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Using both fluid and kinetic descriptions, with repulsive forces between nearby atoms included, we discuss
the basic oscillations and waves of a cloud of ultracold atoms confined in a magneto-optical trap. The existence
of a hybrid mode, with properties similar to both plasma and acoustic waves, is described in detail. Tonks-
Dattner resonances for confined hybrid modes in a spherical cloud are discussed, and the prediction of a
nonlinear coupling between the dipole resonance and the hybrid modes is considered. Landau damping pro-
cesses and quasilinear diffusion in velocity space are also discussed.
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I. INTRODUCTION

In recent years, and mainly due to the emergence of laser
cooling techniques [1], there has been an increasing interest
in the physics of ultracold atoms. This interest has been
mainly concentrated on the study of Bose Einstein conden-
sates, and on the theoretical and experimental understanding
of their properties [2,3]. However, attention has also been
given recently to the study of collective oscillations of non-
condensed atomic molasses in magneto-optical traps [4-6].
From this work, collective behavior similar to that observed
in plasma physics has emerged, leading to the discovery of
an equivalent electric charge for neutral atoms, and of elec-
trostatic types of interaction between nearby atoms [7], and
to Coulomb-like explosions of the atomic cloud when the
magnetic confinement is switched off [8]. The theoretical
modeling of such collective processes is still not well estab-
lished, and this is the main motivation of the present work.
Here we propose to apply the well-known methods of waves
and oscillations in plasmas to such processes in a neutral gas.

In this work we consider the collective behavior of an
ultracold atomic gas, in order to identify the basic mecha-
nisms of oscillation, to establish its frequencies, and to de-
rive dispersion relations for its basic modes of propagation.
We will use both fluid and kinetic descriptions where the
main forces associated with the laser cooling processes are
retained.

This paper is organized as follows. In Sec. II, we define
some essential parameters to describe the features of a cold
atomic cloud confined in a magneto-optical trap. The basic
set of fluid equations is also established. In Sec. III, we re-
port the existence of a hybrid mode for short wavelength
scales, somewhere between plasma waves and acoustic
waves. In Sec. IV, we address the oscillations for the long
wavelength scales, where we discover modified Tonks-
Dattner resonances, which correspond to confined hybrid os-
cillations inside the atomic cloud, formally similar to those
in Ref. [9]. Nonlinear hybrid resonances driven by the dipo-
lar oscillations are predicted in Sec. V. We also use a wave
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kinetic approach, in order to refine the fluid description and
describe additional phenomena. Hence, in Sec. VI we de-
scribe the system via a Fokker-Planck equation that can be
directly derived from the Schrodinger equation for the col-
lective field of the atoms in the radiation and trapping fields.
It is shown that the waves and oscillations in the gas can be
damped by a resonant atomic interaction with the collective
oscillations, which is a manifestation of Landau damping.
We will also show that a spectrum of collective oscillations
will lead to diffusion in the atomic velocity space, thus pre-
venting the laser cooling process from proceeding further.
This effect is added to other diffusion processes already
known in the literature. Finally, some conclusions are stated.

I1. BASIC EQUATIONS AND FLUID DESCRIPTION

The simplest model to describe a gas of cold atoms in a
magneto-optical trap is based on Doppler cooling [10,11] and
on the spatial confinement due to the presence of a magnetic
field gradient. The relevant average forces acting on a single
atom are based on the quasiresonant radiation pressure force
and can be written (for a convenient choice of the relative
polarizations of the laser beams and the atomic transition) for
each direction r; (rj=x, ry=y, r3=z) as

fik, T ( 2
2 Sine F2+4(A—,u,iri—kLU,-)2

I‘2
2 2)- (1)
F + 4(A + Mty + kLUi)

Fr,v) =

This expression relies on the low-intensity Doppler model
for the magneto-optical force (incident on-resonance satura-
tion parameter per beam s;,.=1y/I,<<1). The Zeeman shifts
(described by u;r;) and Doppler shifts (k;v;) are responsible
for trapping and cooling, respectively. Here [, is the laser
intensity of laser beams incident along the six directions, I'
the natural linewidth of the transition used in the cooling
process, and A the frequency detuning between the laser fre-
quency w;=k;c and the atomic transition frequency w,. As-
suming symmetric forces (u;=u) along each of the three
directions Ox, Oy, and Oz one can write to first order in 7
and v
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ﬁMOT == K;— aJ, (2)

where « is the spring constant of the trap and « the friction
coefficient,
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k= aulk,, (3)

which is related to the dipole frequency

wy= \/%’ (4)

where M represents the mass of a single atom. Even though
most magneto-optical traps using, for instance, alkali-metal
atoms (such as Na, Li, K, Rb, or Cs) are not completely
described by such a simple Doppler model [1], the forces
above constitute a good first approach to describe the dynam-
ics of single atoms in a magneto-optical trap.

