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Motivated by recent proposals of “collisionally inhomogeneous” Bose-Einstein condensates �BECs�, which
have a spatially modulated scattering length, we study the existence and stability properties of bright and dark
matter-wave solitons of a BEC characterized by a periodic, piecewise-constant scattering length. We use a
“stitching” approach to analytically approximate the pertinent solutions of the underlying nonlinear
Schrödinger equation by matching the wave function and its derivatives at the interfaces of the nonlinearity
coefficient. To accurately quantify the stability of bright and dark solitons, we adapt general tools from the
theory of perturbed Hamiltonian systems. We show that stationary solitons must be centered in one of the
constant regions of the piecewise-constant nonlinearity. We find both stable and unstable configurations for
bright solitons and show that all dark solitons are unstable, with different instability mechanisms that depend
on the soliton location. We corroborate our analytical results with numerical computations.
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I. INTRODUCTION

In the past few years, the study of solitary-wave structures
in atomic physics has received considerable attention, pre-
dominantly because of impressive advances in the field of
Bose-Einstein condensation �1,2�. These investigations have
largely been motivated by the comprehensive mean-field de-
scription of atomic Bose-Einstein condensates �BECs� by the
Gross-Pitaevskii �GP� equation, a variant of the nonlinear
Schrödinger �NLS� equation in which nonlinearity, whose
strength is proportional to the s-wave scattering length, is
introduced by the interatomic interactions. This remarkable
feature has allowed both theoretical investigations and ex-
perimental observations of bright �3–5�, dark �6–9�, and gap
�10� matter-wave solitons in BECs �see also the recent re-
view in �11��. Such solitons have been studied in detail in the
literature in the presence of various external potentials, in-
cluding harmonic traps and periodic lattices. This has yielded
tremendous insights into a large variety of interesting phe-
nomena, including Bloch oscillations, Landau-Zener tunnel-
ing, modulational �“dynamical”� instabilities, gap excita-
tions, and more �see the reviews in �11–15� and references
therein�. The types of matter-wave solitons that arise in a
given situation depend on the nature of the interatomic inter-
actions, which, in turn, are characterized by the sign of the
scattering length. Specifically, bright solitons arise in BECs
with attractive interactions and negative scattering length,
whereas dark and gap solitons emerge in the case of repul-
sive interactions and positive scattering length. Gap solitons
also require the presence of an optical lattice or superlattice
potential.

During the past decade of BEC research, a number of
tools have been developed to control and manipulate matter

waves. For example, they can be influenced, processed, and
shaped using static �homogeneous and inhomogeneous� elec-
tric and magnetic fields �16�, optical devices �17�, and near-
field radio-frequency devices �18�. One can manipulate not
only a BEC’s external �trapping� potential, but also the inter-
actions among the atoms that are responsible for the nonlin-
ear properties and dynamics of the matter waves. The inter-
action among ultracold atoms can be adjusted in a very broad
range experimentally by employing either magnetic �19,20�
or optical Feshbach resonances �21�. Additionally, so-called
“confinement-induced resonances” �22,23� allow one to vary
the effective one-dimensional �1D� coupling constant of
quasi-1D systems by adjusting the transversal confinement
length. One can consequently vary the external potential
while independently and simultaneously changing the
strength of the nonlinearity by tuning the interatomic inter-
actions.

The manipulation of BECs using Feshbach resonances
has propelled a significant number of investigations that have
been subsequently refined substantially. Experimental
achievements include the formation of bright matter-wave
solitons and soliton trains for 7Li �3,4� and 85Rb �5� atoms by
tuning the interatomic interaction within a stable BEC from
repulsive to attractive, the formation of molecular conden-
sates �24�, and the probing of the BEC-BCS crossover �25�.
Moreover, theoretical studies have predicted that a time-
dependent modulation of the scattering length can be used to
stabilize attractive two-dimensional BECs against collapse
�26� or create robust matter-wave breathers in 1D BECs �27�.
We remark in passing that relevant contexts involving the
dependence of the nonlinearity coefficient on the evolution
variable have also been of interest in nonlinear optics in de-
scribing pulse propagation in an optical fiber in the presence
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of periodically varying dispersion and nonlinearity �28,29�
�see also the references therein�. A popular approach has
been to look for an averaged �over the fast variation scale�
equation with constant coefficients in which solitary-wave
solutions could be sought. This approach has also been use-
ful in the context of BECs in describing the averaged prop-
erties of solitary waves in the presence of a periodic, time-
dependent modulation of the scattering length �30–32�.

