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We examine how partial coherence and wavefront curvature of beams affect interference fringes behind
diffraction gratings. We simulate �1� the Talbot effect, �2� far-field diffraction, �3� Mach-Zehnader interferom-
eters, �4� Talbot-Lau interferometers, and �5� Lau interferometers using a numerically efficient expression. We
show how interference fringes in each case depend on the beam’s initial width, its coherence width �transverse
coherence length�, and its wavefront curvature in directions both parallel and perpendicular to the grating bars.
The separation between gratings and the rotational alignment of the gratings about the optical axis are also
considered. The formula used for our simulations is derived using the mutual intensity function of a Gaussian
Schell-model beam.
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I. INTRODUCTION

Gratings illuminated by an optical beam imprint correla-
tions in the beam’s wave field, and these correlations lead to
several distinct interference effects. For example, if an opti-
cal beam is sufficiently coherent, then downstream of a trans-
mission grating one finds shadows of the grating bars, fol-
lowed by Talbot revivals, and eventually far-field
�Fraunhoffer� diffraction patterns. A second grating can be
added to the setup to make doubly diffracted beams overlap,
thus forming a Mach-Zehnder interferometer. However, if
the optical beam is disordered, i.e., incoherent, then the Tal-
bot revivals and far-field diffraction pattern get blurred, and
the interferometer paths are harder to isolate. To analyze in-
terference phenomena in general one needs a formalism that
incorporates the beam’s width, coherence width �transverse
coherence length�, and wavefront radius of curvature.

In this paper we derive an expression �Eq. �18�� that mod-
els �1� Talbot revivals, �2� far-field diffraction, �3� Mach-
Zehnder interference fringes, �4� Talbot-Lau interference
fringes, and �5� Lau interference fringes for realistic beams.
The beam can be converging, collimated, or diverging and
can have arbitrary coherence properties. Our single expres-
sion reproduces results found in the literature �1–5� on par-
tially coherent beams, but our expression is unique in its
versatility. Our model incorporates arbitrary beam properties
�coherence widths, beamwidths, and wavefront curvatures�
that are allowed to vary separately in two directions �perpen-
dicular and parallel to the grating bars�. Our model works for
two arbitrarily located gratings, and allows for the second
grating to be rotated about the optical axis �see Fig. 1�. We
assume monochromatic beams in this model, but the expres-
sion we derive can be integrated over wavelength to take
longitudinal coherence into account. We developed this
model to simulate an electron beam Lau interferometer that
we built with nanostructure gratings �6�. But since this model
applies to a broad range of interferometer designs, and lends
itself to computationally efficient code, we present simula-
tions for cases 1–5 above.

We include many coherence parameters efficiently by as-
suming a Gaussian Schell-model �GSM� beam. Just as Me-
dina and Pozzi model electron holography and interferom-

etry experiments using partially coherent optical theory and
GSM beams �7�, we believe this analytical technique can
appropriately model a wide variety of matter wave interfer-
ometer experiments �8�. The GSM beam is a statistical dis-
tribution of Gaussian beam modes �9� and is a particular
example of a field emitted from a Collett-Wolf source
�10,11�. While Gaussian beams became popular in the early
1960s with the advent of laser physics, the GSM source was
first described in the late 1970s as a tool to simulate partially
coherent beams while still using some mathematical proper-
ties of Gaussian modes.

This paper is divided into two sections. In the first section,
we derive our model by calculating the mutual intensity func-
tion of a GSM beam throughout the optical setup in Fig. 1.
The mutual intensity function is a tool to keep track of the
intensity, coherence width, and phase of a partially coherent
optical field. It is similar to many mathematical quantities
such as the cross correlation function, the cross spectral den-
sity function, and the mutual coherence function, which are
all defined in �12� and �13�. We use the standard definition
for mutual intensity,

J��a,�b;z� = �����b,z,t����a,z,t��t, �1�

where here � represents the wave-field amplitude for a
Gaussian mode and the angular brackets refer to averaging

