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We analyze the stability of nonground nonlinear states of a Bose-Einstein condensate in the mean-field limit
in effectively one-dimensional �“cigar-shape”� traps for various types of confining potentials. We find that
nonlinear states become, in general, more stable when switching from a harmonic potential to an anharmonic
one. We discuss the relation between this fact and the specifics of the harmonic potential which has an
equidistant spectrum.

DOI: 10.1103/PhysRevA.78.013606 PACS number�s�: 03.75.Lm, 05.45.Yv, 42.65.Tg

I. INTRODUCTION

The mean-field theory of a Bose-Einstein condensate
�BEC� is based on the Gross-Pitaevskii equation �GPE� �1–3�

i�t = − �� + V�x�� − ����2� , �1�

for the macroscopic wave function �=��t ,x�. This model
describes accurately the behavior of an ultracold condensed
atomic cloud trapped by an external potential V�x�. In the
dimensionless variables of Eq. �1� the Planck constant is
equal to one, �=1, and the atomic mass is m=1 /2. The
parameter � stands for the sign opposite that of the scattering
length as: �=−sign�as�. An important class of solutions of
GPEs are stationary nonlinear modes defined as

��t,x� = e−i�t��x� , �2�

with the boundary conditions

��x� → 0 as �x� → � . �3�

In this case ��x� satisfies the equation

�� + �� − V�x��� + ��3 = 0. �4�

The nonlinear eigenvalue � is called the chemical potential
in the context of BEC applications. The ground state solu-
tions of Eqs. �3� and �4� �i.e., positive solutions which mini-
mize the energy functional for Eq. �1�� are of primary impor-
tance for BEC applications �4�. Apart from them some
nonground nonlinear modes have also been studied �see, e.g.,
�5–10��. However, all of the practical applications of high

order modes are linked to their experimental feasibility,
which requires stability. The stability of high order modes
has already been studied in the case of a harmonic potential
V�x�= �x�2. The one-dimensional case was studied in Refs.
�10–13� while multidimensional solutions were considered in
Refs. �14–22�.

However, to the best of our knowledge, the relation be-
tween the stability properties of nonlinear modes and the
specific forms of the confining potential V�x� has not been
discussed, previously. This is a problem of significant prac-
tical importance since high order modes can be used for gen-
eration of nonlinear coherent structures, such as, for ex-
ample, solitonic trains in a quasi-one-dimensional limit �see
e.g., �10��.

In this paper we study how the shape of the potential V�x�
governs the stability properties of nonlinear modes. In our
study and to simplify the analysis we will consider a quasi-
one dimensional geometry modeled by a one-dimensional
GPE �23�

i�t = −�xx + V�x�� − �����2. �5�

In that situation, Eq. �4� becomes

�xx + �� − V�x��� + ��3 = 0. �6�

We will show that the harmonic potential V�x�=x2 corre-
sponds to a very peculiar situation related to the fact that in
the linear limit this potential has an equidistant spectrum. We
will discuss how switching from the harmonic potential to an
anharmonic one makes higher nonlinear modes “more
stable” and even a “weak” anharmonicity �say, V�x�=x2

+�x4, ���	1� is enough to change drastically the stability
properties of high-order nonlinear modes.

It is relevant to point out that the nonlinearity introduces
not only mathematical difficulties for the study of the eigen-
mode problem, but significantly diversifies the list of physi-
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cally relevant limiting cases. Indeed, the linear case has two
characteristic scales: the de Broglie wavelength and the scale
of the potential. In our notations, the first one is 

�maxx��x� /maxx���; the scale of the potential, roughly
speaking coincides with the classically allowed domain �in
what follows denoted as xd�. The nonlinearity introduces a
third relevant scale ��1 /maxx���. For repulsive nonlineari-
ties this scale corresponds to the healing length �1�, while in
the case of attractive nonlinearities it measures the width of a
matter-wave soliton. Therefore the diversity of limiting cases
of the nonlinear eigenvalue problem is characterized by the
interplay between the parameters 
, xd, and �.

The paper is organized as follows. In Sec. II we describe
the typical structure of the families of nonlinear modes and
formulate the stability problem. The results for the harmonic
potential are summarized in Sec. III. Next, we turn to the
consideration of the anharmonic potentials V�x�=x2+�x4

�Sec. IV� and V�x�=x4 �Sec. V�. The last section �Sec. VI�
contains some additional discussions and a summary of our
results.

II. DEFINITIONS AND PREVIOUS RESULTS

A. Branches of nonlinear modes

In the small amplitude limit �→0, the cubic term in Eq.
�6� can be neglected and the solutions can be approximated

by the eigenfunctions �̃n�x�, n=0,1 , . . . of the linear eigen-
value problem

�xx + �� − V�x��� = 0. �7�

It is assumed that the potential V�x� is nonsingular, bounded
from below, and V�x�→� as �x�→�, so that the spectrum of
Eq. �7� is discrete. Throughout this paper we will deal with
even potentials, V�x�=V�−x�. The real eigenfunctions of Eq.