In addition to the aforementioned studies involving tem-
poral variations of the interaction strength, it has been re-
cently found that atomic matter waves exhibit novel features
under the influence of a spatially varying scattering length
and, consequently, a spatially varying nonlinearity. The re-
sulting so-called “collisionally inhomogeneous” environment
provides a variety of interesting and previously unexplored
dynamical phenomena and potential applications, including
adiabatic compression of matter waves �33,34�, atomic soli-
ton emission and atom lasers �35�, enhancement of the trans-
mittivity of matter waves through barriers �36,37�, dynamical
trapping of matter-wave solitons �36�, stable condensates ex-
hibiting both attractive and repulsive interatomic interactions
�38�, and the delocalization transition of matter waves �39�.
Particular inhomogeneous frameworks that have been inves-
tigated include linear �33,36�, parabolic �40�, random �41�,
periodic �39,42,43�, and localized �steplike� �35,44,45� spa-
tial variations. There have also been a number of detailed
mathematical studies �46–48�. In particular, Refs. �46,47� ex-
amined the effects of a “nonlinear lattice potential” �i.e., a
spatially periodic nonlinearity coefficient� on the stability
and instability of solitary waves and elucidated the interplay
between drift or diffraction and blowup instabilities. More
recently, the interplay of nonlinear and linear potentials has
been examined in both continuum �49� and discrete �50� set-
tings.

Motivated by the above studies, as well as the suggestion
of a piecewise-constant inhomogeneous scattering length in
Refs. �35,45�, we investigate in the present work matter-
wave solitons in the framework of the NLS equation with a
periodic, piecewise-constant nonlinearity coefficient. Prepar-
ing such a setup experimentally is challenging, but possible
in principle. For example, it could be achieved by integrating
optical and magnetic traps on an atom chip �16�. The under-
lying idea is as follows: an on-chip fiber-optic configuration
generates a microscopic dipole waveguide with a strong
transversal confinement �51�. This waveguide is augmented
by a periodic array of either permanent magnets �52� or
current-carrying wires �16� that create alternating zones of
approximately zero and constant magnetic fields in the lon-
gitudinal direction. Tuning the magnetic field �via, for ex-
ample, the currents in the wires� such that the resulting field
strength leads to an atomic scattering process close to a Fesh-
bach resonance allows one to achieve a substantial variation
of the atomic scattering behavior in the form of an alternat-
ing, approximately piecewise-constant scattering length. Ref-
erences �35,45� considered a localized region with positive
scattering length �the rest of the BEC was noninteracting,
providing a substantial linear regime�. Here, however, we
consider a scattering length given by a piecewise-constant
function that switches periodically between either two posi-
tive or two negative values. The importance of this particular

fully nonlinear setting is that it allows us to analytically in-
vestigate the existence and stability of matter-wave solitons
in each region �where the nonlinearity coefficient is constant�
and to subsequently “stitch” the constructed �local� solutions
at the jump points of the piecewise-constant nonlinearity
function. Our analysis is similar in spirit to the approach
used in a situation with both linear and nonlinear, piecewise-
constant periodicity in Ref. �53�. We employ techniques from
the general theory of perturbed Hamiltonian systems, starting
from the unperturbed limit of the completely integrable 1D
NLS equation, in order to analytically address the stability of
both bright �54� and dark �55� matter-wave solitons. In order
to quantify the accuracy of our theoretical predictions, we
subsequently compare these findings with direct numerical
computations.

Our presentation is organized as follows. In Sec. II, we
present our setup and the pertinent GP model. We study
bright and dark matter-wave solitons, respectively, in Secs.
III and IV. Finally, in Sec. V, we briefly summarize our find-
ings and present our conclusions.

