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We explore the behavior of interacting bosonic atoms in an optical lattice subject to a large artificial
magnetic field. We extend earlier investigations of this system where the number of magnetic flux quanta per
unit cell � is close to a simple rational number �R. N. Palmer and D. Jaksch, Phys. Rev. Lett. 96, 180407
�2006��. Interesting topological states such as the Laughlin and Read-Rezayi states can occur even if the atoms
experience a weak trapping potential in one direction. An explicit numerical calculation near �=1 /2 shows that
the system exhibits a striped vortex lattice phase of one species, which is analogous to the behavior of a
two-species system for small �. We also investigate methods to probe the encountered states. These include
spatial correlation functions and the measurement of noise correlations in time-of-flight expanded atomic
clouds. Characteristic differences arise which allow for an identification of the respective quantum Hall states.
We furthermore discuss that a counterintuitive flow of the Hall current occurs for certain values of �.
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I. INTRODUCTION

Since their discovery, the integer �1� and fractional quan-
tum Hall effects �2,3� have attracted much attention on the
theoretical as well as on the experimental side. They were
first observed in semiconductor samples which confine the
electrons in a quasi-two-dimensional layer and are character-
ized by the ratio � of particles to magnetic flux quanta pen-
etrating the layer. For the integer quantum Hall effect, this
ratio is an integer number, whereas the fractional quantum
Hall effect exhibits a simple rational �noninteger� � and has
interparticle interactions as an essential component. Some of
the excitations of the fractional quantum Hall effect are
promising candidates for topological quantum computing �4�
since they are separated from the ground state by an energy
gap and they might exhibit fractional, anyonic statistics
�5–7�.

Despite the work which has been put into this field, the
mechanisms which lead to the Hall effects are not com-
pletely understood �7,8�. Especially theoretical investigations
are hampered by the complexity of the system: A many-body
quantum description is necessary to capture the relevant ef-
fects such as the strong correlation of the electrons, which
means that the calculational effort scales exponentially with
the number of particles to be described. To gain insight into
the behavior of the quantum Hall effects it is therefore
worthwhile to investigate whether these phenomena occur in
alternative systems as well.

Ultracold atoms in optical lattices are a system where the
quantum Hall effect can indeed be observed. As some of the
present authors have shown in an earlier publication �9�, for
a suitable choice of the external parameters various topologi-
cal states occur in these systems such as the Laughlin state
�10� or the Read Rezayi states �11�. These states have been
derived by developing a model that is valid near simple ra-
tional numbers of magnetic flux quanta per lattice cell, �. We
showed that the occurring states can be distinguished by shot
noise and Hall current measurements, where in the latter case
unexpected sign changes can occur.

In the present paper we extend these investigations. We
will give details of how to expand the Hamiltonian describ-
ing cold bosonic atoms in an optical lattice subject to an
artificial magnetic field for the case that � is close to a
simple rational �c= l /n with l and n small integers. We will
also give more insight into how to distinguish the occurring
states by noise correlation or Hall current measurements. In
addition to these extensions, we focus on other phenomena
occurring in our setup. By using a Gutzwiller ansatz we dem-
onstrate that for � close to �c=1 /2 and large filling fractions
a two-component-like striped vortex state occurs which
shows that the analytical description derived in �9� is mean-
ingful. The presence of the magnetic field leads to an addi-
tional small scale structure for values of � close to �c, which
can be made visible in time-of-flight expansions as we will
illustrate for �c=1 /2.

The applicability of our scheme is ensured by the experi-
mental and theoretical successes in the field of optical lat-
tices during the last couple of years. Theoretical investiga-
tions have shown that a whole wealth of models can be
simulated �12�, such as the Hubbard Hamiltonian for bosons,
fermions, or mixtures �13,14�, spin-spin interactions �15,16�,
high-temperature superconductivity �17,18�, or the formation
of polarons �19–21�. Theoretical investigations show that
these models exhibit rich phase diagrams which should be
accessible with current experimental techniques �16,22–25�.
The necessary low temperatures can be achieved by appro-
priate cooling methods �26–29�. It is also possible to imple-
ment artificial magnetic fields in this setup, for example, by
rotating the lattice �30–33�. This comes, however, with the
disadvantage that a centrifugal term occurs, which has to be
balanced by an external trapping potential. To circumvent
this problem alternative schemes have been developed, ex-
ploiting Raman assisted hopping �34,35�, oscillating quadru-
pole fields �36�, or laser beams with orbital angular momen-
tum �37–39�. Some of these schemes even exhibit non-
Abelian gauge potentials �40,41�, allowing for the
investigation of new phenomena in the integer quantum Hall
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effect �42� or the observation of the non-Abelian Aharanov-
Bohm effect �43�.

In the presence of a lattice, the strength of the artificial
magnetic field is suitably characterized by the number of
effective magnetic flux quanta per unit cell, �, which for a
conventional semiconductor setup is typically very small, �
�1. In the optical lattice setup, however, it is possible to
achieve values close to �=1 /2, a regime which is almost
impossible to achieve in the condensed matter case due to
the required huge magnetic fields. This allows for the experi-
mental investigation of so far unobserved phenomena such
as the Hofstadter butterfly �34,44–46�, a fractal energy spec-
trum originally predicted for electrons subject to a large
magnetic field. It is also worthwhile to investigate the energy
gap of anyonic excitations near �=1 /2. If it is sufficiently
large, it would make topological quantum computing more
feasible since thermally excited anyons are the major source
of errors in these schemes �4�.

There have been previous investigations of ultracold at-
oms in optical lattices subject to large artificial magnetic
fields or rotation. For instance, in �47� a rotation scheme of
an optical lattice was proposed which leads to quantum Hall
and spin liquid properties of a spin-1 boson cluster. The de-
pendence of the state on the rotation frequency has been
investigated in Ref. �48�, where it was shown that one can
change the state adiabatically from a Gaussian to a Laughlin
state. Transport properties of one and two particles in a ro-
tating lattice have been investigated in Ref. �49� using a
Kubo formalism. Recently, the influence of boundary condi-
tions on the Hall states was investigated and Chern numbers
were employed to characterize the signature of the topologi-
cal states �50,51�. These authors also discussed that the quan-
tum Hall states can be made more stable and the energy gap
to excitations can be increased by using atoms with a strong
dipole-dipole interaction such as chromium �50�.