�7�, we denote them �̃n�x� with n=0,1 , . . ., constitute an or-
thonormal set:

��̃n,�̃m� 	 

−�

�

�̃n�x��̃m�x�dx = �m,n �8�

�here �m,n is the Kronecker delta�.
It will be convenient to describe the families of nonlinear

modes in terms of bifurcation diagrams in the plane �� ,N�
where

N = 

−�

�

�2�x�dx �9�

corresponds to the number of particles. Then, the respective
eigenvalues of Eq. �7�, �= �̃n, n=0,1 , . . ., are the points of
bifurcation where families of nonlinear modes of Eq. �6�, to
be denoted as �0 ,�1 ,�2 , . . ., branch off from the zero solu-
tion ��x�	0 �6,31�. The branching off takes place for both
cases, �=1 �attractive nonlinearity� and �=−1 �repulsive
nonlinearity�. Therefore we will label the branches of non-
linear modes in the corresponding cases by �n

�a� and �n
�r�. At

the same time, in the statements which are applicable to both
cases �=1, we omit the superscript writing simply �n.
Two examples of diagrams for V�x�=x2 and V�x�=x4 are

shown in Fig. 1. Following �8� we call the modes described
above modes with linear counterpart, since they can be
viewed as modes of a linear oscillator “deformed” by the
action of the nonlinearity.

A simple analysis shows that in the vicinity of a bifurca-
tion point, say �= �̃n, the small-amplitude solution of Eq. �6�
for the branch �n can be described by the asymptotic expan-
sions

�n�x� = ��̃n�x� + o��� , �10a�

�n = �̃n − �2��n + o��2� , �10b�

where �	1 is a small parameter and the coefficient �n is
given by

(a)

(b)

(c)

(d)

FIG. 1. �a� and �b� The lowest branches of the nonlinear modes
of Eq. �6� for the potential V�x�=x2 for repulsive ��=−1� �a� and
attractive ��=1� �b� nonlinearities, respectively. �c� and �d� The
same branches but for V�x�=x4. All the modes bifurcate from the
linear harmonic oscillator modes corresponding to the limit N→0.
The fragments of curves corresponding to stable solutions are
shown in bold.
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�n = 

−�

�

�̃n
4�x�dx . �11�

From the physical point of view, �n describes the two-body
interactions, and thus defines the characteristic scale �.
Hence the limit described by Eq. �10� in physical terms can
be defined as �	
. We observe that this limit can be
achieved not only due to small numbers of condensed par-
ticles, expressed by the condition �	1 �due to the normal-
ization �8��, but also for large enough n, since �n→0 as n
grows. For instance, for the case V�x�=x2 we have �24�

�n = O�n−1/12� . �12�

B. Physical units

Throughout this paper the nonlinear modes will be char-
acterized mainly in terms of the number of particles N and
the mode frequencies �. Since we will be interested in ap-
plications of our results to the BEC mean-field theory while
our analysis will be carried out in dimensionless units, before
going into details we outline the link of our variables with
experimentally feasible parameters. To this end we notice
that the dimensionless form of Eq. �6� corresponds to the
situation where the distance and time are measured, respec-
tively, in units of a0 and 2 /�0, where a0 is the longitudinal
length of the trap and �0=� / �ma0

2�, with m being the atomic
mass, is the “effective” longitudinal trap frequency �in the
case of a parabolic potential it is the real frequency of the
trap, while a0 is the linear oscillator length�. In the chosen
scaling the energy is measured in the units ��0 /2. Then it is
straightforward algebra to ensure that the link between the
real, i.e., physical, number of particles N and the norm of the
solution N �also referred to as number of particles� intro-
duced by Eq. �9� is given by the formula N
= �a� /4�2��as��N, where a� is the transverse linear oscilla-
tor lengths and as is the s-wave scattering length. In this last
formula, as well as in the reduction of the three-dimensional
�3D� Gross-Pitaevskii equation to the one-dimensional �1D�
model �6�, we have assumed that the trap is cigar-shaped,
i.e., a�	a0, and that in the transverse direction the trap is
harmonic. Now it is not difficult to estimate that, for ex-
ample, for a trap with characteristic values a0�1 mm, a�

�10 �m, and as�5 nm, a unit of the norm N corresponds
to N�102 atoms, or to the mean atomic density �0.4
�109 cm−3.

C. Quasiclassical quantization

The limit of large N and small local densities ���2	1,
denoted nonlinear WKB approximation �9�, allows for an
analytical construction of explicit solutions. Let us consider
V�x�=x2d, where d is a positive integer and assume that N
�1, or more precisely, that �=N−1−1/d	1. Bound states cor-
responding to sufficiently large �, specifically E=�N−2�1,
correspond to an atomic cloud distributed over a large spatial
domain roughly determined by the classical turning points,
xd=�1/2d. Since xd grows with �, one can reach the
levels corresponding to sufficiently low densities of particles,
i.e., the quasilinear limit.

Returning to the definition of modes with a linear coun-
terpart, the arguments presented in this section allow one to
conjecture that only modes with a linear counterpart can
exist in the limit �→� at N fixed. To describe that situation,
we focus on the repulsive case ��0, introduce an indepen-
dent variable �=�1/�1+d�x and a renormalized macroscopic
wave function ����=��d−1�/2�d+1���x�, and rewrite Eq. �6� as
follows:

�2��� + �E − �2d�� − ��3 = 0. �13�

Since now �	1 Eq. �13� is a convenient representation of
the stationary eigenvalue problem for the application of the
nonlinear WKB approximation. Skipping details, which can
be found in �9�, here we present the equation implicitly de-
fining the diagram in the plane �E ,��:

E�1+d�/2d �
�

Ad
��n +

1

2� +
2Bd

�E
ln�32E

�
� − CdE�−1+d�/2d

+ arg��2�1 − i
Bd

�E
��� . �14�

Here n stands for the energy level and we introduced the
constants

Ad = �

−1

1
�1 − y2ddy�−1

,

Bd =
1

2d�
−1

1 dy
�1 − y2d�−1

, for d = 1,2, . . . ,

Cd = 3Bd�
k=1

d−1  1

2
cos� k�

d
�ln�1 − cos� k�

d �
1 + cos� k�

d ��
− sin� k�

d
�arctan�sin� k�

d
��� for d = 2,3, . . .

and C1=0. ��·� is the standard notation for the gamma func-
tion �25�.