This description of a magneto-optical trap is known to be
limited to only a moderate number of atoms (typically 10°).
For larger atom numbers, additional forces need to be taken
into consideration. A second force to be considered is the

shadow force, or absorption force F,, which was first dis-
cussed by Dalibard [12]. This is associated with the gradient
of the incident laser intensity due to laser absorption by the
atomic cloud. It is an attractive force which can be deter-
mined by a Poisson type of equation as

e O'ilo
V'FA=—_’1’7) (5)
c

where n(r) is the atom density and o the laser absorption

cross section. Finally, a third force, Fp, can be called the
repulsive force or radiation trapping force, and was first con-
sidered by Sesko et al. [13]. Tt describes atomic repulsion,
due to the radiation pressure of scattered photons on nearby
atoms, and can also be determined by a Poisson type of
equation,

V‘}_':'R=—n(;)7 (6)

where o is the atom scattering cross section. A detailed
discussion of these forces and explicit expressions for the
cross sections oy and o; can be found, for instance, in
[8,13]. These expressions for the forces acting on the atomic
clouds and due to the laser cooling beams correspond to the
simplest possible description of the laser cloud interaction,
and can be used in a first approximation to model the fluid
dynamics of the ultracold gas, which can be derived by com-
puting the zeroth and the first moments of the Fokker-Planck
equation, neglecting the diffusion term [8]. The basic set of
equations can then be written as

Jd > -
—n+Vo(nv)=0, (7)
ot
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= 40-Vi=—— 4, (8)

where n and v are the density and velocity field of the gas
respectively, Fr=Fyor+F., and P is the gas pressure. Here
we have also defined the collective force F.=F,+Fp, which

is determined by the Poisson equation resulting from Egs. (5)
and (6),

V-F,=0n, Q=(ox—a)alye. 9)

The system can then be regarded as a one-component plasma
where the electrostatic attractive force due to ions can be
formally replaced by the confining force, in such a way that,
for the unperturbed state n=n,, we may represent the total
force through a Laplace-like equation

V. Frn=ng) =0. (10)

In typical experimental conditions, the repulsive forces
largely dominate over the shadow effect, and the quantity O
is positive [4,7,8], which allows us to define the typical fre-

quency
Ony
wr= 22, (11)

which is a straightforward generalization of the well-known
electron plasma frequency. Comparing this expression with
the usual definition of the plasma frequency w,, in an ion-
ized medium, we conclude that neutral atoms behave as if
they had an equivalent electric charge, as first noticed in [7],
with the value g.=VeyQ, where g, is the vacuum electric
permitivity. The experimental value observed for this effec-
tive atomic charge is g.;~107*=107% times the electron
charge. In a typical MOT experiment, we expect to have n
~10' cm™3, M~10"% kg, which yields a plasma fre-
quency in the range of wp/2T=qey/2mNmM,/ Mw),,
~100 Hz. It is clear from Eq. (11) that plasmalike oscilla-
tions are possible only for Q> 0. Therefore, they cannot oc-
cur when the shadow force (5) dominates over the repulsive
scattering force (6).

In order to conclude the analogy between the fundamental
parameters for the plasma and the cold atoms, one remark
should be made concerning the motion of the center of mass

M =

RE): ;imi/M, (12)

Ul
—_

i

where M =Eﬁlmi. Therefore, for a typical neutral plasma
with spherical geometry, it is a well-known result that the
center of mass oscillates at the so-called Mie frequency wy,
=w,,./ V3, where the factor 3 arises from the spherical sym-
metry [14] and is an essential parameter in the description of
resonances in clusters [15]. However, for the case of a
spherical cloud of cold atoms, it is a simple task to verify
that the center of mass obeys the following equation of mo-
tion:
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?+w§R=O, (13)

which states that R oscillates exactly at the dipole frequency
w, corresponding to the generalized plasma frequency wp in
the unperturbed state n=n,, as given by Eq. (11). The reason
for this difference lies in the fact that, in the case of spherical
plasmas, the restoring force depends on the charge balance
between ions and electrons n;—n,, which depends on the
shape of the cloud. In the case of cold atoms, the potential is
unequivocally determined by the laser and the magnetic field
(say trapping) parameters, and therefore the shape of the
atomic cloud plays no role.