FIG. 1. �Color online� Optical setup. A GSM beam starts at z
=0. Transmission grating G1 is located at z1. The second grating G2
is located at z2. A screen for viewing intensity patterns is located at
z3.
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over a statistical distribution �described in Sec. II A� of such
modes �14�. The coordinate z is along the GSM beam axis,
and �a and �b are two transverse coordinates in a plane of
constant z �see Fig. 1�. J��a ,�b� describes both the intensity
profile of the beam and the degree of spatial coherence of the
waves in the beam. The intensity can be calculated by evalu-
ating the mutual intensity function with �a=�b, i.e.,

I��;z� = J��,�;z� . �2�

In the second half of the paper, we use this model to
simulate the optical intensity distribution throughout a vari-
ety of interferometers under different illumination condi-
tions. Partially coherent illumination blurs the distinction be-
tween these different types of interferometers, so we offer a
classification scheme to distinguish them based on the coher-
ence widths of the beam at various locations. We discuss
how the transition from Talbot revivals to far-field diffraction
behind a single grating depends on the incident beam prop-
erties, and how transverse coherence affects Mach-Zehnder,
Talbot-Lau, and Lau interference fringes.

II. PROPAGATION OF A GSM BEAM THROUGH A TWO-
GRATING SYSTEM

We first explain how the mutual intensity of a GSM beam
J�0� evolves through space by computing the propagation of
an initial wave field from an initial plane to a plane just
before the first grating. Then we calculate the mutual inten-
sity for a beam that has passed through a single grating.
Finally we derive the mutual intensity function describing
the optical field beyond two gratings.

A. GSM beam in free space

We begin by supposing that a semicoherent optical beam
has a known mutual intensity function J�0� in the plane z=0.
We take a Gaussian Schell-model beam �13,15� whose mu-
tual intensity between two points �a and �b is

J�0���a,�b;0� = e−����a + �b�2/4w0
2+��a − �b�2/�0

2+i��a
2−�b

2�/�r0�,

�3�

where � is the wavelength, w0 is the beamwidth, �0 is the
“coherence width” or “transverse coherence length,” and r0
is the radius of curvature for the wave front. As we discuss in
�8�, here we use the coherence width rather than the com-
monly used correlation width �16�, since the coherence width
cannot be wider than the beam. Equation �3� describes a
distribution of quasimonochromatic Gaussian beams. Each
Gaussian beam in the ensemble has an identical waist and
similar radius of curvature, but there is a distribution of these
Gaussian beams with principal axes tilted with respect to the
GSM beam axis and a fluctuating relative phase. De Santis et
al. showed that one way to make a GSM beam is to locate an
extended source behind two consecutive, Gaussian-weighted,
apertures and a lens �17�. If we generalize De Santis et al.’s
result to allow the lens an arbitrary focal length, we believe
this adequately represents the converging and partially coher-
ent electron de Broglie wave source that we use for interfer-

ometry �6� and diffraction �18� experiments. Indeed, we are
not the first to model an electron beam with a partially co-
herent GSM beam—Medina and Pozzi do so in �7�. Addi-
tionally, in �8� we show how a GSM beam can approximate
the partially coherent slit-collimated beams commonly used
in matter wave interferometry experiments.

To simplify forthcoming derivations, we express Eq. �3�
in terms of an average coordinate and a separation vector,
such that ����a+�b� /2 and ����a−�b:

J�0���,��;0� = e−���2/w0
2+��2/�0

2+i2�·��/�r0�. �4�

To determine the mutual intensity at some other location, we
make use of the paraxial approximation to Zernike’s general
propagation law for fields with arbitrary coherence properties
�see the Appendix�. We that find J�0��z� for isotropic beams is