An experimental implementation of the proposed methods
and the observation of the predicted effects should be pos-
sible in the near future �14�. The creation of fast rotating
traps has already been demonstrated in Refs. �52,53�, which
have allowed one to investigate effects such as vortex pin-
ning �54�. Loading an optical lattice with a well-defined
number of atoms, thereby allowing one to tune � indepen-
dently from the strength of the artificial magnetic field, has
been achieved by exploiting spin oscillations �55–57�, and
the number statistics of ultracold atom systems has been ex-
amined in �58,59�. Also, measurement schemes have been
implemented which allow for an investigation of second or-
der correlation functions such as noise correlations �60�,
thereby revealing additional quantum properties of the states.

Our paper is organized as follows. In Sec. II, we introduce
the Hamiltonian which describes the atoms in the optical
lattice subject to an artificial magnetic field in Landau gauge.
For weak magnetic fields, a continuum approximation is ap-
plied as shown in Sec. III. We extend our investigations in
Sec. IV to higher artificial magnetic fields, such that � is
close to simple rational values where the system is well-
described by multicomponent continuous wave functions. In
Sec. V we present how the different quantum Hall states can
be distinguished from each other. The used methods include

time-of-flight expansions, measuring noise correlations in the
time-of-flight expanded clouds, and observing the occurring
Hall mass current. We conclude in Sec. VI.

II. HAMILTONIAN

Throughout this work we assume a two-dimensional op-
tical lattice �13,14�, which can be experimentally achieved,
for example, by using a three-dimensional lattice with the
hopping into one direction strongly suppressed �61�. The at-
oms are then confined in two-dimensional planes, of which
we consider only one in the following. The artificial mag-
netic field term is created using one of the several methods
discussed in the Introduction �34–39�. We furthermore as-
sume that the total potential energy experienced by the atoms
is given by V�p ,q�, where p ,q label the lattice sites in the x
and y directions, respectively. In Landau gauge, which is
more convenient for our purposes, the Hamiltonian describ-
ing the atoms is given by �9,34,36�

Ĥ = − �
p,q

�Jxe
2�i�qâp,q

† âp−1,q + Jyâp,q
† âp,q−1 + H.c.�

+ V�p,q�âp,q
† âp,q +

U

2
âp,q

† âp,q
† âp,qâp,q, �1�

where the magnetic field strength is parametrized by the
number of flux quanta per lattice cell �. The operator âp,q

†

creates an atom in lattice site �p ,q�, Jx and Jy are the hopping
constants in the x and y directions, respectively, and U de-
scribes the strength of the on-site interaction between the
atoms. Due to the artificial magnetic field terms, the atoms
acquire a phase 2�� when they hop around a lattice cell
once. Since the value of � is only defined modulus one, we
may restrict it to 0���1.

It is instructive to compare our setup to other systems in
which the quantum Hall effect can be observed, such as a
semiconductor structure or a rotating ultracold atomic gas
without an optical lattice. The main characteristics and typi-
cal values are shown in Table I. Due to the small lattice
spacing d�10−10 m in the original solid state semiconductor
systems, for instance, Si or GaAs, typically only small values
�=eBd2 /2���10−4 can be achieved with available mag-
netic fields B. Here, e is the charge of the electron. Although
this can be overcome by using superlattice structures �45,62�,
defects or impurities are inevitable in a real crystal. In con-
trast, the optical lattice setup allows for a virtually defect-
free implementation of the quantum Hall Hamiltonian, and
values up to ��1 can be achieved �34–36,50�. Comparing
the cyclotron frequency 	=��� / m̄d2 �for a definition of the
effective mass m̄ in the lattice setup see the next section� to
the temperatures which can be achieved in the respective
realizations shows that similar regimes can be realized with
all three methods when appropriate cooling techniques are
exploited in the atom setup �26–29�. Low ratios of tempera-
ture over magnetic field are important to avoid thermal exci-
tations which would spoil the applicability of the system for
topological quantum computation �7�.

In contrast to the semiconductor scheme, the two atomic
realizations provide more opportunities for tunability and
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probing the states. Both atom setups allow for additional
measurements to be carried out, such as time-of-flight expan-
sions and measuring second order correlation functions
�60,63�. The lattice setup furthermore enables an easy tuning
of the system parameters such as the hopping or the interac-
tion between the atoms �14�. In a standard optical lattice
setup, this interaction is given by a contact term 
�r�. By
using certain atomic species such as chromium one can also
implement dipole-dipole interactions which might stabilize
the quantum Hall states �50�. It is also possible to extend the
contact interaction by immersing the optical lattice into a
Bose-Einstein condensate, where an additional off-site inter-
action occurs �19,20,64�.

Compared to the rotating setup, in a lattice there exist
methods which do not involve a centrifugal term that has to
be balanced by an additional external potential. Although

experiments with rotating traps already exist �52–54�, reach-
ing the quantum Hall regime is challenging due to the need
of balancing the centrifugal force.

III. SMALL � LIMIT: CONTINUUM APPROXIMATION

In earlier publications �9,36�, it was shown that for small
values of � the influence of the optical lattice is negligible
and we can approximate the lattice gas by a continuous wave
function. In the present section, we give a more detailed
account of this analysis. We first consider a single particle in
the optical lattice described by the discrete wave function
���=�p,q��p ,q�âp,q

† �0�, which obeys the normalization con-
dition �p,q���p ,q��2=1. The Hamiltonian Eq. �1� acts on this
wave function as

TABLE I. Comparison of quantum Hall systems. The regime of interest is ��1, and �	��u�kBT. The
values for the BEC are from current experiments �52,53�, which are still slightly outside this regime. The low
temperatures for the lattice system can be achieved by using, for instance, the methods in Refs. �26–29�. For
the lattice, the data shown is for a single plane only. If the two-dimensional plane is realized using a
three-dimensional lattice with the hopping in one direction strongly suppressed, the quantum Hall effect
occurs independently in each plane and multiple planes can be used to increase the signal strength without
increasing �.

System Electrons �GaAs� Rotating gas �Rb� Lattice �Rb�

Particles Electrons Atoms Atoms

Statistics Fermi Bose Bose

Interaction potential 1 /r 
�r� 
�r�
Confinement Sharp edges Smooth trap Smooth trap

Physical parameters

System diameter �10−2 m 10−5–10−4 m 10−5–10−4 m

Number of particles N �1011 105−106 �104

2D number density � 1–21015 m−2 �1012 m−2 1010–1011 m−2

Cyclotron frequency �CF� 	 �1014 Hz 102–103 Hz �103 Hz

Free mass m0 910−31 kg 1.510−25 kg 1.510−25 kg

Effective mass m 610−32 kg 1.510−25 kg 10−24–10−23 kg

Lattice spacing d 210−10 m n/a �10−6 m

Temperature T 0.1–0.3 K �10−9 K �10−11 K

Dimensionless parameters

� �flux quanta/unit cell� 10−4 n/a 0.1–0.5

� �particles/flux quanta� 0.2–10 103−104 1–10

�u /�	 �interaction/CF� n/a 0.1–1 �0.1

kBT /�	 �temperature/CF� 10−3 10−1−1 �10−3

Internal states Spin or bilayer Hyperfine Hyperfine

Tunability

	 ,� ,T Yes Yes Yes

um No Yes Yes

mx /my No No Yes
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Ĥ��� = �
p,q

	− Jx�e2�i�q��p − 1,q� + e−2�i�q��p + 1,q��

− Jy���p,q − 1� + ��p,q + 1�� + V�p,q���p,q�
âp,q
† �0� .