In what follows, we make use of the set of fluid equations
derived in this section for a quasicontinum medium and de-
scribe the main collective modes. We start from the infinite
medium approximation, to emphasize the nature of the oscil-
lations, and then introduce in Sec. IV the effect of the finite
size of the cloud.

III. PLASMA HYBRID WAVES

We first assume oscillations that can be excited in the cold
gas with a wavelength much smaller than its radius. The
medium can therefore be assumed as infinite. We then as-
sume that the equilibrium state of the gas is perturbed by
oscillations with frequency w and wave vector k. In the sense
of linear response theory, we linearize the above fluid and
Poisson equations, by defining perturbations around the equi-
librium quantities

n:no‘l‘ﬁ, F:F0+(SF, 17:U0+5l}). (14)
Since the trapping force I;MOT defines only the equilibrium
quantities and plays no role in the modes we are about to
describe, we drop the subscript ¢ for the perturbation in the

collective force &F. in (14) for the sake of simplicity. For the
closure of the system of fluid equations, one equation of state
for the hydrodynamical pressure must be given. In this paper,
we assume that P is given by an adiabatic equation of the
form

P(n) ~n?, (15)

where 7y represents the adiabatic constant. The implications
of this assumption will be stated in Sec. V, in the context of
a kinetic description. Using the latter together with Egs.
(7)-(9), we can easily obtain

J J WA SF\ -
|:—<a+—>+wi—u§V2]ﬁ=( N ——>'Vn0
ot ot ngy M

(16)
where ug can be identified with the sound speed,
P
2 0
=y—, 17
Ug=7y Mng (17)

and P, is the equilibrium gas pressure.
We will now assume that the atomic equilibrium density
nq is uniform, in consistence with the harmonic nature of the
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FIG. 1. (Color online) Normalized dispersion relation w/wp
plotted against k\p. The red dashed line represents the acoustic
asymptotic behavior of the hybrid waves.

trapping potential, therefore neglecting the right-hand side of
Eq. (16). The influence of boundary conditions and inhomo-
geneities on the collective oscillations of the gas will be
discussed later. Assuming a space-time dependence of the

perturbations 77 and JF of the form exp(ilg-F—iwt), with a
complex frequency w=w,+iw;, we obtain for the dispersion
relation and for the corresponding damping rate the values

3 1o
w2=w2+k2u2+—a2, w;=—
r P S 4 i 2

(18)

(see Fig. 1). In the limit of very small viscosity @ <<wp, the
latter dispersion relation reduces to w2=w?,+ kzug, which is
formally identical to the dispersion relation of electron or
plasma waves in ionized media (also known as Langmuir
waves) but where the electron thermal velocity vy,
=v\kgT,/m,, (T, and m, are the electron temperature and
mass) is replaced by the sound velocity divided by a numeri-
cal factor, ug/\3. According to the experimental parameters
mentioned in the previous section, we estimate the sound
velocity to be ugoc VkgT/M=~20 cm/s. This shows that the
wave mode described by Eq. (18) contains elements of both
electron plasma waves and acoustic waves. It possesses a
lower cutoff, given by w,=\wp+3a?/4, which is typical of
an electron plasma wave, but its phase velocity tends to the
sound velocity ug and becomes weakly dispersive like an
acoustic wave. Its corresponding quasiparticles can therefore
be seen as hybrid entities, somewhere between plasmons and
phonons. The excitation of such modes in a typical MOT
setup could be driven by modulating one of the six trapping
laser beams. Such a modulation should be nearly resonant
with wp, and hence one may excite hybrid waves by sweep-
ing the modulation frequency around 100 Hz. Associated
with the propagation of such waves, we expect to observe a
periodic variation of the intensity of the luminosity. By mea-
suring the period of this oscillation, one can identify the
excited mode. The existence of such a hybrid mode is one of
the main results of this paper.
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IV. MODIFIED TONKS-DATTNER RESONANCES