J�0���,��;z� =
w0

2

w�z�2e−���2/w�z�2+��2/��z�2+i2�·��/�r�z��. �5�

Equation �5� is written in terms of the new beamwidth, co-
herence width, and radius of wave-front curvature at a dis-
tance z from the origin. These are related to the initial beam
properties �at z=0� as follows:

w�z� = w0�	1 +
z

r0

2

+ 	 �z

w0�0

2

, �6�

��z� = �0�	1 +
z

r0

2

+ 	 �z

w0�0

2

, �7�

r�z� = z	 �1 + z/r0�2 + ��z/w0�0�2

�z/r0��1 + z/r0� + ��z/w0�0�2
 . �8�

Equation �6� can be used to calculate the divergence or con-
vergence angle �w of the GSM beam far away from the GSM
beam waist, also known as the “angular spread of the beam”
�13�:

tan �w =
�

�min
, �9�

where �min is the coherence width at the GSM beam waist.
The coherence width also diverges, but at a smaller angle
���� /wmin called the “far-zone coherence angle” �13�. It is
interesting to note that neither the GSM beamwidth nor the
GSM beam coherence width evolves exactly like the diam-
eter of a pure Gaussian beam. However, the ratio of coher-
ence width to beamwidth in Eqs. �6� and �7� remains un-
changed as the beam propagates through free space. That is,

� �
��z�
w�z�

= const. �10�

� is known as the “degree of global coherence” �12,13�. If �
is equal to unity, Eqs. �6�–�8� describe the beam diameter and
radius of wave-front curvature for a standard �fully coherent�
Gaussian beam.

Beams used in real experiments often have properties that
differ between the horizontal �x̂� and vertical �ŷ� directions.
Therefore we consider an anisotropic two-dimensional GSM
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beam that has different properties in the horizontal and ver-
tical transverse directions:

J�0���,��;z� = J�0��x,�x;z�J�0��y,�y ;z�

=
wx0

wx�z�
e−��x2/wx�z�2+�x2/�x�z�2+i2x�x/�rx�z��

�
wy0

wy�z�
e−��y2/wy�z�2+�y2/�y�z�2+i2y�y/�ry�z��.

�11�

Such an anisotropic GSM beam was first described by Li and
Wolf �19�. The intensity of the beam in the region before the
first grating G1 is given by

I�0���;z� = J�0���,�� = 0;z� =
wx0

wx�z�
wy0

wy�z�
e−��x2/wx�z�2+y2/wy�z�2�.

�12�

B. GSM after transmission through one grating

We now model how a single grating modifies the incident
GSM beam �Eq. �11��. The grating is a periodic structure,
and so its complex transmission function can be described by
a Fourier series:

t��� = t�x� = �
m=−�

�

ame−i2�mx/d1, �13�

where am is the mth �possibly complex� Fourier component
describing the grating with period d1, and we have assumed
for this case that the grating is thin and that its inverse lattice
vector is in the x̂ direction. The mutual intensity function
directly after the first grating is

J�1���,��;z1� = t�	x −
�x

2

t	x +

�x

2

J�0���,��;z1�

= �
m,m�=−�

�

am�
� ame−�i2�/d1��x�m+�xm̄�J�0���,��;z1� ,

�14�

where m̄��m+m�� /2 and �m�m−m�. Equation �14� has
two sums because the transmission function appears twice in
the mutual intensity �once for ����b� and once for ���a� in
Eq. �1��.

We again use Zernike’s technique to propagate the mutual
intensity distribution beyond the grating �see the Appendix�.
The actual form of the mutual intensity is complicated and
does not lend much insight. Instead we present the intensity
profile of a GSM beam after it has propagated an arbitrary
distance z12 beyond a single grating, obtained from the mu-
tual intensity by setting ��=0:

I�1���;z2� = J�1���,�� = 0;z2�

=
wx0

wx�z2�
wy0

wy�z2�
e−�y2/wy�z2�2 �

m,m�=−�

�

am�
� am

�e−��x − m̄�z12/d1�2/wx�z2�2

�e−�i2��m/d1��x−m̄�z12/d1�„1−z12/rx�z2�…

�e−�„�m�z12/��z2�d1…
2
. �15�

C. GSM after transmission through two gratings

We now model a second grating �G2 in Fig. 1� located at
z2 that has a grating period d2 and is rotated about the optical
axis by an angle 	. Its complex transmission function is

t2��� = �
n=−�

�

bne−i2�n�x cos 	+y sin 	�/d2, �16�

where bn is the nth Fourier component describing the second
grating.

Similarly to Eq. �14�, the field directly behind the second
grating is described by

J�2���,��;z2� = t2	� +
��

2

t2

�	� −
��

2

J�1���,��;z2� .