II. SETUP AND MODEL

We consider a “cigar-shaped” condensate that is elongated
along the z direction and strongly confined in the transverse
�x and y� directions. Assuming that this condensate is colli-
sionally inhomogeneous, characterized by a spatially varying
scattering length a�z�, we follow the standard approach �56�
of averaging the 3D GP equation in the transverse plane. We
thereby arrive at the following 1D GP equation for the lon-
gitudinal wave function ��z , t�:

i��t��z,t� = �−
�2

2m
�z

2 + 2���a�z����z,t��2���z,t� , �1�

where m is the atomic mass and �� is the transverse con-
finement frequency.

Measuring time and space in units of ��
−1 and transverse

oscillator length l��	� /m��, respectively, we reduce the
GP equation �1� to the dimensionless form

i�t��z,t� = �−
1

2
�z

2 + g�z����z,t��2���z,t� , �2�

where ��z�=	2�a0���z� and g�z�=a�z� / �a0� is negative �posi-
tive� for attractive �repulsive� interatomic interactions. In the
above expressions, a0 denotes the value of the scattering
length of the corresponding collisionally homogeneous sys-
tem, for which g�z�=g0=const. Note that Eq. �2� has the
form of a 1D NLS equation. It possesses two integrals of
motion: the normalized number of atoms, N=
−�

+����2dz, and
the Hamiltonian. The former is connected to the unnormal-
ized number of atoms N through the equation N
= �a� /2�a0��N.

We take the nonlinearity coefficient g�z� in Eq. �2� to be a
piecewise-constant function of space:

g�z� = �g0, if 0 � mod�z,L� � L1,

g1, if L1 � mod�z,L� � L .
� �3�

Note that the nonlinearity coefficient in Eq. �3� may also be
expressed as g�z�=g0+�g�z�, where

RODRIGUES et al. PHYSICAL REVIEW A 78, 013611 �2008�

013611-2



�g�z� = �g0 

n=−�

n=+�

���z − �nL + L1�� − ��z − �n + 1�L�� ,

�4�

where �g0=g1−g0 and � is the Heaviside step function.
In our numerical investigations �see the discussion be-

low�, we adopt values of the parameters that are typical for
experimental setups. In particular, we consider a quasi-1D
trap with a transverse confining frequency ��=2	

1400Hz, which fixes the temporal unit to 0.1ms. We as-
sume that the dimensionless chemical potential � is of order
O�1�. For an �attractive� 7Li condensate, this choice yields a
spatial unit of 1�m and a number of atoms of N�1100. For
the �repulsive� 87Rb �respectively, 23Na� condensate, this
yields a spatial unit of 0.3 �m �2.2 �m� and a number of
atoms of N�1200 �16 000�. Moreover, we assume that the
nonlinearity function g�z� is characterized by changes �g of
the order of 50% of the typical values of the scattering
lengths and that the normalized periodicity L is of the order
O�1� �i.e., it is about a few microns�. This choice is consis-
tent with typical Feshbach resonances that occur in Li, Rb,
and Na condensates: changing the magnetic field by a factor
of 2 on a micron scale in the neighborhood of a Feshbach
resonance requires magnetic field gradients in the range
1–100 kG/cm, which are of moderate size for atom chips.
The lower limit is also compatible with the gradients used in
macroscopic trap setups.

Below, we will quantify the existence and stability prop-
erties of bright and dark matter-wave solitons �for negative
and positive nonlinearity coefficients g�z�, respectively� as a
function of the inhomogeneity strength �g0.

III. BRIGHT MATTER-WAVE SOLITONS

A. Perturbation analysis

Let us first consider an attractive BEC characterized by a
negative nonlinearity coefficient in Eq. �2�, so that g0�0 and
��g�z��� �g0�. In the special case of a homogeneous nonlin-
earity, scaled such that its coefficient is g0=−1, Eq. �2� pos-
sesses a bright matter-wave soliton solution of the form