The hybrid mode discussed above is meaningful only in
infinite and homogeneous media. In physical terms, its dis-
persion relation can only be applied to waves that propagate
locally, with wavelength scales much smaller than the inho-
mogeneity scale and the cloud dimensions. Let us consider
now oscillations with a wavelength that is comparable with
the size of the atomic cloud. In this case we can no longer
neglect the boundary conditions. Going back to Eq. (16), we
assume that the density perturbations oscillate at a frequency
w as previously, but the corresponding spatial structure will
be determined by the expressions

>

SF - - .
[VZ+ 2= W~Vn0+V In n, - Vi,
s

V. 8F=0f (19)
where the space-dependent wave number k(7) is defined by

12(F) = [0 = wp(F) /s, (20)

Before going into a more complex model, it is useful to
consider the simple one-dimensional problem [16] In the

case of a uniform slab of cold gas, we have Vno 0 except at
the boundaries x=0 and x=L. Equations (19) and (20) then
reduce to a simple one-dimensional equation

i1
— + [ — wp(x) ] =0. (21)
dx? u_zg

Taking the boundary conditions 72(0)=7(L)=0, we obtain the
following dispersion relation:

2
wz—wp[l +(7TV%> ], (22)

where the quantum number v can take the values
0,1,2,3,..., and the quantity Ap=ug/ wp is the Debye length
for a cold neutral gas, in analogy with the plasma definition
(where, however, the sound speed ug is replaced by V3v,e, as
mentioned before). This defines a natural length above which
plasma effects should be expected. Following the previously
estimated values for wp and ug, we expect to observe a De-
bye length of the order of A\p=~100 wm. In a typical MOT
experiment, the radius of the cloud varies in the range a
~1-5 mm, yielding the relation Ap/a<<1. Hence, plasma-
like effects are expected to occur in a cloud containing a
moderate number of atoms. As a remark, we should stress
that there is no experimental evidence so far of any equation
of state P(n), which may compromise the definition of the
sound speed ug.

The relation (22) shows that the finite dimensions of the
slab imply the existence of a series of resonant modes with
an integer number of half wavelengths. The cylindrical ge-
ometry was considered, for the plasma case, in a famous
paper by Parker, Nickel, and Gould in 1964 [9], but it is
more natural here to consider a spherical geometry for the
ultracold gas which, to our knowledge, was not derived for a
plasma. We expect to find an infinite series of resonances,
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similar to Eq. (22), known as the Tonks-Dattner resonances
[17,18]. For this purpose, we consider the internal oscilla-
tions in a spherical cloud with radius a in the homogeneous

case, where Vny(r)=0, for 0=r<a, for which analytical so-
lutions can be found. These results remain qualitatively valid
even for a more realistic density profile, as shown in Ref. [9],
for the case of an inhomogeneous cylindrical plasma. The
case of a nonuniform spherical plasma will be addressed in
future work.

Performing a separation of variables, we can obtain solu-
tions of the form

i(r)=R(Y(6.4), (23)

where (r, 6, ¢) are spherical coordinates. After separation of
variables, we get the usual spherical harmonics for the angu-
lar part of the density perturbation,

Y(6,¢) =

where PJ'(cos ) are the associated Legendre polynomials, /
is a positive integer or zero, and |m| <. The radial equation
resulting from (19) and (23) can be written as

P'(cos O)exp(imd), (24)

d

dr(r i—I:) + [kzl”z— I(1+1)]R=0. (25)

By using a simple transformation of variables, x=kr, and
S(kr)=vkrR(r) this equation can be reduced to a Bessel

equation
[+1/2
g)s 0. (26)

d*s 1dsS (
— 41 -
x

5+
dx®  xdx

The solutions with regular behavior at the origin x=0 are
therefore given by Bessel functions of the first kind, J;,{/5(x).
From this we conclude that the Tonks-Dattner modes in a
spherical homogeneous cold atom cloud are determined by

=3 ,<>"+”2( D pi(cos Oexplimg),  (27)

where ,(f) have small amplitudes such that |i7)| <n,. The
mode frequencies can be obtained by remarking that 7
should vanish at the border r=a. This implies that the al-
lowed values for k have to obey the condition k=z,,/a,
where z,,, represents the vth zero of the Bessel function of
order ([+1/2). We are then led to the mode frequencies