�2�

For ��1 and a weak trapping potential V�p ,q�, the wave
function varies only slowly from one lattice site to the neigh-
boring ones, and we can approximate the state by a continu-
ous wave function ��x ,y�, where ��p ,q�=d��pd ,qd� with d
the lattice spacing and ����x ,y��2dxdy=1. The dynamics of
this wave function is governed by the Hamiltonian

H0 = − Jx�2 −
d2

�2i�
�

�x
−

2���y

d2 �2� − Jy�2 −
d2

�2i�
�

�y
�2�

+ V�x,y� . �3�

This Hamiltonian can be transformed into a more familiar
form by defining the effective masses mx,y =�2 /2Jx,yd

2, m̄
=�mxmy, and the cyclotron frequency 	=��� / m̄d2. After
discarding a constant energy term we get

H0 =
1

2mx
i�

�

�x
− 2m̄	y�2

−
�2

2my

�2

�y2 + V�x,y� . �4�

This is the familiar single particle quantum Hall Hamiltonian
with an artificial “electric” field potential V�x ,y� and aniso-
tropic mass, which can be redefined into an anisotropic mag-
netic length. For deriving the energy levels we assume that
the potential V�x ,y� is constant in the x direction and forms a
harmonic potential in the y direction, V�x ,y�=my�

2y2 /2. The
Hamiltonian is then translational invariant in the x direction,
which justifies the ansatz ��x ,y�=exp�−iKx�F�y�. The
Hamiltonian H0 acts on this wave function as

H0� = �−
�2

2my

�2

�y2 +
1

2
my�eff

2 �y − yc�2 +
�2�2K2

2mx�eff
2 �� , �5�

where �eff=�4	2+�2, and yc=2	�K /�eff
2 m̄. This expres-

sion describes a displaced harmonic oscillator with an energy
offset depending on K. For �=0 we retain the usual Landau
levels, whereas for ��0 the degeneracy within one Landau
level is lifted and the energies are given by

E = nLL +
1

2
���eff +

�2�2K2

2mx�eff
2 , �6�

where nLL�0 is an integer.
The continuum approximation can be extended to the case

of more than one particle in the lattice, provided that the
wave function still varies slowly over the distance d between
two lattice sites. To achieve this, the average distance be-
tween the particles needs to be large compared to d, which
restricts the particle density to ��1 /d2. In this case, the
continuum Hamiltonian is given by

H = �
j

H0�xj,yj� +
u

2�
i,j


�xi − xj�
�yi − yj� , �7�

where u=Ud2. This Hamiltonian describes the quantum Hall
effect with a contact interaction term, in contrast to the typi-
cally screened 1 /r interaction of the Coulomb potential for

electrons in solids. In analogy to the solid state fractional
quantum Hall effect we define the filling factor �
=��� / m̄	=�d2 /�. Since, in this section, we are interested
in the limits ��1 and ��1 /d2 we will hence find the same
states as in a continuum bosonic quantum Hall system, for
example, the �=1 /2 Laughlin state, the �=1,3 /2, . . . Read-
Rezayi states, or a vortex lattice �9,11,65�.

The strength of the interparticle interaction u plays a cru-
cial role if the setup is to be used for topological quantum
computing. For this, anyonic quasiholes are created and they
are moved around each other using focused lasers, thereby
inducing qubit operations �31�. However, for the Read-
Rezayi �non-Abelian anyon� states to appear the interaction
must be weak compared to the spacing between the Landau
levels given by 2�	, to avoid excitations to higher levels.
This reduces the quasiparticle-quasihole pair creation gap
�g�um	 /2��, where we assume m� m̄=mx=my. As ther-
mally created anyons moving around the computational
anyons are a source of error, such computation would require
low temperatures T�um	 /2��kB�2�	 /kB, which for
typical experimental setups are on the order of a few 10 nK.
These temperatures might be reached using the methods of
�26–29�. Alternatively, it has been suggested that non-
Abelian field quantum Hall states �12,40� may offer non-
Abelian excitations in the lowest density state, allowing a
strong interaction to be used to increase the gap to ��	, but
this has yet to be confirmed.

IV. NEAR SIMPLE RATIONAL �: MULTICOMPONENT
WAVE FUNCTIONS

We will now relax the condition of small � and investi-
gate the properties of the quantum gas for an � close to
simple rational values �� l /n, where l and n are small inte-
gers. The wave function can then be approximated by a set of
n smooth, slowly varying functions which correspond to n
different components of the gas. These components should
not be confused with, for instance, different internal states of
the atoms. They rather correspond to different small scale
structures of the gas. Based on previous work �9�, we will
give details on how to derive these expressions and consider
some special cases. We especially calculate the ground state
wave function for a set of representative parameters numeri-
cally, which confirms that for � close to 1/2 the two-
component description is meaningful. For simplicity, in the
following we will consider the case of isotropic hopping, that
is, Jx=Jy �J, leading to effective masses mx=my = m̄�m.

A. Single particle states

As discussed in �9�, numerical calculations for simple �
= l /n and weak external potentials V suggest that the single
particle ground state functions exhibit an n-site periodic pat-
tern superimposed on a smooth large-scale variation. This
motivates the representation ��np+ i ,nq+ j�=d�k�k�d�np
+ i� ,d�nq+ j��vij

�k�, where �k is a continuous, slowly varying
function and v�k� an nn matrix describing the small scale
structure of the atomic gas. We find by expansion about �c
� l /n �see the Appendix for details� that there are n degen-
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erate matrices v�k� of the form vpq
�k�=e2�ipk/nvq+k, where v is a

fixed n-component vector for each l,n and the subscript q
+k wraps around mod n. Furthermore, the �k obey the con-
dition

−
�2C

2m

�2�k

�y2 +
C

2m
2m	̃y − i�

�

�x
�2

�k + V�x,y��k

= E −
E0

md2��k, �8�

where 	̃����−�c�� / �md2� and C ,E0 depend only on l,n.
This formula reduces to Eq. �4� for �c=0 /1, and agrees well
with numerical calculations near other simple �c, especially
�c=1 /2 �9�.

