of
the two-atom case, one might again expect a simplified be-
havior as we approach the fermionization limit. However, we
will argue below that this must be taken with a grain of salt
because an initial state with N hard-core bosons in one well
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FIG. 4. �Color online� Time evolution pR�t� of �a� N=3, �b� N
=4 atoms initially in one well. Shown are the coupling strengths
g=0 �—�, g=0.2 �---�, g=4.7 �¯�, and g=25 �- · -�. Insets: Long-
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the different time scales in both insets.�

TUNNELING DYNAMICS OF A FEW BOSONS IN A … PHYSICAL REVIEW A 78, 013621 �2008�

013621-5



is highly excited. In the spirit of the Bose-Fermi map, an
idealized state with N fermions prepared in one well will
have contributions from all excitations �1a0

�0� ;1a1

�1� ; . . . ;1aN−1

�N−1��−

�a�=0,1 ∀ �� in the N lowest bands, which is proven by
induction on N=2. In view of �4�, many more frequencies
are expected to be present: Besides the individual tunnel
splittings ���� for each band, these should in principle be all
four combinations ��0����1����2� for N=3, and 44 com-
binations 
��l����m�� ���n��0� l�m�n�N� for N=4, etc.,
taking into account parity-selection rules. However, in the
fermionization limit with the idealized initial state above,

things simplify even further. Since N̂R�� aR
���†aR

���—the
Fock-space representation of ��x� in the context of Eq.
�3�—is a one-particle operator, an eigenstate �n�− is coupled
only to “singly excited” states of the type �n��−
=a1

���†a0
����n�− �for some ��, with an excitation frequency

�n,n�=����. This yields an imbalance of

��t� =
1

N
�
�=0

N−1

cos ����t �g → �� .

This simple formula should be contrasted with the surprising
complexity of the fermionization dynamics already for atom
numbers as small as N=3,4. This is illustrated in Fig. 4,
where pR�t�= ����t�+1�� /2 is plotted �cf. g=25�. To be sure,
for finite g and using a realistic loading scheme, a few more
modes contribute, thus naturally rendering the dynamics
more irregular. But even the innocuous formula above can
account for the seemingly erratic patterns in Fig. 4: The key
to see this is to consider the distribution of frequencies

�����. In the unrealistic limit that �������0� ∀ �, the im-
balance would be a neat Rabi oscillation for any N, ��t�
�cos ��0�t. However, a realistic barrier likely has a
Gaussian-type shape and a finite height; hence the splittings
of higher bands tend to grow monotonically. As a conse-
quence, only the lower-band frequencies ���� will contribute
to the tunneling, whereas the higher-band splittings make for
much faster modulations, which average out on a larger time
scale. The point is that for N�1, those few lowest-band
modes only have a weight of O�1 /N�, so in a realistic sce-
nario one expects quasiequilibration around pR=1 /2.

2. Partial imbalance

While we have so far assumed that all atoms are prepared
in one well, it is natural to ask what the effect of incomplete
imbalances pR�0��1 would be. For simplicity, we will focus
on the fermionization limit �here g=25�. Two scenarios are
conceivable, in principle:

�1� Small imbalances pR�1 /2, i.e., small perturbations of
the ground state.

�2� Preparing, say, N−1 atoms in one well and one in the
other.

Option �1� is plotted in Fig. 5�a� for N=3,4. We clearly
observe Josephson-type oscillations in each case, but with
markedly different time scales. This may be understood from
the spectral structure near fermionization �26�: For even N,
the fermionic ground state �10

�0� ,11
�0� , . . . ,10

�N/2−1� ,11
�N/2−1��−

has all bands filled, so that the lowest excitation is created by
moving one atom from band �=N /2−1 to �=N /2. Thus the

“Josephson” frequency �01=�0
�N/2�−�1

�N/2−1� is a large inter-
band gap, which for N=4 gives a period of T01�4. For odd
N, by contrast, the mechanism is a different one: Here the
ground state leaves the highest band only singly occupied, so
that the lowest excitation frequency is the small intraband
splitting �01=��N−1�/2. In Fig. 5�a� �N=3�, this may be iden-
tified as the rather long period T01�40.