Solutions of the transcendental Eq. �14� with respect to
the energy E at fixed � and n give the eigenvalues �energy
levels�. According to the previous discussion, when E→�
one recovers the WKB formula for the energy levels of the
potential V�x�=x2d. While for the case of the harmonic oscil-
lator the form of Eq. �14� can be found in Ref. �9�, for the
situation of our particular interest below, d=2, the limit E
→� �and thus n→�� of the nonlinear WKB equation �14�
acquires the form

En
3/4 =

2�2

3
K� 1

�2
�����n +

1

2� +
ln n

2�2�K� 1
�2��n

+ O� 1
�n

�� , �15�

where K�·� is the complete elliptic integral of the first kind
�25�.

Considering the last two terms in the expansion of the
energy levels �15� as a perturbation for n large enough, and
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neglecting them in the leading order, in the remaining part of
the expression for En one readily recognizes the familiar
Bohr-Sommerfeld quantization condition. Thus formula �15�
can be viewed as the nonlinear generalization of the standard
quasiclassical quantization well-known in the quantum me-
chanics.

D. Stability problem (general)

Consider now the stability problem for the modes corre-
sponding to a fixed branch �n. Let �n�x� be a solution of Eq.
�6� corresponding to �n. Following the standard procedure
we represent ��x , t�= ��n�x�+��x , t��e−i�nt, linearize the dy-
namical equation with respect to ��x , t�, and arrive at the
equation

i�t = − �xx − ��n − V�x��� − ��n
2�2� + ��� ,

where the asterisk stands for the complex conjugation. De-
composing ��x , t� into real and imaginary parts, ��x , t�
=��x , t�+ i��x , t� we obtain

�t = − Ln
−� ,

�t = Ln
+� , �16�

where

Ln
+ = Ln + 3��n

2�x� ,

Ln
− = Ln + ��n

2�x� ,

and

Ln =
d2

dx2 + �n − V�x� .

It follows from Eq. �16� that stability of the nonlinear mode
is determined by the spectrum of the following eigenvalue
problem:

Ln
−Ln

+� = �� . �17�

Since the operator Ln
− is degenerate �the kernel of this opera-

tor contains at least the function �n�x��, the eigenvalue prob-
lem �17� has a zero eigenvalue. Then if the remainder of the
spectrum of Ln

−Ln
+ is real and non-negative then the nonlinear

mode ��x , t�=e−i�nt�n�x� is said to pass the linear stability
test. The presence of negative or complex eigenvalues in the
spectrum of Ln

−Ln
+ implies the linear instability of this mode.

E. Stability problem (small amplitude modes)

If �n lies close to a bifurcation point �̃n then the spectrum
of the operator Ln

−Ln
+ can be analyzed by means of the

asymptotic expansions �10�. Specifically,

Ln
+ = Ln + ��2�3�̃n

2�x� −�n� + o��2� , �18�

Ln
− = Ln + ��2��̃n

2�x� −�n� + o��2� , �19�

Ln
−Ln

+ = Ln
2 + �2�Mn + o��2� , �20�

where

Ln =
d2

dx2 + �̃n − V�x� , �21�

Mn = 3Ln�̃n
2�x� + ��̃n

2�x� − 2�n�Ln. �22�

The operator Ln is self-adjoint and its spectrum consists of
eigenvalues �n,k= �̃n− �̃k, k=0,1 ,2 , . . .. In the limit �=0 one
has the operator Ln

−Ln
+=Ln

2 and its spectrum becomes �n,k
= ��̃n− �̃k�2, k=0,1 ,2 , . . .. Since all �n,k are real and non-
negative, then if there are no multiple eigenvalues in this
spectrum, the small amplitude nonlinear modes are linearly
stable for both repulsive and attractive nonlinearities. How-
ever, if the spectrum of Ln

2 includes multiple eigenvalues the
stability analysis implies the study of splitting of these eigen-
values when passing from �=0 to 0��	1 �see, e.g.,
�26,27��.

F. Krein signature

Let n be fixed and a pair (� ,��x�) be a solution of eigen-
value problem �18� where ��0 is a semisimple eigenvalue
of Ln

−Ln
+ and the corresponding eigenfunction ��x� is real. It is

useful to assign to any such pair (� ,��x�) the value

K = sign�Ln
+��x�,��x��

called the Krein signature �28�. As the solution �n�x� of Eq.
�6� varies along the branch �n together with �n, the eigen-
values of the operator Ln

+Ln
− also vary, but the Krein signature

of any pair (� ,��x�) is conserved while there is no collision
between eigenvalues. When a collision between a pair of real
positive eigenvalues takes place, they can become complex
only in the case when their Krein signatures are opposite;
otherwise these eigenvalues pass through each other both
remaining real. So, as �n varies along the branch �n the
interactions of eigenvalues with opposite Krein signatures
may affect the stability of modes in this branch.