For this procedure to be consistent, the length scale l�

over which �k varies, which for a harmonic trap V�x ,y�
= 1

2m�2y2 is given by l�= ��2C / �4Cm2	̃2+m2�2��1/4, must
be large compared to the “small scale” periodicity nd, but

small enough that 2m	̃l�d /��1 �cf. the Appendix�, that is

1

nd
�

1

l�

�
2md	̃

�
, �9�

or equivalently

1

n
� �2

C
�4C�� − �c�2 + �2��1/4

� 2��� − �c� . �10�

Here �=md2� /�� is the dimensionless trap strength. The
first inequality shows that the range over which the multi-
component ansatz is valid gets narrower for larger denomi-
nators n of �c. We also see that the presence of the trap is
important to ensure the validity of the second inequality. A
stronger trap makes it easier to fulfill the second condition,
however, a too strong trap will ultimately lead to a contra-
diction with the first condition. Indeed, in Ref. �9� it was
shown that for small n the above wave functions compare
very well with numerical exact calculations and overlaps of
more than 99% can be achieved for ���c and appropriately
strong traps.

B. Interacting particles

Equation �8� is extended to the many-particle case as

H �� dxdy�
k

�k
†�x,y��−

C�2

2m

�2

�y2

+
C

2m
2m	̃y − i�

�

�x
�2

+ V�x,y���k�x,y�

+ u �
k1,k2,k3,k4

Gk1,k2,k3,k4
�k1

† �x,y��k2

† �x,y��k3
�x,y��k4

�x,y�

+
E0

md2 , �11�

where Gk1,k2,k3,k4
�� jv j+k1

v j+k2
v j+k3

v j+k4
/n if k1+k2�k3+k4

mod n, and 0 otherwise. The conservation mod n is due to
the x quasimomentum 2�k /nd carried by v�k�. To give an

example, for �c=1 /2 we find G1111=G2222=3 /2 and G1212
=G2121=G1122=G2211=1 /2. Particles with the same k inter-
act more strongly because their v�k� are peaked on the same
sites.

For �c=1 /2, a change of basis from �1,2 to ��=�1� i�2
makes this effective Hamiltonian analogous to a bilayer frac-
tional quantum Hall system �66�, with �� being the two “lay-
ers.” However, the interaction ratio is 1:2 with the “inter-
layer” interaction being the stronger one, while it is equal or
weaker in most other realizations of multicomponent frac-
tional quantum Hall states.

C. Some special states

For the case that �c=1 /2 the system is equivalent to a
two-component gas as argued in the previous section. It is
well-established that for an interacting two-component gas
the lowest Landau level state with highest density and zero
interaction energy is the so-called 221 state �67� defined by

�221�z1, . . . ,zN/2,w1, . . . ,wN/2�

= ��
i�j

�zi − zj�2���
i�j

�wi − wj�2���
i,j

�zi − wj��
exp− �

i

�zi�2/4 + �wi�2/4� , �12�

where there are N /2 particles in one component with coor-
dinates z= �x+ iy� /r0 and N /2 in the other component with

coordinates w= �x+ iy� /r0, and r0= �� /2m	̃�1/2. For the lat-
tice setup at �=1 /2, the two components are replaced by the
two “layers,” and the effective filling factor of this state is

defined with respect to 	̃ and given by �̃���� /m	̃=2 /3.
The state can be extended to a general �c= l /n with �̃
=n / �n+1�.

Since this state has exactly zero interaction energy, it
would be the lowest step of the density profile in a slowly
varying external potential. Adding more particles to the sys-
tem leads to a trade-off between an increasing potential en-
ergy when the particle is added to the “edge” of the 221 state
and an increased interaction energy if the particle is added at
the center of the trap where the potential energy is lowest.
This eventually leads to a stepped density profile. So far it
was not possible to determine with certainty what the next
higher step looks like, but it might be either a �̃=1 Read-
Rezayi �11� state or a �̃=4 /3 non-Abelian spin singlet
�NASS� state �68�. Depending on the energies of the states,
which are not exactly known, also both steps can occur.
Higher states might be the Read-Rezayi states with �̃=3 /2,
�̃=2, and so on, eventually leading to a vortex lattice �69�.

It is still unknown where exactly the transition to this
vortex lattice phase occurs. The Lindemann criterion �69,70�
gives the order of magnitude estimate ��10 for both one-
and two-component systems, whereas numerical studies of
the single component system �65� give ��2–6. We hence
conjecture that our two-“layer” system has a similar critical
�̃. To investigate the vortex lattice at a large filling factor and
� close to 1 /2, we have done numerical simulations using
imaginary time propagation of the Gutzwiller ansatz �71�
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��� = �
i,j
��

n=0

nmax

ci,j,n�âi,j
† �n�vac�� , �13�

where the state is specified by the complex numbers ci,j,n.
This ansatz can describe both superfluid vortex lattice and
Mott insulator states, but in general not off-site correlated
states such as the fractional quantum Hall states.

A typical density distribution of our calculations using a
random initial state is shown in Fig. 1�a�. It exhibits alternat-
ing stripes as have been predicted for a continuum two-
component system �72,73�. However, in our case the two
components are not two different species or states of one
species, but represent the two “layers” corresponding to the
two components of the wave function. For a better distinc-
tion these two components are plotted with different colors
in Fig. 1�b�. A direct measurement of these two components
analogous to the measurement of two different species is not
possible. Instead, to make the two components visible we
calculated the overlaps of the small scale solutions v�k� with
groups of lattice sites of the Gutzwiller solution. These over-
laps correspond to the large-scale functions �k at the respec-
tive lattice sites. Our calculations show that the densities
described by the two components indeed add up to the total
density of the system and confirm that at least for the chosen
parameters the two-component description is meaningful. We
find that the stripes straighten out only very slowly with
increasing imaginary time �or decreasing temperature�, simi-
lar to the findings in �73�, with a slight tendency to phase
separation. The perfectly straight stripes observed in �72�
exist only in the zero temperature limit. At exactly �=�c
= l /n, we have �̃=� and one has an n component superfluid
with no vortices. This may be the possible superfluid phases
found at �=1 /3,1 /2 in the exact diagonalizations of Sø-
rensen and co-workers �36�.