Scenario �2�, paraphrased in the case N=3, is the question
of the fate of an atom pair if the target site �the left-hand
well� is already occupied by an atom. The striking answer, as
evidenced in Fig. 5�b�, is that the process can be viewed as
single-atom tunneling on the background of the symmetric
two-atom ground state. The tunneling frequency in the fer-
mionization limit is ��1��2� /40, which has the intuitive
interpretation of a fermion which—lifted to the band
�=1—tunnels independently of the two lowest-band fermi-
ons. From that point of view, it should come as no surprise
that adding another particle destroys that simple picture. In
fact, Fig. 5�c� reveals that if we start with N−1=3 atoms on
the right-hand side, then the tunneling oscillations appear
erratic at first glance, and a configuration with three atoms
per site becomes an elusive event �see, e.g., t�22, 44 or 72�.
In the fermionic picture, this can be roughly understood as
superimposed tunneling of one atom in the first excited band
���1�� and another in the second band ���2��2� /15�, while
the remaining zeroth-band fermions remain inactive.

V. ASYMMETRIC DOUBLE WELL

We have so far used the tilt d of the double well merely as
a tool to load the atoms into one well. The question naturally
arises whether the actual tunnel oscillations can be studied in

0.475

0.48

0.485

0.49

0.495

0.5

0.505

0.51

0.515

0.52

0.525

0 20 40 60 80 100 120

po
pu

la
tio

n
p R

time t
(a)

N=3
N=4

FIG. 5. �Color online� Partial-imbalance effects in the fermion-
ization limit �g=25�. �a� Small-imbalance oscillations �scenario 1�
for N=3,4 atoms. Plotted is the population of the right-hand well,
pR�t�. Bottom: Density evolution ��x ; t� for N−1=2 �b� and N−1
=3 atoms �c� initially in the right-hand well if exactly one atom is
present on the left �scenario 2�.

ZÖLLNER, MEYER, AND SCHMELCHER PHYSICAL REVIEW A 78, 013621 �2008�

013621-6



asymmetric wells so as to manipulate the nature of the tun-
neling. Specifically, we consider a setup similar to Sec. IV:
Two atoms are prepared in the right-hand well �i.e., in
ground state �0

�d0� with a large initial asymmetry d0�. Subse-
quently, the asymmetry is ramped down to a final value d
�0, thus triggering the tunnel dynamics.

A. Tuning tunneling resonances

In symmetric wells, pair tunneling is always resonant in
the sense that an initial state with all atoms on one site is
equal in energy to one with all atoms in the opposite well
�11,38�. Conversely, single-atom tunneling should only be
likely so long as the repulsive interaction does not shift the
pair state’s energy off resonance with a target state of only a
single atom on the left. This squares with our finding that the
pair probability p2 �Fig. 3� drops to 50% in the equilibrium
points for g=0, while in the correlated case �g=0.2� it does
not vary considerably from unity. To condense this insight
into a single quantity, let us define

p̄1 = max
t�0


1 − p2�t��

as the �maximum� single-atom probability, relating to the
event of finding the atoms in different wells.

Figure 6 shows how p̄1 changes when the final asymmetry
d between the wells is varied. For g=0, p̄1�d� has a plateau
for d�0.011. This relates to the transition from coexistence
of single-atom and pair tunneling �at d=0� to the point where
the right-hand well is lowered such in energy that the initial
pair state energetically matches a state with exactly one atom
on the left. From the perspective of the two-body density in
Fig. 3, the final state at d=0.011 corresponds to the
equilibrium-point snapshot for d=0. For larger values of d,
the energy difference between both wells is too large to
transfer a substantial fraction of the population to the other
well.

By contrast, at g=0.2 the repulsion is sufficiently strong
to drive the single-atom tunneling off resonance at d=0 �Fig.

6�. Lowering the right-hand well so as to compensate for the
interaction-energy shift leads to a dramatic increase of the
tunnel amplitude near d=0.038. The value of p̄1�1 confirms
that this is pure single-atom tunneling: After one-half of a
tunnel period, both atoms are found precisely in opposite
wells, until they return to the pair state on the right-hand site.

Despite the more convolved dynamics that emerges as we
go to higher interactions, the one-atom tunnel resonance per-
sists. However, in the fermionization limit g→�, yet another
resonance emerges at d=0 already �Fig. 6�. As in the uncor-
related case, this signifies coincident single-atom and pair
tunneling. This resonance, however, is much more sensitive
to symmetry breaking, which is intelligible from the picture
of two fermions hopping simultaneously in different bands
�=0,1. Skewing the double well �d�0� thus attenuates both
one- and two-atom tunneling until another, pure single-atom
resonance is hit at d=0.58. Conversely, energetically lifting
the right-hand well �d�−0.5� makes tunneling to excited
target states accessible.