�bs�z,t� = � sech���z − z0��exp�i�t� , �5�

where � is the soliton’s amplitude and inverse width, z0 is
the position of its center, and �=−�1 /2��2 is its effective
chemical potential. We then consider the spatial inhomoge-
neity as a perturbation of strength 
��g0. When 
�0, the
integrability of the original NLS equation �2� is lost, but the
system is still Hamiltonian. Its Hamiltonian functional is
given by H=H0+
H1, where the unperturbed �H0� and per-
turbed �H1� parts of the Hamiltonian are given by

H0 = �
−�

+� 1

2
���z��2 − ���4�dz , �6�

H1 = �
−�

+� 1

2

�g�z�
�g0

���4dz . �7�

In accordance with the general perturbation theory for
Hamiltonian systems developed in Ref. �54�, the condition
for the existence of the solution �5� under the aforementioned
perturbation is that it remains an extremum of the perturba-
tion Hamiltonian H1. In the present case, it is easy to see by
considering the dependence of H1 on z0 that this condition is
satisfied provided z0 is either at the center of a region with
nonlinearity coefficient g0 or �by symmetry� at the center of
a region with nonlinearity coefficient g1. Therefore, we can
identify stationary solitary-wave solutions centered at these
points in the presence of the periodic, piecewise-constant
nonlinearity.

Let us consider the stability of these bright matter-wave
solitons. As is well known, the unperturbed NLS equation is
invariant under both translation and phase or gauge transfor-
mations. If the perturbation is sufficiently small, instability
can arise in the case of attractive nonlinearity only via the
perturbation-induced breaking of one of these symmetries.
�Note that the continuous spectrum is bounded away from
the origin and for small 
 cannot give rise to an instability
�54�.� Furthermore, it is clear that in the presence of a spa-
tially dependent nonlinearity, the U�1� symmetry �i.e., the
phase invariance� of the equation is preserved, so the stabil-
ity ultimately should depend on the location of the transla-
tional eigenvalue. The eigenvalues � �and the corresponding
eigenfrequencies �, which satisfy �2=−�2� can be obtained
within the framework of the perturbation analysis of Hamil-
tonian systems in Ref. �54� �see also Ref. �40�� according to
the equation

det�
M − �2D� = 0, �8�

where the matrices M and D are given by

M = � �

�z0
� �H1

���
,
��bs

�z0
� 0

0 0
� , �9�

D =��
��bs

�z
,− z�bs� 0

0 − ��bs,
��bs

��
�� . �10�

In the above equations, the asterisk �*� denotes complex
conjugation, �· , ·� denotes the inner product, and �H1 /��� is
the functional �Fréchet� derivative.

The nonzero elements of the matrices M and D �i.e., m11,
d11, and d22� can then be calculated directly to obtain

m11 = − �5 

n=−�

n=+�

�sinh����n + 1�L − z0��


sech5����n + 1�L − z0��− sinh���L1 + nL − z0��


sech5���L1 + nL − z0��� , �11�

while
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d11 = � and d22 = − 1/� . �12�

Equation �8� allows one to calculate the translational eigen-
frequencies to leading order in 
, yielding


m11 − �2� = 0. �13�

The sum in Eq. �11� can then be calculated numerically. Note
that this sum converges rapidly because its component func-
tions decay exponentially, and only three terms �n=−1, 0,
and +1� are needed to obtain a value that is accurate up to ten
digits. Below we will directly compare the analytical predic-
tion provided by Eq. �13� to the numerical results for differ-
ent values of �g0 �and of the soliton’s chemical potential ��
obtained by computations.

B. “Stitching” of bright soliton solutions

We can use specific features of this particular system to
go beyond the above theory, which is valid for general per-
turbed Hamiltonian systems, and acquire a quantitative
handle on the perturbed soliton profile. In particular, we use
the fact that one can explicitly construct the solution of the
steady-state equation for each of the regions in which the
nonlinear coefficient is constant. For sufficiently small 
, we
expect the solutions to deviate little from the solution �bs.
We then construct an analytical approximation to the per-
turbed solution by “stitching” together the functions that
would be solutions to the respective homogeneous NLS
equations, with the nonlinearity coefficients taking different
constant values in different spatial regions. To do this, we
require that the wave function � and its first spatial deriva-
tive �z� be continuous across the boundaries between re-
gions of different g.