V. PROBING THE STATES

After having demonstrated that a very wide range of dif-
ferent states can occur within our setup, the question arises
how these states can be distinguished from each other. Frac-

tional quantum Hall states for which Eq. �11� is valid are
characterized by a fixed �̃, and hence the density for these
states will obey the condition �� ��−�c�. For “ordinary”
fractional quantum Hall states with ��1 the characteristic
parameter is �, which consequently leads to a density that
obeys ��� as discussed in Sec. III. In contrast, for Mott
insulating states, the density is fixed to integer filling and
does neither depend on � nor on �−�c. An in-trap density
profile measurement could hence distinguish these states by
comparing measurements at different artificial magnetic
fields �and thus different ��, as well as measuring the ratio �
�or �̃�, at which these incompressible states occur.

However, a more clear-cut distinction between the occur-
ring states is possible by using methods such as time-of-
flight expansions, and measuring noise correlations or mass
currents. In the following sections we show that they reveal
additional information which helps to identify the respective
states. We should note that some of our results rely on Monte
Carlo simulations of small systems or rough estimates of
particle energies and thus they should be considered as quali-
tative estimates only.

A. Time-of-flight expansion

The time-of-flight expansion is a standard measurement
tool for ultracold atomic systems. All potentials �including
the artificial magnetic field� are turned off instantaneously
and the atomic cloud is allowed to expand freely for a certain
time before measuring its density distribution. Since for an
optical lattice setup interactions during the expansion can be
neglected and the time can be chosen long enough such that
the cloud expands to several times its initial size the result of
this process is �74�

�m�X� = �w̃�Xm0/�t��2 �
x1,x2

�1�x1;x2�eiX·�x1−x2�m0/�t.

�14�

Here w̃ is the Fourier transform of the Wannier function de-
scribing an atom in a single lattice site, �1 is the one-particle
density matrix, the sum is taken over all lattice site vectors
xi, �m�X� is the measured density at position X and time t
after release, and m0 is the free mass. Note that the “momen-
tum” measured by this process is the free space momentum
−i��. It is not to be confused with the momentum of the
system Hamiltonian �−i��x−2m	y ,−i��y�. Furthermore, the
operators âj need to be transformed into the laboratory
frame, and �1 is expressed in terms of these laboratory frame
operators. This is because the sudden switch-off of the arti-
ficial magnetic field does not obey Maxwell’s equations,
which breaks gauge invariance.

As shown in �75�, for a low � one can calculate the single
particle density matrix �1 of the constant density lowest Lan-
dau level states, which include the Laughlin, Read-Rezayi,
221, and NASS states. For large �, similar expressions with
an additional factor �kv

�k��v�k� from the small scale structure
apply. This gives for the density after the release

(a) (b)

FIG. 1. �Color online� Numerical approximation to the ground
state of the �c=1 /2 vortex lattice phase, calculated using imaginary
time propagation of a Gutzwiller ansatz. �a� Density of the atom
distribution, black stands for no density, white means high super-
fluid density, red �hardly visible� means high Mott insulator density.
�b� Population of the two “layers,” black and white depict the two
components, color encodes the phase of the superposition of those
two components. The parameters are �=0.48, U=0.1J, and �̃
=21.2.
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�m�X� = �w̃�Xm0/�t��2�
i,j

�
k

v��k���i�v��k��j�
�̃

2�nr0
2

exp�−
�xi − x j�2

4r0
2 + iXm0

�t
+

yi + yj

4r0
2 ��xi − xj�

+ iYm0

�t
−

xi + xj

4r0
2 ��yi − yj�� , �15�

where the vectors x j = �xj ,yj� label the lattice sites, and the
prime indicates that we have taken the v��k� in symmetric
gauge, which doubles their period to 2n. Thus the arguments
of the v��k� have to be taken modulus 2n.

Summing first over x1−x2 and approximating this by an
integral, we see that each x1+x2 contributes an approximate
Gaussian centered on �−y1−y2 ,x1+x2��t /4m0r0

2, and then
summing over x1+x2 we get the in-trap density profile
smeared out on a scale r0, rotated through a right angle and
scaled by �t /4m0r0

2. Physically this happens because lowest
Landau level wave functions are very similar to rigid body
rotation, and once released from the field the atoms fly apart
as if they were rotating. Because the sum is in fact a discrete
one, the pattern repeats every reciprocal lattice cell �size
2��t /dm0� with a decaying envelope w̃, and high � states
can have multiple peaks per reciprocal lattice cell from the
small scale structure.

Figure 2 shows some numerically calculated examples,
the pattern repeats every reciprocal lattice cell with a slow
decay given by w̃ �76�. As expected from the above, frac-
tional quantum Hall states have stepped peaks, further dis-
tinguishing them from the featureless w̃ of a Mott insulator
�60�, while vortex lattice states have Thomas-Fermi �inverted
parabola� peaks. Low � states have one peak per reciprocal
lattice cell while ��1 /2 states have 4. The extra peaks �pre-
viously described for the vortex lattice in �32,33�� confirm
the existence of a small scale structure. However, they do not
show whether one or more “layers” are occupied for multi-
“layer” systems.

As a time-of-flight expansion only measures single par-
ticle properties, it cannot detect correlations, so different
fractional quantum Hall states are distinguished only by their
density. In the next section, we will consider an enhancement
of this method that can measure the correlations of the states
as well.

B. Correlation measurement

The two-particle correlations of a quantum state manifest
themselves in shot noise correlations of the density distribu-
tion after a time-of-flight measurement �63,77�, as was re-
cently demonstrated experimentally for the Mott insulator
�60�. At time t after release from an optical lattice these
correlations are given by �63�

G�r,r�� � t−6 �
ii�j j�

eiRii�·Q�r�+iRj j�·Q�r���âi
†âj

†âj�âi��

− �n̂�r���n̂�r��� , �16�

where i, j, i�, j� run over all lattice sites, Rii� is the displace-
ment vector from site i to site i�, and Q�r�=m0r /�t with m0

the free mass. For states described by a continuum wave
function the expectation values over the quantum operators
are given by �âi

†âj
†âi�âj��=d2�2�i , j ; i� , j��. Here,

�2�i , j ; i� , j�� is the continuum two-particle density matrix,
which for lowest Landau level states with constant density is
of the form �75�

�2�i, j ;i�, j�� = e−��zi�
2+�zi��

2+�zj�
2+�zj��

2−2�zi
�zi�+zj

�zj���/4

 �̃

2�nr0
2�2

g��zi − zj���zi� − zj��� . �17�

Note that �̃=� and n=1 for �c=0. The function g�z� for
arbitrary complex z is derived by analytic continuation of the
ordinary two-point correlation function g��zi−zj�2�. If the be-
havior of a two-component state close to �=1 /2 is to be
investigated, we need to replace