B. Spectral analysis

To better understand the dependence of the tunnel dynam-
ics on the tilt d, let us consider the two-body spectrum

Em�d�� at fixed coupling g. Since both the noninteracting
and the fermionization limit can be deferred from the single-
particle spectrum, we will first stop to review the tilted
double well.

1. One-body spectrum

Figure 7 displays the spectrum 
�a�d�� of the double well
U�x�= 1

2x2+h�w�x�−d ·x for variable asymmetries d. For sim-
plicity, let us resort to a simple model and expand the one-
body Hamiltonian h�p ,x�= 1

2 p2+U�x� in terms of two modes
��=L�R� localized on the left-hand �right-hand� site �tacitly
assuming a fixed band ��. We denote by

�i� ����h����= �̄�� /2, the energies pertaining to isolated
wells, where the left site has an energy offset �;

�ii� ���L�h��R��=� /2, the tunnel coupling.
Then a straightforward diagonalization yields

�a,� � ��L + �� � ������R �a = 0,1� ,
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�a,� = �̄ �
1

2
���� ,

where ������2+�2 is the energy gap in the presence of
the tilt. In the symmetric case, the states are simply given by
the �anti-�symmetric orbitals �a,�=0��L��R, with the usual
tunnel splitting ��0��. As we switch on a tilt ��0, parity
is broken and the once delocalized states break up into one
decentered on the left ��1� and one on the right ��0� as �
��. This goes along with a level repulsion of �0/1,� about
�=0, where the �1 state pinpointed on the left-hand site is
energetically lifted, and vice versa. As the states decouple for
���, the energy approaches that of the isolated subsystem
�a,�	 �̄�� /2.

The above holds for each band � individually, provided
their levels are well separated. In fact, Fig. 7 confirms that
scenario for tilts small compared to the interband gap, �
��̄��+1�− �̄���	2. For strong enough asymmetries d, though,
states emerging from different bands mix, and new avoided
crossings are observed in the plot.

2. Two-body spectrum

Noninteracting limit. In the uncorrelated system, g=0, the
many-body spectrum 
En=�ana�a� is obtained from the
number states �n� of the single-particle eigenstates �a. The
energy shift of the levels En�d� with respect to d=0 thus
depends on the balance between contributions from symmet-
ric orbitals �0

��� and antisymmetric ones. Specifically, the d
=0 ground state exhibited in Fig. 8�a� is a coherently sym-
metric state �20�= ��0

�0���2. Consistently, for perturbations d
�0 it localizes on the right-hand side, with its level shifting
downward—in stark contrast to the second excitation �02�
= ��1

�0���2. In between, �11� is a compromise between these
two borderline cases in that both partial energy shifts cancel
out, leaving a delocalized state. This gives us a new perspec-
tive on the tunneling dynamics reflected in Fig. 6. Imagine
that we start with all atoms prepared in the right-hand well,
viz., the ground state �0

�d→��, and then ramp down d�t�→0
so as to trigger the tunneling. If we follow the ground-state
level nonadiabatically, then at d=0 it finds three closely
packed levels Em�0� it can couple to—in the sense that
���m ���0����0, so that a nontrivial dynamics becomes pos-
sible. In fact, at d=0, these correspond to Rabi oscillations.
If we were to choose a final asymmetry d�0.01 �in the
notation above, ��0����0��, roughly the same level would be
available, confirming the plateau encountered in Fig. 6.
However, for final values d�0.01, the levels decouple, and
no longer are there any target states at disposal for tunneling.

Medium interactions. These elementary thoughts also help
us explore the nontrivial dynamics for intermediate cou-
plings, as shown for g=0.2 in Fig. 8�a�. The d=0 ground
state, in the limit ��0�→0, has the Mott-insulator form �1L1R�
and should be insensitive to symmetry breaking d�0. By
contrast, the quasidegenerate excited pair �2L0R�� �0L2R�
only requires only a minute perturbation to break up into two
localized states. It is plain to see that, at d�0.04, the lower
excited curve anticrosses the ground state, and the two states
are virtually swapped. Resorting again to a simple two-mode

model, the �avoided� crossing occurs for tilts �=U matching
the on-site repulsion energy.

The bearing this has on the tunnel dynamics is evident:
Apart from the self-trapping scenario at d=0, there is a fairly
broad tunnel resonance at d�0.04, where the fully imbal-
anced initial state ��0� couples to that with one atom on
each site, �1L1R�. This is but the one-body resonance encoun-
tered in Fig. 6. To come by a crude estimate for the critical
value dc, assume that the energy of initial and final states
match, �Hdc

�i= �Hdc
�f. Modeling the initial pair state by the

ground state �0
�d0� �at the initial d0�0�, and the final state

with a single atom on the left-hand side by �0
�0�, yields the

estimate

dc = d0 − �E0
�0� − E0

�d0��/N�x��d0�

in terms of the ground-state energies at the initial d0�0 and
d=0, respectively, and the elongation �x� at time t=0.