2
Wy, = wp[l + (zu%> } (28)

Comparing with the rectangular case of Eq. (22), we see that
the allowed eigenfrequencies for a spherical cloud now de-
pend on two quantum numbers v and /. But, in contrast with
the similar quantum mechanical solutions for hydrogenlike
atoms, we have no hierarchical relation between these quan-
tum numbers. The normalized radial profiles for the lowest-
order solutions are illustrated in Fig. 2, which is formally
similar to the spectrum that was presented in the past by
Dattner for the case of a plasma cylinder [18]. Also, a recent
experimental result on ultracold plasma was published show-
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FIG. 2. (Color online) Normalized modes
wi’,/ wf, plotted against the nodes r,;/a of the
radial solution for the density perturbation i, for
Ap/a=0.1 and 1<v<10. Blue squares (/=0),
red circles (I=1), violet stars (/=2), yellow tri-
angles (/=3), and green open circles (/=4). The
full line is plotted at /=0 and scales as 1/17.
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ing the evidence of Tonks-Dattner modes excited by a radio-
frequency electric field [19].

In a more realistic description, the present rigid (Dirich-
let) boundaries will eventually have to be replaced by soft
boundaries and a generic density profile ny(r) must be as-
sumed, for which numerical solutions have to be found [20].

V. NONLINEAR OSCILLATIONS DRIVEN BY DIPOLAR
RESONANCES

Due to the intrinsic nonlinearity of the fluid description
and the collective behavior of the medium, it is possible to
couple dipole oscillations of the cloud with the hybrid
modes. Going back to the fluid equations, and assuming an
oscillating mean velocity of the form v sin(w,t+ ¢) for the
center of mass, we obtain

> e w . ﬁ( (st + )7+ sin(w ¢)aﬁ>

— + — 4 . + + + —_—

(9;2 ny ot (2] COS\wy n + S\ wy;i ot
-0. (29)

Using the factorization 7(7,1)=A(1)ii(7), the coupling be-
tween the center of mass and the hybrid modes can be ap-
proximately described by the canonical Mathieu equation

PA -
— +[A+2ecos(27)]A =0, (30)
a7
where we have used
4 2 . =
T=ﬂl‘, A=—2(w2—k2u§, e=—v0,-Vinna
2 (1)d Wy

(31)

It is well known that such an equation has unstable regions.
For |e| <1, the first transition to the instability zone occurs
for A=1+e€. We therefore expect to observe an instability of
the hybrid and Tonks-Dattner modes, driven by dipole oscil-
lations for

o

w22%<%+ﬁoﬁlnﬁ). (32)

This simple discussion demonstrates the existence of very
interesting nonlinear collective phenomena in a cold atom
gas. But in the present work we are mainly focused on the
linear properties of the medium. A more rigorous and de-
tailed study of nonlinear coupling between dipole and Tonks-
Dattner oscillations will be left to future work.

VI. KINETIC DISPERSION RELATIONS

The analysis of collective oscillations in a cold gas can be
refined by using a kinetic description based on the classical
probability distribution function W(r,g,t). This description
will allow us to include resonant kinetic processes, which
enhance the energy exchanges between part of the atomic
population and the hybrid modes excited in the medium.
Moreover, a kinetic approach avoids the use of an equation
of state for the hydrodynamical pressure P. It is rather deter-
mined by the statistics, as we will see in the following dis-
cussion. In the presence of diffusion, the probability distri-
bution function W(r,q,t) obeys the Fokker-Planck equation

[21]

J hqg - J - &
(—+—q : V)W:——Q(thw)+EDij , (33)
M dk i 049:04;

where the total force F, includes the radiative and the
damping forces, and the diffusive tensor D;; is due to the
fluctuations of the radiative force and spontaneous emission,
as discussed by several authors [21,22]. Here, for simplicity,
and because we want to focus on the oscillating modes, we
neglect the diffusion term. Diffusion effects will not be com-
pletely ignored, rather they will reappear later in a different
context. We are then led to a kinetic equation of the Vlasov
type, with a damping correction, as given by
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Jd L =
(_+U'V+
ot

where v=fiqg/M is the atom velocity, and the collective

[ =4

~%)W=— a(v)W, (34)

<

(shadow minus repulsive) force F. is determined by a new
Poisson equation, which can be written as