The inverse statement is also valid but in a generic situ-
ation only �28�: if the Krein signatures of colliding eigenval-
ues are opposite then generically after collision they become
complex. However, additional symmetries of the solution can
destroy this picture: it will be shown that in some cases ei-
genvalues with opposite Krein signatures can also pass
through each other without causing instabilities.

III. RESULTS FOR THE HARMONIC POTENTIAL V(x)=x2

A. General comments

In the case of the harmonic oscillator, where V�x�=x2, the
branches �n, n=0,1 ,2 , . . . are depicted in Figs. 1�a� and 1�b�.
It follows from Fig. 1 that the branches �n are represented by
monotonic �at least for moderate values of N, �, and n�
functions N���. Previous numerical results �11� allow one to
conjecture that there are no solutions without a linear coun-
terpart for this potential. It is known that the solutions cor-
responding to the branches �0 and �1 in both attractive and
repulsive cases are stable �see, for instance, �10–12� for more
detailed analyses of perturbed solutions from �1�. Numerical
calculations show that the modes from �2

�r� �the repulsive
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case� are unstable. In the attractive case the family �2
�a� cor-

responds to unstable modes for � close to the bifurcation
point �2=5. More specifically, in Ref. �11� the instability has
been observed for �����5 where ���3.83. It has also
been found that for ���� the mode is stable.

B. Small-amplitude modes

Let us now analyze the stability of the branch �n for both
attractive and repulsive cases when �n lies close to the bi-
furcation point �̃n. In the bifurcation point �linear limit� the
solutions of the eigenvalue problem �7� are the pairs

(�̃n , �̃n�x�), n=0,1 , . . . where

�̃n = 2n + 1, �23a�

�̃n�x� =
1

�2nn ! ��
Hn�x�e−1/2x2

, �23b�

and Hn�x� is nth Hermite polynomial �see, e.g., �25��.
The stability of small amplitude solutions can be studied

using formulas �18�–�22�. Let us start with the case �=0. The
spectrum of the operator Ln is equidistant and consists of the
eigenvalues �n,k=2�n−k� and the corresponding eigenfunc-

tions are given by �̃k�x�, k=0,1 , . . .. All the eigenvalues are
simple and there is one zero eigenvalue. The eigenvalues of
the operator Ln

2 are �n,k=�n,k
2 =4�k−n�2 and they correspond

to the same eigenfunctions �̃k�x�, k=0,1 , . . .. This means that
the spectrum of Ln

2 includes n double eigenvalues �n,k
=4�n−k�2, k=0,1 , . . . �n−1�, one simple zero eigenvalue and
infinitely many simple positive eigenvalues. The mechanism
of emerging of double eigenvalues becomes transparent from
Table I. Each of the double eigenvalues �n,k has an invariant

subspace spanned by two functions, �̃k�x� and �̃2n−k�x�.
Following Ref. �27� we consider the 2�2 matrices

M̃n,k = � �Mn�̃k,�̃k� �Mn�̃k,�̃2n−k�

�Mn�̃2n−k,�̃k� �Mn�̃2n−k,�̃2n−k�
� .

If the eigenvalues of M̃n,k are �n,k
�1� and �n,k

�2�, �n,k
�1� ��n,k

�2�, then
for �	1 the double eigenvalue �n,k of Ln

2 splits into two
simple eigenvalues of Ln

−Ln
+: �n,k

�j� =�n,k+�2��n,k
�j� +o��2�

where j=1,2. Therefore if the eigenvalues of any of the

matrices M̃n,k, k=0, . . . ,n−1 are complex, the instability of
the small-amplitude solution ��t ,x�=e−i�nt�n�x� takes place.
It is important that since both repulsive ��=−1� and attrac-

tive ��=1� cases are described by the eigenvalues of the

same matrices M̃n,k, the complex eigenvalues of M̃n,k for
some k means the instability of small-amplitude modes in
both repulsive and attractive cases.

Simple but tedious algebra gives the expressions for the

elements of the matrices M̃n,k:

�Mn�̃k,�̃k� =
8�n − k�

�2�n+k�n ! k!



−�

�

Hn
2�x�Hk

2�x�e−2x2
dx

−
4�n − k�
�22n�n!�2


−�

�

Hn
4�x�e−2x2

dx ,

�Mn�̃k,�̃2n−k� = − �Mn�̃2n−k,�̃k�

=
4�n − k�

�22nn ! �k ! �2n − k�!

�

−�

�

Hn
2�x�H2n−k�x�Hk�x�e−2x2

dx ,

�Mn�̃2n−k,�̃2n−k�

= −
8�n − k�

�2�3n−k�n ! �2n − k�!
−�

�

Hn
2�x�H2n−k

2 �x�e−2x2
dx

+
4�n − k�
�22n�n!�2


−�

�

Hn
4�x�e−2x2

dx .

Using MAPLE we calculated the eigenvalues of the matrix

M̃n,k. The results are collected in Table II where we observe
the following facts.

�i� In columns 2–6 there is at least one letter “C” which
means instability of small-amplitude modes belonging to the
respective branch �n, for both attractive and repulsive non-
linearities. We conjecture that the instability of small-
amplitude modes takes place for all branches �n

�a� and �n
�r�

with n�2.
�ii� In the case n=1 the mode is stable. That confirms the

results of �10� �see Fig. 1 there�. It is interesting that in the
limit �=0 the algebraic and geometric multiplicities of the
eigenvalue �=4 are both equal to 2. At the same time two
real eigenvalues emerging from the double eigenvalue �=4
for �	1 have opposite Krein signatures which do not corre-
spond to the generic case �see �28��.