�17�

This field then propagates beyond G2 to the plane z3. The
calculation of the mutual intensity function in this region is
tedious but straightforward, so we opt here to present only
the intensity profile. Thus, the intensity distribution of a
GSM beam after two gratings is

I�2���,z3� =
wx0

wx�z3�
wy0

wy�z3� �
m,m�,n,n�=−�

�

am�
� ambn�

� bn

�Dn̄
m̄
„�,z3,wx,y�z3�…F�n

�m
„�,z3,rx,y�z3�…

�Pn̄,�n
m̄,�m

„z3,rx,y�z3�…V�n
�m

„z3,�x,y�z3�… , �18a�

where the beamwidth w�z�, coherence width ��z�, and radius
of wave-front curvature r�z�, which can all differ between
the horizontal and vertical directions, are given by Eqs.
�6�–�8�. There is a quadruple sum over Fourier components
am and bn, which describe gratings G1 and G2, respectively.
Expressing indices of the sum as averages and differences,
such that m̄��m+m�� /2 and �m�m−m� and likewise for
n, simplifies the notation. For conceptual purposes, here we
have chosen to express each term in the sum as the product
of four functions �D, F, P, and V�, each of which describes a
particular aspect of the diffraction pattern behind the two
gratings. Each of these functions is dependent on the position
of the two gratings �z1 and z2�, their period �d1 and d2�, and
their relative rotation angle �	�. The overall shape of the
diffraction pattern is described by

Dn̄
m̄
„�,z3,wx,y�z3�…

= exp− ��x − �z23	 n̄ cos 	

d2
+

m̄

d1

z13

z23

�2

wx�z3�2 �
�exp�− �	y −

n̄ sin 	�z23

d2

2

wy�z3�2 � . �18b�
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Interference fringes within this diffraction envelope are de-
scribed by

F�n
�m

„�,z3,rx,y�z3�…

= exp�− i2�x��n cos 	

d2
	1 −

z23

rx�z3�



+
�m

d1
	1 −

z13

rx�z3�

��

�exp�− i2�y
�n sin 	

d2
	1 −

z23

ry�z3�

� . �18c�

A phase factor, which describes the lateral shift and periodic
contrast of fringes along the optical axis, is denoted by

Pn̄,�n
m̄,�m

„z3,rx,y�z3�…

= exp� i2��z13�m

d1
	 n̄ cos 	

d2
+

m̄

d1

	1 −

z13

rx�z3�

�

�exp� i2��z23�n

d2
� m̄ cos 	

d1
	1 −

z13

rx�z3�



−
n̄z23

d2
	 cos2 	

rx�z3�
+

sin2 	

ry�z3�

�� . �18d�

The visibility of interference fringes as a function relative to
grating position and orientation is described by

V�n
�m

„z3,�x,y�z3�… = exp− ���z23	�n cos 	

d2
+

�m

d1

z13

z23

�2

�x�z3�2 �
�exp�− �	�n sin 	�z23

d2�y�z3�

2� . �18e�

Equation �18� is the main result of this paper. To summarize,
it is a general expression for the intensity distribution of a
partially coherent Gaussian Schell-model beam anywhere
beyond two gratings �z3
z2 in Fig. 1�. It is valid for beams
with two different coherence widths, two beamwidths, and
two radii of wave-front curvature �one for each transverse
direction� in the paraxial �Fresnel� approximation.

D. Fringe visibility as a function of grating rotation

Equation �18� describes how interference fringes become
less visible when there is a relative rotation �	� between
gratings. By looking at just the first few Fourier components
of the series contributing to interference fringes ��m ,�n
=0, �1�, one can see that the fringe contrast is proportional
to the last two terms in Eq. �18�. In particular, note that for
small angles �sin 	�	 and cos 	�1� the very last term in
the expression is responsible for the dependence of fringe
visibility V on grating alignment:

V � exp�− �	 �z23	

d2�y�z3�

2� . �19�

From this it is evident that fringe contrast decreases when the
gratings are rotated with respect to one another, as expected.