�âi
†âj

†âi�âj�� = d2 �
k1,k2

�2
�k1,k2��zi,zj;zi�,zj��

v�k1���i�v�k1��i��v�k2���j�v�k2��j�� , �18�

where �2
�1,1�=�2

�2,2� is the continuum density matrix for two
particles of the same type and �2

�1,2�=�2
�2,1� for two particles

of opposite type. The density matrices �2
�k1,k2� are described

by expressions analogous to Eq. �17�, where the function

Kx d / π

K
y
d
/ π

Kx d / π

K
y
d
/ π

(a) (b)

-1 0 1
-1

0

1

10

0

1

-1
-1

Kx d / π

K
y
d
/ π

Kx d / π

K
y
d
/ π

(c) (d)

-1 0 1
-1

0

1

10

0

1

-1
-1

FIG. 2. Numerically calculated time-of-flight expansions in
symmetric gauge of �a� and �c� a Laughlin and Read-Rezayi state
��=1 /2,1�, and �b� and �d� a 221 and NASS state ��̃=2 /3,4 /3�.
The initial states are circular with diameter 100 lattice sites for the
outer ring and 50 for the inner one. The artificial magnetic field is
chosen such that �a� �=0.005, �b� �=0.505, �c� �=0.01, and �d�
�=0.51. The resulting larger fields 	 or 	̃ in �c� and �d�, respec-
tively, lead to a wider expansion of the cloud. The shown expan-
sions do not include the w̃ slow decay, as the speed of this is
implementation dependent. A darker color corresponds to a higher
density of particles, and figures �a� and �b� are to the same bright-
ness scale, as are �c� and �d�. Shown is the first Brillouin zone, and
K=m0X /�t.
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g��z�2� is replaced by gk1,k2
��z�2�. To obtain gk1,k2

we fit the
series

g11��z�2� = g22��z�2� = 1 + e−�z�2/2 + �
m�0 even

2cm

m!
 �z�2

4
�m

e−�z�2/4,

�19�

g12��z�2� = g21��z�2� = 1 + �
m�0

2c̃m

m!
 �z�2

4
�m

e−�z�2/4, �20�

to Monte Carlo data for the respective state. This works for
any lowest Landau level state as shown in �78,79�, where we
take a sign change into account because our particles are
bosons. Our calculations show that the Laughlin and 221
states have g�0�=0 �see Fig. 3�, meaning that particles can-
not come together and the interaction energy is hence zero,
while the NASS and Read-Rezayi states have g�0��0 and
hence nonzero interaction energy �the NASS state is not
shown since it is qualitatively similar to the Read-Rezayi
state�.

Equation �16� involves a sum over four complex vari-
ables, which makes its direct numerical evaluation computa-
tionally intensive. To simplify this problem, we integrate
over r+r�, which gives a delta function setting zi+zj −zi�
−zj�=0, and removes all explicit dependence on zi+zj +zi�
+zj�. The resulting correlation, which �ignoring the t−6 pref-
actor� is a function of momentum difference �k=Q�r�
−Q�r��, can hence be evaluated for an infinitely extended
state by summing over just two complex variables, zi−zj and
zi�−zj�. However, this does not work for a finite size state
because the ranges of zi−zj and zi�−zj� then do depend on
zi+zj +zi�+zj�, and assuming an infinite size state while nec-
essarily summing over a finite range introduces the possibil-
ity of numerical artifacts.

Some numerically calculated examples of the noise corre-
lations are shown in Fig. 4, where again one reciprocal lat-
tice cell is shown and the pattern repeats. Fully Bose con-
densed states, including ideal vortex lattices, have zero
correlation. The Laughlin and 221 states are found to show
near 100% anticorrelation at small �k. Here we should stress
that as this measurement works in Fourier space, this anti-

correlation is not the case for all fully real-space anticorre-
lated states: the Mott insulator, for example, shows positive
correlation �60�. Higher density fractional quantum Hall
states also show anticorrelation but of reduced strength. Our
data suggests that Read-Rezayi states have a ringed pattern
with their strongest anticorrelation ��50% for �=1 and
�35% for �=3 /2� at a nonzero �k, while the �̃=4 /3 NASS
state has �40% anticorrelation at zero �k and no ring. The
presence or absence of this ring might be used to distinguish
between the Read-Rezayi and NASS states. Apart from this
we observe that the small-scale structure for ��1 /2 is also
visible in the noise-correlations, see Figs. 4�d�–4�f�: Addi-
tional anticorrelation dips at �k
= ��� /2d , �� /2d� , ��� /2d ,0� , �0, �� /2d� occur, which
have a similar structure to the central ones at �k= �0,0�.

C. Hall current and disorder

So far, we discussed only the static properties of the frac-
tional quantum Hall states and how to detect them. However,
in solid state physics one of the most important observables
is a dynamical property, namely the Hall current. In this sec-
tion, we will therefore study the atomic case subject to a
linear tilt and to disorder.

When a linear potential V�x ,y�=may is applied to a con-
tinuum fractional quantum Hall system, all states acquire a

FIG. 3. Two-point functions for continuum fractional quantum
Hall states: �=1 /2 Laughlin state �solid�, �̃=2 /3 221 state with
g11=g22 �dashed� and g12=g21 �dotted�, and �=1 Read-Rezayi state
�dash-dotted�.
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FIG. 4. Numerically calculated shot noise correlations for an
infinite system in symmetric gauge. The states are �a� Laughlin, �b�
�=1 Read-Rezayi, �c� �=3 /2 Read-Rezayi, �d� 221, �e� �̃=4 /3
NASS, and �f� �̃=3 /2 Read-Rezayi. The artificial magnetic field
was chosen to give �=0.01 in �a�–�c�, and �=0.51 in �d�–�f�. Gray
corresponds to no correlation, whereas black corresponds to 100%
anticorrelation. We cannot rule out that the four dips at �k
= ��� /4d , �� /4d� are artifacts arising from our approximations.
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velocity a / �2	� at right angles to the potential gradient caus-
ing the Hall current. In a perfect continuum system this is an
exact result, unaffected by interaction, because such an ac-
celeration term is exactly canceled out by Galilean trans-
forming Eq. �7� to a reference frame moving with this veloc-
ity. In a lattice system the result is valid at sufficiently low �
for the continuum approximation to apply; at higher � the
lattice, which defines a rest frame, becomes important and a
different velocity can occur �9�. In particular, near simple

rational � where Eq. �11� is valid, the velocity is a / �2	̃�,
which can be very different: for ���c it even has the oppo-
site sign, meaning that the current flows in the opposite di-
rection. A negative Hall current was also observed for a
single particle in a lattice using Kubo response theory �49�.