TABLE I. Eigenvalues of L1,2 and L1,2
2 . The boxes are used to emphasize the doubles eigenvalues.

Eigenfrequency Zeroth First Second Third Fourth Fifth

number �̃0�x� �̃1�x� �̃2�x� �̃3�x� �̃4�x� �̃5�x�

L1 2 0 �2 �4 �6 �8

L1
2

4� 0 4� 16 36 64

L2 4 2 0 �2 �4 �6

L2
2

16� 4� 0 4� 16� 36
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�iii� When n=k+1 the matrix M̃n,k has a zero eigenvalue.
This reflects the fact that

��x� =
d�n�x�

dx
�24�

is an eigenfunction of the operator Ln
−Ln

+ corresponding to
�=4 for any mode �n�x� belonging to any branch �n

�a� or
�n

�r�.

C. Nonlinear modes of arbitrary amplitudes

In order to study the linear stability of the nonlinear
modes of a finite amplitude we have first calculated the
modes using a modified shooting method developed in Ref.
�11� and used in Refs. �11,29� to compute different families
of nonlinear modes. Then we have found numerically the
eigenvalues of the operator Ln

−Ln
+. To do so we have approxi-

mated the solution �n�x� on a grid, replacing the second de-
rivatives in Ln

 by second-order finite differences and calcu-
lated the eigenvalues of the resulting sparse matrix. The
result is shown in Figs. 2 and 3. One can see that the families
�2

�a,r� at �=5 possess two double eigenvalues �Figs. 2�b�,
2�c�, 2�e�, and 2�f��, �=4 �merged eigenvalues �2,1=�2,3�
and �=16 �merged eigenvalues �2,0=�2,4�. These eigenval-
ues split; in the case of �=4 the resulting eigenvalues re-
main real and positive, one of them corresponding to the
exact solution ��24��. In the case of �=16, if the nonlinearity
is attractive, there exist two complex eigenvalues on the in-
terval �����5, ���3.83. At �=�� these eigenvalues
merge and the mode becomes stable. Since the number of
particles N of the mode grows when moving along the
branch �2, one can say that there is a threshold on the num-
ber of particles for the stability of the mode in attractive
case. If the nonlinearity is repulsive, the two complex eigen-
values do not disappear through all the regions of parameter
� investigated; therefore the mode remains unstable. In the
case of the family �3 �Figs. 3�a�–3�f�� at �=7 there are three
double eigenvalues �=4, 16, and 36 which split. Then the

scenario is similar to the case of the family �2. The eigen-
values originated by �=4 remain real and one of them cor-
responds to the exact solution �24�. In the attractive case the
mode becomes stable after the two pairs of eigenvalues
merge, i.e., for � −2.10; at this point the second pair of the
eigenvalues �both originated from �=36� merges. In the re-
pulsive case the mode remains unstable through all the re-
gions of the parameter � studied.

Summarizing, our results support that high-order modes
of GPE with harmonic potential and attractive interactions
are stable when the number of particles exceeds a threshold
value �different for each branch�, which corroborates our
analysis on the quasilinear behavior of upper modes made in
the beginning of Sec. II C. In the repulsive case, high-order
modes of GPE with a harmonic potential are unstable. Our
result contradict those of �13� where it was claimed that
stable modes exist for both signs of the nonlinear term.

IV. ANHARMONIC POTENTIALS (I): SMALL
PERTURBATIONS OF A HARMONIC POTENTIAL

Now we turn our attention to the GPE with a harmonic
potential perturbed by a quartic term, V�x�=x2+�x4, 0� ���
	1. In this case the eigenvalues �̃n and eigenfunctions

�̃n�x�, n=0,1 , . . ., for the linear problem �7� can be found

TABLE II. Eigenvalues of the matrices M̃n,k. Each cell of the
table for n�k contains either the letter “C,” meaning that the ei-
genvalues are complex, or two real eigenvalues.

n=1 n=2 n=3 n=4 n=5 n=6

k=0 0.199 C C 0.133 �0.005 �0.135

0 0.404 0.618 0.816

k=1 – 0.125 C C C 0.058

0 0.473

k=2 – – 0.089 C C C

0

k=3 – – – 0.068 C C

0

k=4 – – – – 0.055 C

0

k=5 – – – – – 0.045

0

FIG. 2. Branches �n
�a,r� and plots of real and imaginary parts of

eigenvalues � of the operator Ln
−Ln

+ vs � for V�x�=x2 and n=2. �a�
N vs � for the branch �2

�a� �the part of the branch corresponding to
stable solutions is shown in bold�. �b� Real and �c� imaginary parts
of the eigenvalues � for the attractive case. The splitting of the
lowest eigenvalues �=4 and 16 of the linear problem is highlighted
by the vertical dashed line. The nonzero imaginary part in panel �c�
corresponds to the eigenvalues originated by �=16 of the linear
problem for �����5 �see the text�. Plots �d�–�f� are analogous to
�a�–�c� but for the repulsive case. The branch studied is �2

�r� and the
eigenvalues originated by �=16 remain complex for the whole in-
terval of � studied �see panel �f��, and therefore the mode is
unstable.
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numerically or by means of asymptotic procedures �30�. Also
one has to employ numerics for the construction of the
branches of nonlinear modes �n

�a� and �n
�r�; which are similar

to the corresponding branches for the harmonic potential
case except for small deformations. As in the purely har-
monic case, the branches �n

�a,r� are monotonic �at least for
moderate values of N, �, and n� and can be parametrized by
any of the parameters N and �. However, the spectrum �̃n is
no longer equidistant, which has several important conse-
quences as we will discuss in what follows.