As one application for this theory, in an upcoming study we
show how one can use this rotational dependence of fringe
visibility to measure coherence width in a beam, even if that
length is far less than a grating period.

III. SIMULATION OF GRATING INTERFEROMETERS

Several types of interferometers have been constructed
using gratings: Talbot, Mach-Zehnder, Talbot-Lau, and Lau.
These interferometers are associated with different require-
ments for beam coherence. For instance, Talbot and Mach-
Zehnder interferometers are often described in terms of fully
coherent beams ��=1�, whereas Talbot-Lau and Lau interfer-
ometers can operate with incoherent beams ��=0�. However,
real beams are partially coherent �with 0�1�, and we
can use Eq. �18� to simulate how the degree of coherence �
affects the salient features of any interferometer. Further-
more, beams can be diverging or converging. Equation �18�
describes these cases too, with explicit allowance for the
radius of curvature in the x̂ and ŷ directions. Since Eq. �18�
works for a wide range of conditions, we use it explore in-
terferometer configurations in between the simplest cases.
The most useful result of this model, we believe, is its ability
to assess the sensitivity of various interferometers to phase
objects by showing how beam components propagate. We
also note that with partial coherence and finite wave-front
curvature a general way to classify these interferometers is
by the coherence width of the beam at various locations
�Table I�.

In the following sections we describe each of these four
interferometers in more detail, and illustrate how Eq. �18�
can simulate them all with a wide variety of beams. For all
simulations, we model �=500 nm light incident on identical
binary transmission gratings with period d1=d2=d=10 �m.
We emphasize that Eq. �18� is well suited for rapid compu-
tation; each simulation in this paper takes under 20 s to
evaluate on a PC. In a particular plane z3, the intensity at
each point can be evaluated with a quadruple sum that con-
tains �104 terms �m ,m� ,n ,n� each ranging from −4 to 4�,
the vast majority of which can be discarded beforehand by
calculating the weighting factors am�

� ambn�
� bnV�n

�m(z3 ,�x,y�z3�).
These considerations provide orders of magnitude computa-
tional savings over a Huygens wavelet approach, which
would typically require a sum over 108 source points �102

points for each grating window �102 windows, in each of
the x̂ and ŷ directions� to model a partially coherent source
and skewed gratings.

A. Single-grating diffraction simulations (Talbot
interferometer)

The optical field immediately behind a transmission grat-
ing has shadows of the grating bars. The shadows are fol-
lowed by near-field �Fresnel� diffraction effects including
Talbot revivals if ��z1�
d. Next comes a gray zone where
the Talbot revivals have reduced visibility if �1. Finally,
far-field �Fraunhoffer� diffraction patterns emerge if ��z1�

d. Figure 2 plots I�1��x ,y=0;z2� by evaluating Eq. �15�.
The three rows of Fig. 2 show the effect of different coher-
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ence widths, and the right-hand column shows the effect of a
converging beam �a negative radius of curvature� at the plane
z=0.

Since their discovery in 1836, the Talbot revivals have
been described in over 300 articles, many of which are cited
in Patorski’s review of the field �20�. The phenomenon is
known as the Talbot effect, and the intensity pattern shown in
Fig. 2 is often referred to as the Talbot carpet. The revivals
that are in phase �spatially registered� with the grating are
separated by the Talbot distance zT=2d1

2 /� if the incident
beam has infinite radius of curvature. Equally prominent
self-images occur at half the Talbot distance, but these are
displaced transverse to the beam by half the grating period.
The “higher-order Talbot effect” refers to the fringes with a
period finer than the grating period. All of these effects are
efficiently simulated with Eq. �15�.

A second grating �G2� can be used as a mask to selec-
tively transmit or block the beam flux and thus study the
Talbot revivals without imaging the fringes directly. This is
known as a Talbot interferometer. An imaging detector be-
hind G2 �with spatial resolution potentially much coarser
than d� allows one to study phase objects or abberations in
the beam that displace some of the Talbot revivals �21�. Tal-
bot revivals are visible in the region behind G1 where the
separation between diffraction orders does not yet exceed the
coherence width. This determines the maximum separation
between the two gratings in a Talbot interferometer: z12
��z2�� /d.