Let us consider, in particular, the bright soliton solution of
Eq. �2� centered at zm with amplitude �m in a region with
nonlinearity coefficient gm:

�m�z� =
�m

	gm

sech��m�z − zm�� . �14�

Starting with a known value of, say, �m and zm, we then need
to calculate all other � j and zj �j�m� as a function of the
known ones. Applying the aforementioned continuity condi-
tions, we obtain

�m

	gm

sech��m�Zm − zm�� =
�m+1

	gm+1

sech��m+1�Zm − zm+1�� ,

�15�

−
�m

2

	gm

sech��m�Zm − zm��tanh��m�Zm − zm��

= −
�m+1

2

	gm+1

sech��m+1�Zm − zm+1��tanh��m+1�Zm − zm+1�� ,

�16�

where Zm is the coordinate of the interface between regions
m and m+1. Using Eq. �15�, it is then possible to simplify
Eq. �16� to get

�m+1�Zm − zm+1� = arctanh� �m

�m+1
tanh��m�Zm − zm��� ,

from which we obtain zm+1 once �m+1 is known. We can then
proceed iteratively to obtain �zm+2 ,�m+2�, etc. Note, however,
that this method is not exact, as can be inferred by close
inspection. In particular, Eqs. �15� and �16� possess two un-
knowns zm+1 and �m+1, provided zm and �m are given. How-
ever, in principle, the quantity �m+1 is determined by the
coefficient g1 of the piecewise-constant nonlinearity �and the
chemical potential ��. Hence, the system is, in fact, overde-
termined. Nevertheless, as long as � is not too small �so that
the width of the soliton is smaller than or comparable to the
size of a step in the periodic nonlinearity �see Fig. 1��, the
above stitching procedure is fairly accurate, as will be dis-
cussed below when we present the results of our numerical
simulations.

C. Numerical results

We begin the description of our numerical findings by
illustrating the solution obtained by numerically solving the
standing-wave problem corresponding to Eq. �2� via a fixed
point �Newton-Raphson� iteration. In Fig. 1, we show an
example of both a stable bright matter-wave soliton solution
�top left� and an unstable one �bottom left�. We also present
�in the right panels of the figure� the corresponding spectral
planes �Re��� , Im���� of the eigenfrequencies �=Re���
+ i Im��� that result from a Bogoliubov–de Gennes analysis
of the NLS equation around the soliton solution. The absence
of eigenfrequencies with nonzero imaginary part indicates
stability, whereas the presence of imaginary or complex
eigenfrequencies is a signature of linear instability. The sta-
bility features observed are reminiscent of the ones found in
earlier works, such as Refs. �46,47,49�. Namely, the solution
is stable when centered at a maximum of the magnitude of
the piecewise-constant, periodic nonlinearity, but it is lin-
early unstable when centered at a minimum. In Fig. 1, we
also show the solutions that we obtained semianalytically via
the “stitching” procedure illustrated above. Observe the ex-
cellent agreement between those solutions and those com-
puted using fully numerical simulations. In fact, the two so-
lutions are virtually indistinguishable in this case and, more
generally, in all situations with sufficiently large ���.

Figure 2 depicts the evolution of bright matter-wave soli-
tons with initial configurations of the forms presented in Fig.
1. In particular, we present the stable case �which has param-
eter values �=−1.0 and �g0= +0.5� in the top panel. Ob-
serve that the bright soliton remains unchanged during the
evolution, as predicted by the linear stability analysis. On the
other hand, we show the unstable case �with parameter val-
ues �=−1.0 and �g0=−0.5� in the bottom panel. Observe
that for t�80, the soliton drifts �46,47,49� and starts oscil-
lating around a stable fixed point �the center of a neighboring
maximum of the magnitude of the periodic potential� as a
result of the existence of the imaginary eigenfrequency.

In Fig. 3, we show a conclusive diagram that summarizes
our results for the linear stability of the bright-soliton solu-
tions we constructed. The plot shows the relevant transla-
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tional �squared� eigenfrequency as a function of the strength
of the perturbation �g0 for different values of the frequency
�. It is clear that the corresponding squared eigenfrequency
is essentially linear in �g0, giving rise to instability for
�g0�0 and stability for �g0�0. In all cases, we observe
very good agreement between the theoretical prediction and
the numerical results, especially when �g0 is sufficiently
small �for which we expect the theory to be most accurate�.