A. Small amplitude modes

The stability of small amplitude modes belonging to the
branches �n

�a,r� in the case of the anharmonic potential can be
also studied by means of asymptotic expansions �18�–�22�.
Consider the case �=0. The spectrum of the operator Ln

2 now
consists of simple eigenvalues �n,k= ��̃k− �̃n�2, k=0,1 , . . .,
and the Krein signature of the eigenvalue �n,k is Kn,k
=sign�n−k�. Therefore if � is small the spectrum of Ln

2 con-
tains n pairs of close eigenvalues of opposite Krein signa-
tures, �n,k and �n,2n−k, k=0,1 , . . . ,n−1, which are, neverthe-
less, different. The spectrum contains also a zero eigenvalue
and an infinite sequence of increasing positive eigenvalues.
Therefore, generally speaking, the spectrum �n,k, k
=0,1 , . . . does not contain multiple eigenvalues.

When passing from �=0 to 0��	1 the eigenvalues �n,k
of the operator Ln

−Ln
+ vary continuously. Therefore one can

expect the stability of the mode until two eigenvalues with
opposite Krein signature merge. So, the small amplitude
modes are expected to be stable for all the branches �n

�a� and
�n

�r�.

B. Nonlinear modes of arbitrary amplitude: ��0

In order to study the linear stability of the nonlinear
modes of a finite amplitude we have first calculated the spec-

trum of the operator Ln
−Ln

+ numerically, concentrating on the
branches �n

�a,r� for n=0,1 , . . . ,4. The obtained general pic-
ture appears to be very different from that of the harmonic
potential. The plots of real and imaginary parts of the eigen-
values � vs � for the branches �1, �2, and �3 in both attrac-
tive and repulsive cases are shown in Figs. 4–6.

The general property of all the cases considered is that the
instability of the nonlinear modes occurs only due to colli-
sions of pairs of eigenvalues which are a continuation of the
respective eigenvalues �n,k and �n,2n−k in the linear limit,
i.e., of the eigenvalues of the operator Ln

2. In what follows
we call them ��n,k ,�n,2n−k� -pairs. The eigenvalues in these
pairs have opposite Krein signatures.

Then, the other numerical results can be structured as fol-
lows.

a. Repulsive nonlinearity. The ground state modes corre-
sponding to the branch �0

�r� are stable since there are no
��n,k ,�n,2n−k�-pairs in the spectrum of L0

−L0
+. The modes

from the next branch, �1
�r�, in the limit of strong nonlinearity

correspond to “dark” soliton modes; there is one
��n,k ,�n,2n−k�-pair in the spectrum of L1

−L1
+, but no collisions

FIG. 3. Branches �n
�a,r� and plots of the real and imaginary parts

of the eigenvalues � vs � for the potential V�x�=x2 and n=3. All
the plots are organized in the same way as in Fig. 2.

FIG. 4. Branches �n
�a,r� and plots of the real and imaginary parts

of eigenvalues � of the operator Ln
−Ln

+ vs� for V�x�=x2+0.01x4 and
n=1. Plots �a�–�f� are organized as in Fig. 2. In the attractive case
the dashed line on the plots �a�–�c� marks the upper boundary of the
instability window. The lower boundary of this instability window
is very close to N=0, and not visible on the scale of the plots
�a�–�f�. Plots �A�–�C� show the branch �1

�a� and the real and imagi-
nary parts of eigenvalues �1,0 and �1,2 vs � close to the linear limit
�= �̃1 �i.e., N=0� with magnification. In the plots �A�–�C� the
lower boundary of the instability window is marked with a dashed
line.
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of eigenvalues have been found when tracing the modes of
this branch within the range of parameter N where it has
been investigated �see Fig. 4, right panels�. Therefore we
conclude that the modes from �1

�r� are stable. A similar situ-
ation takes place for the branch �2

�r� where two
��n,k ,�n,2n−k�-pairs in the spectrum of L2

−L2
+ are present: no

collision has been observed within the range of parameter N
under consideration �see Fig. 5, right panels�. However, this
is not the case for higher branches. For instance, the colli-
sions of eigenvalues have been observed for nonlinear modes
from �3

�r�. The spectrum of the operator L3
−L3

+ includes three
��n,k ,�n,2n−k�-pair and a collision of one of them �highest� at
some large enough value of N has been seen �see Fig. 5, right
panels�. After the point of collision �i.e., for greater values of
N� the pair of collided eigenvalues become complex which
means the instability of corresponding nonlinear modes. A
similar situation takes place for the branch �4

�r�. In general,
this points to the fact that the instability of higher modes,
generically, takes place, if the number of particles N exceed
some threshold value, which is particular for each branch
�n

�r�. The existence of the threshold value for the branches
�1

�r� and �2
�r� which we have not found in our numerical in-

vestigation needs more delicate analysis.
b. Attractive nonlinearity. The ground state modes of the

branch �0
�a� are stable. For the branch �1

�a�, there is one
��n,k ,�n,2n−k�-pair in the spectrum of L1

−L1
+ �see Fig. 4, left

panels�. Then there exist two bifurcation values of the pa-
rameter N �the number of particles�. When N, increasing,
reaches the first bifurcation value, the eigenvalues of this pair
collide and become complex. For the values of N below this
threshold, the mode is stable; however, for the potential un-
der consideration the first bifurcation value is very tiny, so it
is not visible in Fig. 4. Then, when N reaches the second
bifurcation value, the complex eigenvalue collides again and
becomes real. So, we can conclude that the modes of �1