V.F.=0 J W(F,0,1)dv. (35)

This equation is obviously identical to (9), because the inte-
gral is nothing but the density n(7,f), the normalization of
the distribution function. On the other hand, by taking the
average of the first two momenta of the kinetic equation (34),
we will be able to derive fluid equations such as (9) and (10).
Notice that the parameter « appearing in the fluid equations
is an averaged value of the quantity (v) appearing in the
wave Kinetic equation (34). In order to focus our attention on
the purely kinetic processes, we will assume that =0 but, at
the end of this section, we will discuss the influence of a
finite value for this parameter. We now consider some equi-
librium state W,(v) and assume a sinusoidal perturbation,

such that 6F and W evolve in space and time as exp(iE-F
—iwt). In what follows, we drop the subscript ¢ in the col-
lective force, in consistence with the previous calculations.
After linearization, the two previous equations reduce to

i OF - aWy/du

W=- .
M (w-k-v)

, iE-&ﬁ:QfW(J)dJ. (36)

From here we get the dispersion relation for collective cold
atom oscillations with frequency w and wave vector k

1

k- oWyldo
Q f—°U=o. (37)

=

MiP) (0-F-0)
This is similar to that of electrostatic waves in unmagnetized
plasmas, and can be rewritten as 1+ X(w,E):O, where the
quantity y(w,k) is the susceptibility. In order to understand
the physical implications of such a dispersion relation, let us
consider first a simple monokinetic atomic distribution, of
the form W (v)=ny8(v—0,), corresponding to a beam of at-
oms with density n, and velocity v,. In this case, Eq. (36)
reduces to

_ On  _
M(w—]g'ﬁo)z

(38)

This is nothing but the Doppler-shifted plasma oscillations

discussed above. For 170:0, this reduces to w=wp
=(Qny/M)"?. Second, we consider the case of two atomic
populations, one at rest with density n,, and another moving
with velocity 0, with density n;<n,. This is described by
Wo(0)=ngd©0)+n,8—v,). The corresponding dispersion
relation is given by
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_Lm _om (39)

1 ! 1
Mo M(w—k-v1)2

The interest of this dispersion relation is that it leads to an
instability, which means that the cold atoms can oscillate
spontaneously at a frequency close to wp. The energy source
driving such oscillations is provided by the atomic beam
with density n;. This can be seen by assuming a complex
frequency w=w,+iw;. The maximum growth rate predicted
by Eq. (39) corresponds to the resonant case where w,
=k-v,, and is determined by

V3 ny |13
W= wp< 2n0) ) (40)
This is very similar to an electrostatic beam—plasma instabil-
ity, but can also be seen as the dynamical analog of the
collective atom recoil laser [23], where the incident laser
beam is replaced by the atomic beam, and where the result-
ing stimulated emission is not made of photons, but of hybrid
quasiparticles. The critical region where unstable modes may
show up is given by

K < (1+N*3)32, (41)

where we define the dimensionless quantities K=k-v 1/ o,
Q=w/w,, and N=n,/n,. In Fig. 3, we plot the growth rate
I'(K) = w;/ w,, for the unstable region given above and the real
part of the spectrum (),=w,/ w,, both given by the roots of
the dispersion relation (39). We observe that the stable
modes bifurcate exactly at the vanishing point of the unstable
ones.

Finally, we consider a generic equilibrium quasidistribu-
tion Wy (). The atomic susceptibility can be split into its real
and imaginary parts, y=x,+ix;. By using the Kramers-
Kroenig relation between x, and x;, and assuming that most
of the atoms have velocity smaller than the phase velocity
w/k, which is a very plausible assumption for a gas of ultra-
cold atoms, we obtain

N 1
xw,k)=— —z(w%, + k2u§ ,
®

- JG,
Yi(@,k) = m%(a—v‘)) , (42)

where v is the parallel component of the atom velocity, and
we have identified the sound speed with the integral

1 L1
ui= —J Wo(v)v2dv = —f Go(v)v’dv. (43)
) )

The quantity Gy(v) introduced here is the average of the
distribution function over the perpendicular velocities. The
latter result avoids the postulation of the equation of state
(15). However, since the hydrodynamical pressure

P(r,u,1) = %Mn(?,z?,t)((v% —(v)?) (44)

is a statistical variable, we can make use of Egs. (43) and
(17) to write
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(45)

This means that the hybrid modes are essentially a one-
dimensional process, if we recall that y=(2+d)/d, which is a
well-known result for the electron plasma waves. This justi-
fies a posteriori the hybrid character of these oscillations.
Going back to Eq. (39), we can easily obtain the dispersion
relation by using 1+ x,(w,,k)=0, which coincides with Eq.
(18), and the wave damping defined by the expression

Xil@,.k) _zéL@@)
(8Xr/z?w)w=wr_ka2 w )

y=3.