IV. DARK MATTER-WAVE SOLITONS

A. Perturbation analysis

We now consider repulsive BECs, which are character-
ized by a positive nonlinearity coefficient in Eq. �2�. That is,
g0�0, with ��g�z���g0 as in the previous case. In the spe-
cial case of a homogeneous nonlinearity, scaled so that its
coefficient is g0= +1, Eq. �2� possesses a dark �black� matter-
wave soliton solution of the form

�ds�z,t� = � tanh���z − z0��exp�i�t� , �17�

where � is the soliton’s amplitude and inverse width, z0 is its
center position, and �=�2 is its effective chemical potential.
In the case under consideration, the solution �17� has non-
vanishing boundary conditions at infinity, with the
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FIG. 1. �Color online� Stitched bright-soliton solutions versus
fully numerical bright-soliton solutions of the NLS equation. The
top left panel shows the wave profile and the “stitched” solution for
the same parameter values ��=−1.0 and �g�0�. The top right
panel gives the corresponding spectral plane (Re��� , Im���) of the
eigenfrequencies �=Re���+ i Im���. In the bottom panels, we
show the same plots for a case with �=−1 and �g�0. The dashed
curves in the left panels show the spatially dependent nonlinearity
coefficients. The bright soliton depicted in the top panels is stable,
whereas that in the bottom panels is unstable. Notice that for these
parameters the stitched solution is practically indistinguishable
from the numerically exact one.
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FIG. 2. �Color online� Time evolution of the bright matter-wave
soliton for the two cases shown in Fig. 1. The top panel shows the
contour plot of ���z , t�� for parameter values �=−1.0 and �g0

= +0.5, whereas the bottom one shows the case of �=−1.0 and
�g0=−0.5. The bright soliton depicted in the top panel remains
unchanged during the evolution, whereas that in the bottom panel
drifts after t�80 and oscillates around a stable equilibrium point
�i.e., around a maximum of �g�z���.
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asymptotic limits �ds�z�→ �� as z→ ��. Consequently,
one can cast the problem of the piecewise-constant nonlin-
earity in the form of a perturbation, reminiscent of what was
done for linear external potentials in Ref. �55�. The perturbed
part of the Hamiltonian can be written formally as

H1 =
1

4
� �g�z�

�g0
��4 − �4�z��dz . �18�

We remark that for the perturbed solutions �see the relevant
figures in the numerical section below�, it is not obvious that
this integral converges. However, for the unperturbed solu-
tion �for which the solvability condition under the effect of
perturbation is applied�, it is certainly convergent.

Following Ref. �55�, one can show in a straightforward
manner that for the solution to survive under the effect of
perturbation �using the perturbation parameter 
��g0�, the
function

M��s� =
1

2
�

−�

+� d�g

dz
�z���4 − �0

4�z − s��dz �19�

must vanish. As was the case for the bright matter-wave
solitons we analyzed in the previous section, this condition
implies that the center of the dark matter-wave soliton must
be located at the center of either a region in which the non-
linearity coefficient is g0 or at the center of one in which it is
g1.

The stability of the dark-soliton solution we constructed
depends on the sign of the second derivative of M�s� evalu-
ated at the root s0 of the first derivative �19�. Based on the
analysis of Ref. �55�, an instability will be present with one
imaginary eigenfrequency pair if 
M��s0��0 and with ex-
actly one complex eigenfrequency quartet if 
M��s0��0. As
was the case for bright solitons �but with some important
differences, which we discuss below�, this instability is dic-

tated by the translational eigenvalue, which needs to bifur-
cate from the origin as soon as the perturbation is present.
For 
M��s0��0, the relevant eigenfrequency pair moves
along the imaginary axis, leading to an immediate instability
associated with exponential growth of a perturbation along
the associated eigendirection. For 
M��s0��0, on the other
hand, the eigenfrequency moves in principle along the real
axis, which, however, is filled with a continuous spectrum.
Consequently, as a result of the opposite signature �to these
eigenfrequencies� of the translation mode, the eigenfre-
quency exists as a complex quartet, signaling the presence of
an oscillatory instability. In fact, following Ref. �55�, we find
that the relevant eigenfrequencies are determined by the
characteristic equation

�2 +



4
M��s0��1 −

�

2
� = O�
2� , �20�

where the perturbation is given by Eq. �4� and we recall that
the eigenvalues � are related to the eigenfrequencies �
through �2=−�2.