�a� are
stable unless the number of particles N belongs to an insta-
bility window; the lower bound of this window is close to
zero �but separated from zero�. The size of the window of
instability increases when � grows and both bounds of this
window are quite sensitive to the variation of �. A similar
situation has been observed for higher branches of nonlinear
modes. For instance, the spectrum of the operator spectrum
of L2

−L2
+, the branch �2

�a�, includes two ��n,k ,�n,2n−k�-pairs.
As N grows both of them undergo the same evolution: they
become complex at the first bifurcation value of N and return
to be real at the second bifurcation value �see Fig. 5, left
panels�. The interval with respect to N between the first bi-
furcation value for the pair ��2,1 ,�2,3� and second bifurca-
tion value for the pair ��2,0 ,�2,4� represents the window of
instability. The upper boundary of this instability window is
marked by a dashed line in Fig. 5. However, since the first
bifurcation value for the pair ��2,1 ,�2,3� �lowest curve in
Fig. 5�b�� is very tiny, the lower boundary of the instability
window cannot be separate from zero in Fig. 5. Therefore the
modes from �2

�a� are stable if N does not belong to the insta-
bility window. This situation, probably, is generic for other
higher branches.

To confirm our results on the stability of nonlinear high-
order modes we also have performed a series of direct nu-
merical simulations of their evolution, perturbed by a ran-
dom perturbation of 5% amplitude of the mode. Thus we
have simulated the evolution of initial data of the form
�0�x�=�n�x��1+r�x�� with r�x� a white noise of maximum
amplitude 0.05. The subsequent dynamics of the modes un-
der Eq. �5� was computed using a second order in time split-
step pseudospectral scheme discretized in space using trigo-

FIG. 5. Branches �n
�a,r� and plots of the real and imaginary parts

of eigenvalues � of the operator Ln
−Ln

+ vs � for V�x�=x2+0.01x4

and n=2. In the attractive case the lower boundary is very close to
N=0 and not visible on the scale of the figure. All the plots are
organized as in Fig. 2.

FIG. 6. Branches �n
�a,r� and plots of the real and imaginary parts

of eigenvalues � of the operator Ln
−Ln

+ vs � for V�x�=x2+0.01x4

and n=3. In the attractive case the lower boundary is very close to
N=0, and not visible on the scale of the figure. All the plots are
organized as in Fig. 2.
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nometric polynomials �via the fast Fourier transform�. In all
the cases studied, which included most of the branches pre-
sented here our test verified the predictions based on linear
stability analysis.

C. Nonlinear modes of arbitrary amplitude: ��0

Let us briefly summarize the stability results for the po-
tential V�x�=x2+�x4, 0� ���	1 and ��0. In this case only
a finite number of branches �n

�a,r� can exist, since there is a
finite number of discrete eigenvalues for Eq. �7�. These
branches can be found numerically. The linear stability
analysis performed for the potential V�x�=x2−0.01x4 shows
�see Fig. 7� that all solutions of the branch �1

�a� which we
have considered are linearly stable. On the other hand, the
modes of �1

�r� are also stable, except some instability window
situated close to the point of branching. This is in contrast
with the case ��0, since in that case the instability window
is situated on the branch �1

�a� but not �1
�r�. The solutions of

the branch �2
�a� are also linearly stable whereas the solutions

of the branch �2
�r� are stable only in the vicinity of the

branching point, i.e., only for N	1. For the branches �3
�a,r�

the picture of stability-instability becomes more complex.

V. ANHARMONIC POTENTIALS (II): POTENTIAL
V(x)=x4

In order to show that the results for anharmonic potentials
are quite generic, let us consider a GPE with V�x�=x4. Again,

the eigenvalues, �̃n, and eigenfunctions �̃n�x�, n=0,1 , . . .,
for the linear problem �7� cannot be obtained exactly. The
branches of nonlinear modes �n

�a� and �n
�r� which have been

found numerically for n=0,1 ,2 ,3 are similar to the corre-
sponding branches for the harmonic potential case. These

branches are monotonic �at least for moderate values of N, �,
and n� and can be parametrized by any of the parameters
N, �.

Due to the reasons discussed above, the small amplitude
solutions of GPE with the potential V�x�=x4 generically are
stable for both attractive and repulsive nonlinearities. In or-
der to study the stability of nonlinear modes in general, we
have analyzed the bifurcations of eigenvalues of Ln

−Ln
+ when

�n�x� varies along the families �n
�a� and �n

�r�. Our numerical
investigation shows that, as in the case of weak anharmonic-
ity, the instability of nonlinear modes from �n occurs only
due to collisions of those pairs of eigenvalues which are a
continuation of eigenvalues �n,k and �n,2n−k in the linear
limit, i.e., in the spectrum of Ln

2. These eigenvalues �n,k and
�n,2n−k are of opposite Krein signature. Again, let us refer to
these pairs of eigenvalues as ��n,k ,�n,2n−k�-pairs.