(46)

=

This is a nondissipative wave damping, which is not related
with any increase of the entropy of the physical system; it is
the so-called Landau damping. It describes the resonant in-
teractions between the wave and the atomic population
which has a parallel velocity nearly equal to the wave phase
velocity. Usually, for a thermal equilibrium distribution
W,(v), this quantity is negative, and corresponds to wave
damping. But the sign of w; can change for a nonthermal
distribution, eventually leading to wave instability and wave
growth.

We can take a step further in the kinetic description of the
collective oscillations in the cold atom cloud, and consider a
broad spectrum of fluctuations, described by the total wave
intensity

. dk
1(t) = f I(k,t)m, (47)

where the spectral intensity is defined by I(k,)

=Wk,)W(k,1). Following the usual steps of the plasma
quasilinear theory and adapting it to the present context, we
can say that each spectral component behaves in accordance
with the above description, and evolves in time according to
the equation

%I(E, 1) =2w(k,0)1(k,t) + S(k,t), (48)

where S(k,7) is any given source term, and the total damping
rate (1) slowly evolves in time due to the slow time evo-
lution of the equilibrium (or quasiequilibrium) distribution
W,(v,1), which can be considered constant only on a short
time scale. The temporal evolution of W, (v,) under the in-
fluence of the fluctuation spectrum is determined by a diffu-
sion equation of the form

J L = d J N
<_+U'V+__,'D';>W()(U’t)=0a (49)
v

ot Jv

where the diffusion tensor D associated with the collective
oscillations is determined by

) I .
R wp . k®k

Dw,)=— | I(k,t)—————. 50
e e rer

Comparing this with our previous kinetic equation (33) it can
be seen that the existence of a collective spectrum of oscil-
lations introduces an additional diffusion effect in atomic
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FIG. 3. (Color online) Normalized roots of Eq. (39) in terms of
the dimensionless quantities 1=/ w,, K=l€~171/wp, and N=n,/ny.
(a) Dimensionless growth rate I'(K)=+Q,;(K) (unstable solutions)
and (b) dimensionless modes (,(K) (stable solutions). In both plots,
N=1 (full black line), 1/2 (dashed violet line), and 1/3 (dotted blue
line).

velocity space, which tends to prevent the atomic cooling
process. As we have noticed, these results are valid only in
the limit of a negligible viscosity parameter, «— 0. A finite
value of a will have two distinct consequences. First, it will
lead to the damping coefficient already stated by Eq. (18),
adding to the purely kinetic Landau damping. Second, it will
broaden the Landau resonance appearing in the dispersion
relation (37) and in the diffusion coefficient (50), therefore
reducing the efficiency of the resonant atom—collective wave
interactions associated with the Landau resonance and with
the quasilinear diffusion. It will therefore compete with the
kinetic effects described in this section. The combined influ-
ence of viscous and kinetic damping is outside the scope of
the present work and would deserve a separate investigation.

VII. CONCLUSIONS

In this work we have used both fluid and kinetic equations
to describe the collective oscillations in a cloud of neutral
atoms confined in a magneto-optical trap. Our approach is
based on a simple but physically relevant model for the
forces acting on the cold atoms, which has been well verified
by experiments, and can be described by a Poisson equation
similar to that describing electrostatic interactions [4,8,13].
Once the physical picture was established, we started by set-
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ting the basic equations and parameters. We have also shown
that the presence of internal forces leads to the existence of
collective waves which have a hybrid character, with prop-
erties that are common to both electron plasma waves and
acoustic waves. The similarities and differences of the cold
atom gas oscillations and those of a plasma were discussed.