For nonlinear potentials of large length scale compared to
the magnetic length r0, the single particle eigenstates lie
along the equipotential lines of the potential and the Hall
current flows along those lines at the velocity given by the
local potential gradient. This motion is not visible in equilib-
rium as the steps in the density profile lie along equipoten-
tials as well. However, it can be made visible by putting the
system out of equilibrium, for example, by suddenly chang-
ing the trapping potential. Relaxation to equilibrium will be
slow because nonforward scattering is energetically forbid-
den in the fractional quantum Hall system, making the Hall
current a supercurrent �80,81�.

It has been shown that when sufficiently mild disorder is
added to a fractional quantum Hall system, some of the par-
ticles become localized and cannot carry current, but those
which remain free move faster and the average velocity is

still a / �2	̃� �80,81�. For example, for smooth disorder
V�x ,y�=may+Vr�x ,y�, where Vr is a random potential with
length scale much larger than r0 and zero average, the ex-
pression for the x direction of the velocity, vx

= ��V /�y� / �2m	̃�, remains valid. Hence particles on closed
equipotentials are confined to those lines, but the random
part of vx averages to zero so the average velocity in the x

direction remains a / �2	̃�. The current is hence determined
by the width over which each extended level is occupied. A
simple model of this is to describe the disorder by a density
of states �d�E�, given by the number of lowest Landau level
states per unit energy interval and per unit area. This gives

��d�E�dE=m	̃ / ����. In the case of smooth disorder, �d�E�
is proportional to the probability distribution of the noise
potential. For a linear geometry, we then have

N = L� dy��−V1�y�

dE�
j�0

�� j − � j−1��d�E − � j� , �21�

I =
m

2��
� dy

dV2

dy
��−V1�y�

dE�
j�0

�� j − � j−1�
�E − � j� ,

�22�

where L is the length of the system along the x axis, I is the
net current in the x direction, N the number of particles, and
� the chemical potential. The fractional quantum Hall states
are taken at filling factors � j and chemical potential � j, and V

is suddenly changed from V1�y� to V2�y� to achieve the non-
equilibrium situation. The exact shape of the disorder and
thus of V1�y� and V2�y� are not important for our qualitative
investigations. These equations are valid for weak trapping
potentials, where dV /dy is much smaller than the disorder
term. Stronger potentials can break weakly localized states
free, replacing the 
�E−� j� density of extended states in I by
a finite width distribution.

In a square-well potential �as in a solid state system� the
localized states create a finite range of filling factors over
which a given number of fractional quantum Hall extended
state levels are completely full, giving rise to the almost
perfectly flat fractional quantum Hall plateaus. In a harmonic
trap there will not be fractional quantum Hall plateaus, only
corners each time a new extended level begins to fill, see Fig.
5. Between those corners, there exist different fractional
quantum Hall states. Unlike the square-well case, it is pos-
sible to obtain the complete distribution �d�E� by measuring

I against N �or 	̃�.

VI. CONCLUSIONS

In our work we have studied the low- and high-field frac-
tional quantum Hall effect in an optical lattice. For small �,
corresponding to low-field strengths, the continuum approxi-
mation can be employed to find the solutions of the Hamil-
tonian. For high fields corresponding to values of � close to
simple rationals, ���c= l /n, we showed that the states can
be approximated by an n-component wave function, where
each component is described by a slowly varying, continuous
function ��k�. These functions are solutions of a differential
equation similar to the ��1 case, but with an artificial mag-

netic field term 	̃=����−�c� /md2 and an effective filling

factor �̃���� /m	̃ instead of the usual 	 and �.
We have shown that many interesting topological states

may occur in our setup, even if it is subject to a weak har-
monic trapping potential in one direction. These states in-

FIG. 5. Dimensionless Hall current Id= I / �2am2�2u	̃ /�3 /��
against dimensionless number of atoms per unit length Nd

=N / �2Lm�2u	̃3 /�3 /��, where L is the length of the system, which
is contained in a 1D harmonic trap V�x ,y�=m�2y2 /2+yma at �
�1 /2. The linear term yma is turned on after the atoms have come
to equilibrium in the trap, and the curves are for no disorder �dotted
straight line�, maximal disorder �constant density of states, black

curve�, and Lorentzian disorder of width �1 /5�um	̃ /2�� �gray
curve�. The corresponding plot for small � is qualitatively similar
�9�.
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clude the Laughlin, the Read-Rezayi, the 221, and the non-
Abelian spin singlet �NASS� state. Numerical investigations
also showed the occurrence of a striped vortex lattice phase
close to ��1 /2, as predicted for a two-component system at
low �. In our case the two components did not correspond to
two different atomic species, but to the two components ��k�

of the wave function.
We have furthermore demonstrated that the above states

can be distinguished by suitable measurements. Simple time-
of-flight expansions reveal additional structures for higher �
states, but do not necessarily allow for distinguishing be-
tween the different quantum Hall states. More insight can be
gained by measuring two-point correlation functions. For the
Laughlin state, this function is zero for �z1−z2�=0, meaning
that there are never two atoms at the same place, whereas for
the Read-Rezayi state with �=1 the correlation function ex-
hibits a finite value at zero distance. We, moreover, showed
that the different states also exhibit different noise correla-
tions, which can be employed to distinguish between them.
Again, higher � states show additional structures due to their
additional small scale symmetries. Further, our results sug-
gest that the Read-Rezayi states exhibit a ring structure,
which allows one to distinguish them from the Laughlin or
221 states.

In analogy to the semiconductor Hall effects, it is possible
to displace the optical lattice and measure mass transport
effects, which behave similarly to the condensed matter ana-
logs. Especially Hall currents proportional to �−�c rather
than � have been predicted, which may lead to a negative
sign in the direction of the mass flow.
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APPENDIX: DERIVATION OF HIGH � STATES

In this appendix we give details on the derivation of the
Hamiltonian equation �8� for large � close to a rational �c
= l /n with small integers l and n. We assume that apart from
the optical lattice the atomic gas experiences no trapping
potential in the x direction, but might be trapped by a �slowly
varying� harmonic potential V�x ,y�= 1

2m�2y2 in the y direc-
tion. Note that the mass in this potential is the effective mass
m=� /2Jd2 introduced earlier. Motivated by previous find-
ings �9�, we make for the wave function the ansatz ��ns
+ i ,nr+ j�=d� j��nr+ j�d�eiK�ns+i�d. Here, i , j=1, . . . ,n and r,s

are integers, and we define x= �ns+ i�d, y= �nr+ j�d. Since Ĥ
is independent of x if the potential V is, the x quasimomen-
tum K is conserved exactly for our choice of V. Let K