Because the two roots of M��s� are s01=nL+L1 /2 and
s02=nL+L1+L /2, one can evaluate M��s0� explicitly to ob-
tain

M��s01� = 4�5 

p=−�

p=+� �tanh3���pL +
L1

2
��

− tanh5���pL +
L1

2
��� �21�

and a similar expression for M��s02�. Combining Eqs. �20�
and �21� yields a prediction for the location of the relevant
translational eigenfrequency. We now turn to numerical
simulations in order to examine the accuracy of our analyti-
cal results.

B. Numerical results

In Fig. 4, we show the profile and spectral plane of the
dark matter-wave soliton when it is centered at min�g�z��
�top panels� and max�g�z�� �bottom panels�. The former case
is associated with the scenario in which 
M��s0��0 and its
corresponding spectral plane has an eigenvalue quartet �cor-
responding to an oscillatory instability�. The latter case is
characterized by 
M��s0��0, which results in a real eigen-
value �imaginary eigenfrequency� pair in the spectral plane.

Figure 5 depicts the evolution of dark solitons with the
two initial configurations shown in Fig. 4. In both cases, �
=1 and ��g0�=0.5. In the top panel, the wave is centered at
min�g�z��, and in the bottom panel, it is centered at
max�g�z��. Unlike their bright counterparts, dark solitons be-
come mobile �unstable� in both cases. This mobility develops
earlier for the soliton in the bottom panel because its eigen-
frequency has a much larger imaginary part than that of the
soliton in the top panel. Furthermore, in the top configura-
tion, the instability is initiated through an oscillatory phase
that stems from its complex eigenfrequency quartet. This
feature is absent in the case of a wave centered at max�g�z��,
as is expected when there is an imaginary eigenfrequency
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FIG. 3. �Color online� Numerical results �points� and theoretical
predictions resulting from the perturbation analysis �curves, which
are labeled “the” in the inset� for the translational squared eigenfre-
quency �2 as a function of perturbation strength �g0 for different
values of the effective chemical potential � of the bright matter-
wave soliton.
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pair �which corresponds to a purely exponential instability�.
It is interesting to note that in both cases, as the soliton
becomes mobile over the periodically nonlinear terrain, it
radiates �a process that has been discussed elsewhere, al-
though for a linear periodic potential; see, for example, Refs.
�57� and references therein� and is eventually destroyed.

For the min�g�z��-centered soliton, we compare in the
bottom panel of Fig. 6 the imaginary part of the eigenfre-
quency quartet �which corresponds to the real part of the
eigenvalue quartet and yields the growth rate of the instabil-

ity� to the theoretical predictions of Eqs. �20� and �21�. Al-
though finite-size effects similar to the ones reported in Ref.
�55� �see the detailed discussion of Ref. �58�� are present, the
agreement between the theoretical prediction and the numeri-
cal result is good �and becomes better as the domain size
increases�. We show three numerical cases and observe that
the agreement with the theoretical prediction improves �as
expected� as the density of the numerical phonon band of
eigenvalues increases �for larger domain length L�. See Ref.
�58� for details on this finite-size effect. We also show the
real part of the corresponding eigenfrequency for different
domain lengths, for which the change in domain size does
not play such a significant role. As shown in Fig. 7, we
observe a similar level of agreement �but without the finite-
size effects, because the relevant eigenfrequency is now
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FIG. 4. �Color online� Numerical dark matter-wave soliton so-
lutions of the NLS equation �2�. The top and bottom left panels
show the wave profiles �solid curves� in the presence of a periodic,
piecewise-constant coefficient in front of the nonlinearity �dashed
curves�. In each case, the chemical potential is �=1. The soliton is
centered at min�g�z�� in the top panels and at max�g�z�� in the
bottom ones. The right panels show the eigenfrequency spectrum
�similar to the right panels of Fig. 1�. The top panel illustrates an
oscillatory growth due to a complex quartet of eigenfrequencies,
and the bottom shows an exponential growth due to an imaginary
eigenfrequency pair.
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FIG. 5. �Color online� Time evolution of the dark soliton for the
two configurations shown in the left panels of Fig. 4. The dark
soliton shown in the top panel remains unchanged for a longer time,
showing evidence of an eigenfrequency with a smaller imaginary
part. Furthermore, the former instability is oscillatory in its initial
stages of development �indicating its association with a complex
eigenfrequency quartet�, whereas the latter is not �indicating its con-
nection to an imaginary eigenfrequency�.
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imaginary� for a max�g�z��-centered dark soliton �for which