When the radius of curvature is finite, as in a converging
beam incident on the grating, then the Talbot carpet changes
accordingly �see Fig. 2, right column�. Reference �22� used
this effect to measure the focal length of a lens. Diffraction
orders can be resolved in the focal plane �Fig. 2, right cen-
ter�, as we demonstrated with converging electron beam dif-
fraction from a nanograting �18�. Batelaan and co-workers
observed electron diffraction from a nanograting with a more
coherent and collimated beam �e.g., Fig. 2, left top� in Ref.
�23�.

Beyond the focused beam waists the orders can overlap
again, and interfere �see Fig. 2, right top�. This “one-lens
one-grating” interferometer makes visible interference
fringes if the coherent convergence angle ��l0 /r0� is larger
than the diffraction angle �� /d�. Hence, for converging
beams the sequence of phenomena can be shadows, the Tal-

bot carpet, far-field diffraction, and then near-field diffraction
again due to the diffracted beams overlapping once more.

B. Mach-Zehnder interferometer simulations

A Mach-Zehnder interferometer, like a Talbot interferom-
eter, requires ��z1�
d. However, the second grating G2 is
located in the far field of G1, where there is no coherent
overlap between diffraction orders �i.e., where ��z2�
z12� /d1�. Interference fringes occur where doubly dif-
fracted beams overlap again as shown in Fig. 3. To read out
the fringes, a third grating �G3� located at z=z3 can serve as
a mask to transmit intensity to a large-area �integrating� de-
tector; this is how Pritchard and co-workers built an atom
interferometer using thin nanostructure gratings �24�.

Fringes remain visible along the optical axis until the dou-
bly diffracted beams are displaced further than the coherence
width, i.e., visibility requires that ��z12−z23� /d��z3�, as
described by Eq. �18e�. Thus, if the coherence width de-
creases, the fringes get more localized along the optical axis.
Measurements of contrast as a function of the grating sepa-
ration difference �z12−z23� in a Mach-Zehnder interferometer
�25,26� thus serve to measure the coherence width of an
atom beam. Even incoherent beams still make intensity
modulations due to a “position echo” �27� at exactly z12
=z23.

The fringe period may also change as a function of z3 due
to wave-front curvature. Hence, measurements using G3 as a
mask can report a fringe contrast that oscillates and even has
zeros as G3 is moved to different planes z3 �28�. However,
this is an artifact of G3 having a different period than the
fringes.

If the diffracted beams can be resolved at the second grat-
ing, such that w�z2�z12� /d1, one obtains a separated path
Mach-Zehnder interferometer. This provides an opportunity
to insert a phase-shifting element in one beam of the
diamond-shaped interferometer, and leave the reference
beam unaffected. The resultant phase shift of the interference
fringes has been used in numerous interferometric measure-
ments �see Refs. �29,30� for examples in atom interferom-
etry�. We use Eq. �18� to show how a focusing lens can
improve the path separation in Mach-Zehnder interferom-
eters. Beams that are about as wide as the maximum path
separation �Fig. 3, center column� are undesirable to the ex-

TABLE I. Conditions for various grating interferometers. Gratings may be placed in the near field �NF�
or far field �FF� of each other. Interference fringes may be too closely spaced to resolve with an imaging
detector, so a third grating �G3� can be used as a mask to observe them. Interferometers with significantly
diverging or converging beams will require gratings with different periods �especially the Lau
diffractometer�.

Talbot Mach-Zehnder Talbot-Lau Lau

Coherent beam needed Coherent beam needed Incoherent beam OK Incoherent beam OK

G2 in FF of G1 G2 in NF of G1 G2 in NF of G1

G2 in NF of G1 G3 in FF of G2 G3 in NF of G2 G3 in FF of G2

��z1�
d1 ��z1�
d1 ��z1�d1 ��z1�d1

��z2�
z12� /d1 ��z2�z12� /d1 ��z2�z12� /d1 ��z2�z12� /d1

��z3�z12� /d1 ��z3�
z12� /d1
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perimentalist who wants to influence only one path. How-
ever, a lens can be used to separate the paths in a Mach-
Zehnder interferometer, even for quite incoherent beams ��
=0.1 in the lower right image�.