=2�kl /nd+ K̃, where k is an integer and K̃�1 /n to yield an
n site periodicity plus slow variation in the x direction. The
action of Hamiltonian equation �1� with U=0 gives

Ĥ��� = − Jd�
r,s

�
i,j

�e2�i��nr+j�+iK�ns+i−1�d� j�nr + j�

+ e−2�i��nr+j�+iK�ns+i+1�d� j�nr + j�

+ � j−1�nr + j − 1�eiK�ns+i�d

+ � j+1�nr + j + 1�eiK�ns+i�d�ânr+j,ns+i
† �vac�

+ �
r,s

�
i,j

V�nr + j,ns + i�ânr+j,ns+i
† �vac� . �A1�

Using the fact that � j is only slowly varying for constant
index j �9�, we can approximate derivatives by appropriate
discrete differences and make use of the fact

� j�1�y�
d2 �

1

d

�� j�1�y�
�y

+
1

2

�2� j�1�y�
�y2

�
1

d2� j�1��nr + j � 1�d� . �A2�

Collecting all terms with the same creation operators in Eq.
�A1� we can derive a Hamiltonian for � j, acting as

Ĥ1� j = −
�2

md2cos2�jl

n
+

2m	̃yd

�
− Kd�� j

+
1

2
m�2y2� j −

�2

2m
� j+1

d2 +
1

d

�� j+1

�y
+

1

2

�2� j+1

�y2

+
� j−1

d2 −
1

d

�� j−1

�y
+

1

2

�2� j−1

�y2 � + O�d� . �A3�

If the condition 2m	̃yd /��1 holds over the range where
the wave function is appreciable, namely y� l�, we can ap-
ply the Taylor expansion to the cosine, which after collecting
terms in orders of d yields

Ĥ1� j = −
�2

2md2�� j+1 + 2 cos2��j − k�l
n

�� j + � j−1�
−

�2

2md
�K̃ −

2m	̃y

�
�2 sin2��j − k�l

n
�� j

+
�� j+1

�y
−

�� j−1

�y
� −

�2

2m
�− K̃ −

2m	̃y

�
�2

cos2��j − k�l
n

�� j −
m2�2y2

�2 � j

+
1

2

�2� j+1

�y2 +
1

2

�2� j−1

�y2 � + O�d� . �A4�

Note that for n=1 or 2 the odd powers in d cancel by sym-
metry and we get an expansion in d2, but that for larger n the
expansion is in d. Define �= ��1¯�n�T and expand in pow-
ers of d: �=��0�+d��1�+d2��2�+O�d3�. Similarly expand
the energy E=E0 /d2+E1 /d+E2+O�d�. We define the matrix
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A0 =�
2 cos 2��1 − k�l/n 1 0 ¯ 0 1

1 2 cos 2��2 − k�l/n 1 0

0 1 � � ]

] � � � 0

0 � � 1

1 0 ¯ 0 1 2 cos 2��n − k�l/n
� . �A5�

The O�1 /d2� terms then become A0��0�=−2mE0��0� /�2, so
��0� is an eigenvector of A0, with the ground state having the
largest eigenvalue. Assuming nondegenerate eigenvalues,
��0��y� is hence proportional to the same �normalized� eigen-
vector v�k�, and can depend on y only in overall magnitude,
i.e., ��0��y�=��y�v�k�.

Since changing k is equivalent to changing the origin of j,
the eigenvalues are the same for all k, with ground state
eigenvectors v j

�k�=v j−k, where v is the normalized ground
state eigenvector for k=0 and the subscript j−k wraps
around modulus n. This gives n degenerate ground states k
=0, . . . ,n−1, which are orthogonal because of their different
K values. For simplicity we take k=0 in the remainder of this
derivation.

For the O�1 /d� terms, define

A1 =�
0 1 0 ¯ − 1

− 1 0 1 ]

0 − 1 0 � 0

] � � 1

1 ¯ 0 − 1 0
� , �A6�

A2 = 2diag�sin�2�l/n�,sin�4�l/n�, . . . ,sin�2n�l/n�� ,

�A7�

where diag denotes a diagonal matrix with the argument as
the entries on the diagonal. Define, furthermore, w1=A1v,
w2=A2v. This yields

�A0 + 2mE0/�2���1��y� =
2mE1

�2 ��y�v +
d�

dy
w1

+ K −
2m	̃y

�
���y�w2.

�A8�

The left-hand side of Eq. �A8� is orthogonal to v because
A0+2mE0 /�2 annihilates v and is Hermitian, while w1 is
orthogonal to v because A1 is antisymmetric and hence so is
vTA1v, but the latter is a number so it can only be antisym-
metric if it is zero. Hence a solution can only exist if w2 is
also orthogonal to v and E1=0; this is the case for all �c
=1 /8,1 /7,1 /6,1 /5,1 /4,2 /7,1 /3,3 /8,2 /5,3 /7,1 /2

within numerical accuracy �9�, but we have not been able to
prove that it is always the case.

For the O�1� terms define

A3 =�
0 1 0 ¯ 1

1 0 1 ]

0 1 0 � 0

] � � 1

1 ¯ 0 1 0
� , �A9�

A4 = diag�cos�2�l/n�,cos�4�l/n�, . . . ,cos�2n�l/n�� ,

�A10�

giving

2mE2

�2 −
m2�2y2

�2 ���y�v − 2m	̃y

�
− K�2

��y�A4v

+
1

2

�2�

�y2 A3v + �K −
2m	̃y

�
�A2 +

�

�y
A1�

A0 +
2mE0

�2 �−1� ��

�y
w1 + K −

2m	̃y

�
���y�w2�

+ A0 +
2mE0

�2 ���2� = 0. �A11�

We note that for nondegenerate eigenvalues of A0 the expres-
sions �A0+2mE0 /�2�−1w j, j=1,2, are well-defined since
both w1 and w2 are orthogonal to v. Taking the scalar prod-
uct of Eq. �A11� with v gives a harmonic oscillator equation
for ��y�,

E2� = −
�2C1

2m

�2�

�y2 +
�2C2

2m
2m	̃y

�
− K�2

� + V�x,y�� ,

�A12�

where the dimensionless constants C1=vTA3v /2−w1
T�A0

+2mE0 /�2�−1w1 and C2=vTA4v−w2
T�A0+2mE0 /�2�−1w2 de-

pend only on l and n, and by changing the roles of x and y by
using a gauge transformation one can show that C1=C2�C.

This oscillator has mass m /C1, frequency �eff= �4C1C2	̃2

+C1�2�1/2, and center yc=2�C2K	̃ / �4C2m	̃2+m�2�.
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