Taking into account the finite size effect in a cloud of cold
atoms, we have shown that internal resonances of these hy-
brid oscillations inside the cloud can be excited. These
modes should be called Tonks-Dattner resonances, in anal-
ogy with similar plasma physics effects, since they are
shown here also to exist in a neutral magneto-optical trapped
gas as well. Previous models developed for plasmas were
limited to planar and cylindrical geometries, and they were
extended to the spherical geometry which is more relevant to
cold atom clouds. We have extended our discussion of these
oscillations to the nonlinear regime, where coupling between
dipole oscillations and hybrid waves can take place. Our ap-
proximate description suggests that such a nonlinear cou-
pling can lead to the destabilization of hybrid waves or
Tonks-Dattner resonances, driven by dipolar oscillations of
the cloud center of mass.

PHYSICAL REVIEW A 78, 013408 (2008)

Our analysis proceeded with a kinetic approach. Using
this more refined description of oscillations, we were able to
derive more general dispersion relations where nondissipa-
tive Landau damping was included. We have limited our dis-
cussion to hybrid wave modes with wavelengths much
smaller than the typical dimensions of the atomic cloud. But
the results can easily be extended to confined Tonks-Dattner
resonances. Finally, we have established a quasilinear kinetic
equation, showing the occurrence of diffusion in atomic ve-
locity space. This diffusion effect is a direct consequence of
the collective fluctuation spectrum, and implies the existence
of additional collective processes preventing the occurrence
of laser cooling.

In the present work we have explored the similarities of
the cold atom cloud with a plasma, which can be associated
with the existence of an effective electric charge for the neu-
tral atoms. The resulting wave modes, however, are not iden-
tical to plasma wave modes, but show a hybrid character. We
hope that this work will motivate future experimental and
theoretical work on the collective oscillations in cold atom
traps, and will contribute to launching cold atom research in
new directions.

[1] S. Chu, Rev. Mod. Phys. 70, 685 (1998); C. Cohen-Tannoudji,
ibid. 70, 707 (1998); W. D. Phillips, ibid. 70, 721 (1998).
[2] A. J. Leggett, Rev. Mod. Phys. 73, 307 (2001).
[3] F. Dalfovo et al., Rev. Mod. Phys. 71, 463 (1999).
[4] G. Labeyrie, F. Michaud, and R. Kaiser, Phys. Rev. Lett. 96,
023003 (2006).
[5] T. Pohl, G. Labeyrie, and R. Kaiser, Phys. Rev. A 74, 023409
(2006).
[6] A. di Stefano et al., Eur. Phys. J. D 30, 243 (2004).
[7] T. Walker, D. Sesko, and C. Wieman, Phys. Rev. Lett. 64, 408
(1990).
[8] L. Pruvost, 1. Serre, H. T. Duong, and J. Jortner, Phys. Rev. A
61, 053408 (2000).
[9]J. V. Parker, J. C. Nickel, and R. W. Gould, Phys. Fluids 7,
1489 (1964).
[10] T. W. Hansch and A. L. Schawlow, Opt. Commun. 13, 68
(1975).
[11] D. Wineland and H. Dehmelt, Bull. Am. Phys. Soc. 20, 637
(1975).

[12] J. Dalibard, Opt. Commun. 68, 203 (1988).

[13] D. W. Sesko, T. G. Walker, and C. E. Wieman, J. Opt. Soc.
Am. B 8, 946 (1991).

[14] R. Guerra and J. T. Mendonga, Phys. Rev. E 62, 1190 (2000).

[15] P. Mulser and M. Kanapathipillai, Phys. Rev. A 71, 063201
(2005).

[16] T. J. M. Boyd and J. J. Sanderson, The Physics of Plasmas
(Cambridge University Press, Cambridge, U.K., 2003).

[17] Levi Tonks, Phys. Rev. 37, 1458 (1931).

[18] Adam Dattner, Phys. Rev. Lett. 10, 205 (1963).

[19] R. S. Fletcher, X. L. Zhang, and S. L. Rolston, Phys. Rev. Lett.
96, 105003 (2006).

[20] H. Tergas, R. Kaiser, and J. T. Mendonga (unpublished).

[21]J. Dalibard and C. Cohen-Tannoudji, J. Phys. B 18, 1661
(1985).

[22] S. Stenholm, Rev. Mod. Phys. 58, 699 (1986).

[23] R. Bonifacio, L. De Salvo, L. M. Narducci, and E. J.
D’Angelo, Phys. Rev. A 50, 1716 (1994).

013408-8