C. Talbot-Lau interferometer simulations

Interferometers can also be made with incoherent beams,
for which the coherence width is less than a grating period
���z1�d�. In this case the Talbot carpet is washed out, so
the two-grating Talbot interferometer �with an integrating de-
tector� yields no contrast. However, fringes are formed in
several planes behind G2 �Fig. 4�. One way to understand
this is to imagine that each slit in G1 acts like a point source
that causes a coherent diffraction pattern behind G2. While

each slit source in G1 emits independently from all the other
sources, the diffraction pattern intensities behind G2 can all
line up when the two gratings are spaced by just the right
distance. A Talbot-Lau interferometer normally uses a third
grating �G3� as a mask to study the fringes in the near field
of G2. Typically, the three gratings are separated by exactly
half the Talbot length �z12=z23=d2 /��, but other configura-
tions are possible �31�.

As shown in Fig. 5, the fringe visibility depends on wave-
length, which verifies that the Talbot-Lau design is a wave-
optics interferometer. A classical moiré �ray optics� model
predicts the intensity variations precisely at z23=z12 �32�, but
only wave optics correctly predicts the visibility of these
modulations and their oscillation with �.

FIG. 2. �Color online� Simulations of diffraction of beams with wavelength �=500 nm from a single grating located at z1=0.3 mm,
modeled using Eq. �15�. The left column features a GSM beam with w0=100 �m and r0=�, the center column shows the same beam in a
smaller field of view, and the right column shows a focused beam with w0=100 �m and r0=−0.7 mm. The top row displays fully coherent
beams ��0=w0�, the middle row simulates beams with �0=30 �m, and the bottom row shows beams with �0=10 �m. For presentation
purposes, the simulations of intensity have been normalized so that each plane z has the same maximum intensity. Without this artificial
rescaling, the intensity would be much higher near the beam waist and would drop by 60% after the grating �which here has 4-�m-wide slits
with period d1=10 �m�.
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The Talbot-Lau interferometer is known for the fact that
arbitrarily wide and incoherent beams can be used. However,
the range in z3 where contrast is high becomes more re-
stricted for wider and less coherent beams �Fig. 4, bottom
right�. Still, a much smaller source brightness is required to
observe interference fringes with this design as compared to
a Mach-Zehnder interferometer. Furthermore, because the
gratings and detector are located in the near-field, the Talbot-
Lau is an easier interferometer to build for beams with short
wavelengths �e.g., large-molecule interferometers �33��.

D. Lau interferometer simulations

In a Lau interferometer interference fringes can be formed
far behind two gratings even when the gratings are illumi-

nated by completely incoherent light �20,34,35�. In the far
field of G2, after the Talbot-Lau fringes fade away, a set of
courser fringes emerge. This happens where the expanding
beams develop a sufficient coherence width to satisfy
�x�z3�
�z12 /d. If the beam is completely incoherent at the
first grating, this is the location beyond which the fringe
period exceeds the beam diameter at the first grating w�z1�.
Hence, Lau interferometers work with arbitrarily incoherent
beams but they require beams with a finite width w�z1� and a
detector in the far field.

The visibility of Lau fringes depends on grating separa-
tion z12 as shown in Figs. 6 and 7. In particular, Lau fringes
can be observed far away from the gratings only if the grat-
ings are spaced by a half-integer multiple of the Talbot
length zT. The fringe visibility therefore depends on the

FIG. 3. �Color online� Mach-Zehnder interferometer simulations. The left column shows a thin beam that has initial width w0