Fermionization limit. Figure 8�b� shows the spectrum near
fermionization, g=25. The d=0 ground state turns out to be
widely robust against perturbations, which can be understood
from the fact that its fermionic counterpart �10

�0�11
�0��− has

balanced populations of right- and left-localizing orbitals.
The only way to obtain a right-localized ground state is to
lower one well enough for it to hit a localized state from the
upper band. This is what happens at d�0.6, where the tilt
energy ��1� /2= �̄�1�− �̄�0� compensates the interband gap. That
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crossing marks just the one-body resonance seen in Fig. 6 at
d�0.6. In the fermionic picture invoked above, it may be
thought of as one excited fermion tunneling to the lowest
level on the left-hand side.

If we follow the localized state nonadiabatically, then at
d=0 we recover the mixed single-atom or pair resonance laid
bare in Fig. 6. Further ramping up the right-hand well to d
�−0.3 �where the spectrum is mirrored at d=0�, we see yet
another crossing. A closer look reveals that the partner state
is entirely localized on the left, so that one might hope for a
pair resonance. However, as both states are localized in dis-
joint regions, they are not coupled by the perturbation �
−dx�, and in practice no tunnel resonance is observed. It may
be illuminating to look at this from the fermionic perspec-
tive. For d�−0.3, the initial state on the right-hand side is
��0���11

�0� ;11
�1��−, while the partner state emanating from

E�0��8 in turn is given by �10
�0� ;10

�2��−. In this light, the
tunneling “resonance” in question refers to the following
situation: Two fermions simultaneously hop from the zeroth
�first excited� level on the right-hand side down to the zeroth
level �up into the second level� of the energetically lower
left-hand site. While both processes individually are off reso-
nance, the total energy is conserved. This reflects in the one-
body spectrum �Fig. 7�, where no avoided crossing is to be
observed at d�−0.3—rather, there is an accidental crossing
of the sums En=�ana�a. However, at d�−0.6, another
avoided crossing emerges, which—in the fermion
language—corresponds to multiple one-body resonances
with the first and second excited level in the left-hand well.

VI. CONCLUSIONS AND OUTLOOK

We have analyzed the crossover from uncorrelated to fer-
mionized tunneling of few 1D bosons in a double well. The
pathway leads via strongly delayed pair tunneling for me-
dium interactions—associated with doublet formation in the
few-body spectrum—to fermionized tunneling, where the
strongly correlated atoms tunnel back and forth with charac-
teristic modulations. By analogy to free fermions, these may
be understood as multiband Rabi oscillations, which become
more and more complex and quasiequilibrate for large atom

numbers. To uncover the physical mechanisms, it is essential
to study two-body correlations. These reveal a strong sup-
pression of single-atom tunneling for intermediate coupling,
with a revival toward fermionization, where an involved in-
terplay of pair and single-atom tunneling is observed.

Whereas for small interactions, higher atom numbers es-
sentially only increase the tunnel period but do not change
the scenario qualitatively, the multiatom dynamics becomes
much richer as fermionization is approached. Apart from the
above case of a complete initial imbalance, this applies to
situations where not all atoms are initially in one well. In
particular, Josephson-type small-amplitude oscillations ex-
hibit vastly different time scales for odd or even numbers.
On the other hand, initially storing an extra atom in the target
well suppresses the lowest-band tunneling and thus leads to a
simplified dynamics.

Finally, studying the dynamics in asymmetric wells pro-
vides a valuable perspective on the tunnel mechanism in
terms of one- and two-atom tunnel resonances. Depending
on the energy difference between the sites, the tunnel ampli-
tude can be largely enhanced or suppressed. For noninteract-
ing bosons, this has been described by a plateau of the
single-atom probability about the asymmetry parameter d
=0. At medium interactions, in turn, single-particle tunneling
becomes resonant only when the energy offset of one well
compensates the interaction-energy shift at d�0. In the fer-
mionization limit, another d=0 resonance emerges, accom-
panied by higher-level resonances at d�0. Those features
are explained in terms of avoided crossings in the spectrum
as d is varied. Such a deeper understanding of the tunneling
may pave the way to an active control of strongly correlated
systems, for instance, by allowing to transport definite num-
bers of atoms from a reservoir to a target well.
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