Qualitatively, the stability picture for the case V�x�=x4 is
the same as in the case V�x�=x2+�x4, ��0, except for some
minor differences. The first one is that we have not found the
threshold of instability in N in the case of repulsive nonlin-
earity for the modes in the branches �n

�r�, n=0,1 ,2 ,3. There-
fore these modes are stable in all of the parameter range
studied. Second, we have not found an upper bound of the
instability window in N in the case of attractive nonlinearity
for the modes from �n

�a�, n=1,2 ,3. We believe that it is a
technical problem related to the finiteness of the region stud-
ied but we think an upper bound of this instability window
exists. The plots of real and imaginary parts of eigenvalues �
of the operator Ln

−Ln
+ versus � for the branches �1, �2, and �3

for attractive and repulsive nonlinearities are shown in
Figs. 8–10.

It is interesting to mention that we have also observed
collisions of eigenvalues with opposite Krein signatures
which belong to different ��n,k ,�n,2n−k�-pairs. In our case
they did not lead to instability since they remained real after

FIG. 7. Branches �n
�a,r� and plots of the real and imaginary parts

of eigenvalues � of the operator Ln
−Ln

+ vs � for V�x�=x2−0.01x4

and n=1. All the plots are organized as in Fig. 2.

FIG. 8. Branches �n
�a,r� and the plots of the real and imaginary

parts of eigenvalues � of the operator Ln
−Ln

+ vs � for V�x�=x4 and
n=1. All the plots are organized in the same manner as in Fig. 2.

STABILITY OF EXCITED STATES OF A BOSE- … PHYSICAL REVIEW A 78, 013606 �2008�

013606-9



the collision �see, for example, Fig. 10�e��. This phenomenon
does not correspond to a generic situation; it is caused by the
opposite parity of colliding eigenfunctions �one of them was
odd, while the other one was even�.

We have also performed a set of direct numerical simula-
tions of the evolution of perturbed stationary modes in
Eq. �5� as described in Sec. IV B. The outcome of those

simulations confirms the results of the linear stability
analysis.

VI. CONCLUSIONS AND DISCUSSION

Using a combination of different analytical and numerical
tools including the analysis of the small amplitude limit, the
nonlinear WKB approximation, the Krein signature, and di-
rect numerical simulations we have analyzed the stability
properties of higher-order nonlinear trapped modes for the
GPE with different potentials. First, we have reviewed the
results for the harmonic potential V�x�=x2 and discussed
how the stability of the modes is essentially affected by the
fact that levels are equidistant. Next, we have considered the
weakly anharmonic potential V�x�=x2+�x4, 0� ���	1. Our
results, summarized in Table III, lead to the conclusion that
even a small anharmonicity which does not affect essentially
the shape of the modes, improves drastically the stability
properties of higher-order modes due to the fact that none of
these potentials has an equidistant spectrum. We conjecture
that the same situation would take place also for a more
generic perturbation of the harmonic potential, for instance,
by nonsymmetric �e.g., cubic� perturbation.

Then we have checked that in the case of stronger anhar-
monicity V�x�=x4 the stability-instability picture is similar to
the case of potential V�x�=x2+�x4, 0��	1, ��0. We have
studied the GPE with the potential V�x�=x6 �the details have
not been discussed in this paper� and found that they repro-
duce the same essential features.

It follows from the arguments presented that the scenario
for the appearance of instability induced by the equidistant
spectrum of the harmonic oscillator holds also for other
classes of potentials with equidistant spectra �for construc-
tion of such potentials see �32–34�� or, more generally, for
potentials for which the spacing between some levels �not
necessarily adjacent� are equal. In that situation, the splitting
of double eigenvalues for the operator Ln

2 can lead to com-
plex eigenvalues in the linear stability problem.

An interesting point for further investigation is the effect
of the type of confining potential on the stability of higher
order modes in two spatial dimensions, e.g., the stability of
vortices under deformations of the potential. This subject has
attracted a lot of attention in the last years �14–22� and the
methodology developed in this paper could be useful. In fact,
the situation is similar to the one considered above. In the
case of harmonic potentials the spectrum of the correspond-
ing eigenvalue problem is equidistant; the corresponding
eigenfunctions are Gauss-Laguerre modes. Then, one can ex-
pect that switching to anharmonic potentials can also change
the stability properties of vortices and other higher order
modes.

Finally, we would like to mention another practical impli-
cation of the enhanced stability of nonlinear modes by the
anharmonicity of the trap potential. As it was suggested in
�10� such modes can grow from the eigenstates of the linear
oscillator by increasing the nonlinearity using Feshbach reso-
nance management �in the language of this paper this corre-
sponds to the “motion” along a nonlinear branch starting

FIG. 9. Branches �n
�a,r� and the plots of the real and imaginary

parts of eigenvalues � of the operator Ln
−Ln

+ vs � for V�x�=x4 and
n=2. All the plots are organized in the same manner as in Fig. 2.

FIG. 10. Branches �n
�a,r� and the plots of the real and imaginary

parts of eigenvalues � of the operator Ln
−Ln

+ vs � for V�x�=x4 and
n=3. All the plots are organized in the same manner as in Fig. 2.
The bold circle in the plot �e� highlights the collision of the eigen-
values of opposite Krein signatures which does not lead to
instability.
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from the bifurcation point as the number of particles in-
creases starting from zero�. This fact can be used for the
generation of single solitons or even solitonic trains. The
instability of the nonlinear modes in the case of the harmonic
potential was the major obstacle for the practical implemen-
tation of that mechanism. However, the idea becomes experi-
mentally feasible if an anharmoic potential is used since now
higher order branches have a different stability and thus can
lead to stable solitons.
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