=100 �m, the middle column features a wide beam with w0=300 �m, and the right column uses a wide but focused beam described by
w0=300 �m and r0=−12 mm. The top row displays fully coherent beams ��0=w0�, the middle row simulates beams with �0=30 �m, and
the bottom row shows beams with �0=10 �m. Mach-Zehnder fringes are localized around x=435 �m and z=17.7 mm. The �=500 nm
beam is incident on binary transmission gratings G1 and G2 located at z1=0.3 mm and z2=9 mm, respectively. The gratings both have
period d=10 �m and 50% open fraction and they are rotationally aligned. For presentation purposes, each row �corresponding to position
z� of the intensity in these figures has been normalized to 1.
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beam’s wavelength � as shown in Fig. 8. The period d� of
the Lau fringes is given by

d� =
rx�z3�

z12
d �

z12 + z23

z12
d , �20�

where the last approximation is valid if the beam has a very
small coherence width at G1. Due to the geometric magnifi-
cation, the fringe period can be much larger than the grating

period and can be imaged directly instead of using a third
grating as a mask. The fringe period gets smaller as z12 in-
creases. This behavior, along with oscillation of Lau fringe
visibility as a function of grating separation, can be seen in
Fig. 7. Data showing these effects were obtained with our
electron beam Lau interferometer �6�.

IV. CONCLUSION

In summary, we derived a general expression, Eq. �18�,
that can efficiently model the effects of partial coherence and
wave-front curvature, in two transverse directions, on inter-
ference effects behind one- and two-grating systems. This
result is valid in the paraxial �Fresnel� approximation and has
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FIG. 5. Fringes in a Talbot-Lau interferometer at the specific
location where z23=z12, as a function of wavelength � �left axis� or,
alternatively, grating separation z12. The grating separation is ex-
pressed in units of the Talbot length, for which �=500 nm is used.
A classical ray optics model also predicts fringes at z23=z12, but
only wave optics correctly predicts how the visibility of the fringes
depends on the wavelength.

FIG. 6. �Color online� Lau fringes for different grating separations. For presentation purposes, each row �corresponding to position z� of
the intensity in these figures has been normalized to 1. In the left image, a �=500 nm incoherent beam �0=1 �m=w0 /200=d /10
illuminates two gratings spaced by 0.4 mm, which is equal to the Talbot distance �zT=2d2 /��. In the center image, the gratings are separated
by 0.52 mm and the fringes are less visible. In the right image, the gratings are separated by 0.6 mm=3zT /2, and become visible again. At
this larger scale, Talbot-Lau fringes �Fig. 4� are barely visible directly behind the second grating.

FIG. 4. �Color online� Interference in a Talbot-Lau interferom-
eter. Each row of the intensity in these figures has been normalized
to 1. The two gratings have periods of 10 �m, a 42% open fraction,
and are located at z1=0.3 mm and z2=0.7 mm. They are separated
by one Talbot length for the wavelength used �500 nm�. The figures
on the left have an initial beam diameter of w0=100 �m and the
figures on the right have an initial beam diameter of w0

=1000 �m. The figures on the top have an initial coherence width
of �0=10 �m, and on the bottom �0=1 �m. Without the second
grating the lower left image would look similar to the bottom center
image in Fig. 2. Typically, a third grating G3 would be used as a
mask to detect these fringes at z3=1.1 mm.
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been derived for gratings that may have different periods, are
arbitrarily located, and can be rotated with respect to each
other.

To illustrate the versatility of the model, we simulated the
Talbot effect and far-field diffraction behind a single grating,
and we simulated Mach-Zehnder, Talbot-Lau, and Lau inter-
ferometers. The coherence properties of the specific type of
beam we assumed, a GSM beam, evolve in a similar way to
other types of beams, so this theory may be useful for mod-

eling the role of partial coherence in real matter wave inter-
ferometry experiments.
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APPENDIX

To propagate a general mutual intensity function over a
distance z, one can use the paraxial approximation to Zerni-
ke’s propagation law for partially coherent waves �15,36�:

J��a,�b;z� =
1

�2z2� d�a�� d�b�e
−�i�/�z����a − �a��2−��b − �b��2�

�J��a�,�b�;0� . �A1�

A merit of the GSM beam is that its mutual intensity is a
simple function of redefined position variables, ����a
+�b� /2 and �����b−�a�, which provides a simpler way to
evaluate Eq. �A1�:

J��,��;z� =
1

�2z2� d��� d��e−�i2�/�z�������−����−����+����

�J���,���;0� . �A2�
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