M��s0��0�.

V. CONCLUSIONS AND FUTURE DIRECTIONS

We have studied the existence and stability of bright and
dark matter-wave solitons in Bose-Einstein condensates with
spatially dependent, periodic scattering lengths. Our analysis
was based on an analytically tractable model given by
a Gross-Pitaevskii equation with a periodic, piecewise-
constant, spatially inhomogeneous nonlinearity. In particular,
we used techniques from the theory of perturbed Hamil-
tonian dynamical systems in order to obtain conditions for
the “persistence” of the matter-wave solitons and analyze
their linear stability. We thereby found that solitons must be

centered in one of the constant regions of the piecewise-
constant coefficient of the nonlinearity �which is directly
proportional to the atomic scattering length�. We have shown
that bright-soliton solutions are stable when localized in re-
gions of maximal �absolute� nonlinearity and unstable when
localized in regions of minimal �absolute� nonlinearity. This
is consistent with the findings of earlier works on the NLS
equation with periodic potentials �see, for example, Refs.
�46,47,49��. In this situation, we also presented an approxi-
mate analytical technique �called “stitching”� that allowed us
to match the solution in a semianalytical fashion at the inter-
faces where the nonlinearity coefficient changes in order to
obtain an accurate profile of the soliton in the presence of the
spatial inhomogeneity. We applied a similar approach to dark
matter-wave solitons �for which the translational eigenvalue
is still responsible for the configurational stability� to show a
rather different final result. Specifically, we showed that dark
solitons centered at min�g�z�� feature a complex eigenvalue
quartet, whereas the ones centered at max�g�z�� have a pair
of unstable real eigenvalues. Therefore, both cases are un-
stable, but the former instability is oscillatory and the latter is
purely exponential �typically with a larger growth rate�. In all
cases, we corroborated both the existence and linear stability
results with corresponding numerical computations, which
were in good agreement with our analytical findings.

It would be interesting to extend the present results to
more complicated configurations. One interesting example
along the lines of Ref. �49� might be to examine the compe-
tition of a piecewise-nonlinear and a piecewise-linear poten-
tial in one dimension. Another possibility would be to inves-
tigate the stitching between spatially extended solutions
given by elliptic functions. Perhaps a more appealing ex-
ample for a generalization of the present context would be to
examine piecewise-constant nonlinearities in higher dimen-
sions �with, for example, a piecewise-constant radial form or
a piecewise-constant, square-lattice form� and determine the
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FIG. 6. �Color online� Real �top panel� and imaginary �bottom
panel� parts of the eigenfrequency as a function of perturbation
strength �g0 for a BEC with a chemical potential of �=1.0 which
has a soliton centered at min�g�z��. The points give the numerical
results and the solid curve gives the theoretical prediction for the
real and imaginary parts of the complex eigenfrequency quartet. In
both panels, we present the results of numerical simulations for
three different domain sizes L in order to illustrate the role of the
finite size of the computational lattice, which is especially evident
in the instability growth rate represented by Im���.
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stability of vortexlike and similar structures in the defocus-
ing NLS. In the focusing case, it would also be interesting to
determine whether such a nonlinearity could stabilize soli-
tary waves �which would be given by piecewise generaliza-
tions of the Townes soliton� against collapse.
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