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A semiclassical kinetic model is developed to simulate the plasmon excitation of nanotubes and the transport
of charged particles moving through nanotubes. With the introduction of electron band structure, the analytical
expressions of the dielectric function and the energy loss function are obtained for zigzag and armchair
nanotubes of metallic properties, respectively. Numerical results display several very distinct peaks in the
curves of loss function, showing effects from the collective excitation. Furthermore, the stopping power and
self-energy are calculated while charged particles move along the axis of nanotubes with different geometries,
under the influence of friction coefficients. For small enough friction coefficients, it can be regarded as a case
with zero damping. But as the damping factor increases, not only the self-energy and stopping power decrease
in magnitude, but also their extrema move to lower velocities, without distinct threshold effects.
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I. INTRODUCTION

Going with the discovery of carbon nanotubes by Iijima
in 1991 �1�, much attention has been paid to the theoretical
and experimental researches in various aspects due to the
remarkable physical characters and applied values. The
single-walled nanotube �SWNT�, as a hollow structure rolled
by a graphitic carbon plane, offers an interesting alternative
for channeled particles, in a manner similar to the crystal
channeling. As an aligned array of straight parallel nano-
tubes, multiwalled nanotubes �MWNTs� can be also treated
as a subject of channeling research, with the spacing nar-
rower than the width of SWNT but still larger than the spac-
ing in the crystal lattice channels. Theoretical investigations
were developed by several authors �2–5�, focusing on the
transport of fast charged particles through carbon nanotubes.
It was found that, compared with the traditional crystal chan-
nels, carbon nanotubes can obtain wider channels in two di-
mensions and longer dechanneling lengths owing to a very
low electron density in their interior. As for the experimental
progresses, it is noted that the transport of electrons with
kinetic energies of 300 keV through single and well aligned
carbon nanotubes has been achieved recently in experiments
�6�. Besides, the experiment for 2 MeV He+ ions channeling
in carbon nanotubes has been realized for the first time �7�,
encouraging more theoretical researchers to investigate nano-
tubes as channeling and focusing elements.

While channeling through the hollow region of the nano-
tubes, one of the most concerning problems is the electronic
excitations of the nanotube surface. In experiments, the ex-
citation of the surface plasmon was discussed by the charac-
teristic energy-loss curves of the reflected electrons transmit-
ted through the cylindric microchannels �8�. From the
discovery of nanotubes, collective excitations of valence
electrons in nanotubes have been probed also from the mea-
surement of loss function in the EELS �electron energy-loss
spectroscopy� �9,10�.

Besides, important achievements have been made in the
aspect of theoretical researches. Including the quantum ef-
fects, random-phase approximation �RPA� in the dielectric
response theory has been used as a valid tool to discuss the
elementary excitation of the quasi-one-dimensional tubule
system �11,12�. Also by means of the dielectric theory, Arista
has studied the channeling of fast ions and clusters through
microcapillaries and nanocapillaries in solids, setting their
pioneering work on the surface excitation mode, induced po-
tential, energy loss, and self-energy �13–15�. Furthermore,
the energy loss of charged particles moving parallel to the
axis in cylindrical tubules is calculated by using the same
theory while taking the tubules as an infinitesimally thin
layer of free electron gas �16�. And comparison of the stop-
ping power from plasmons and single-particle excitations for
nanotubes has also been put forward �17�. As a prominent
tool to investigate the electronic excitation properties in re-
stricted geometries, the hydrodynamic model is adopted to
study the dielectric properties of the carbon nanotubes �18�.
Introducing the single-electron excitation term in the two-
dimensional fluid model, the self-energy and the energy loss
of the charged particles tracking parallel to the axis of a
single-walled or a two-walled nanotube have been calculated
�19–21�. Moreover, treating the � and � electrons as separate
two-dimensional fluids constrained to the same cylindrical
surface, two-fluid models have been proposed to describe the
collective electron excitation in single-walled or multiwalled
carbon nanotubes �22,23�. And, the dynamic polarization ef-
fects and Coulomb explosions for protons and molecular
ions channeling through SWNTs are also investigated in the
same hydrodynamic formulation �24,25�. Nevertheless, we
have noticed from the above works that, in either the RPA
dielectric theory or the hydrodynamic theory, the electron
gas of the nanotube surface is considered as a quasi-free-
electron gas distributed uniformly over the wall, without any
effects of the energy band structure to be taken into account.

As we all know, while considering the layer of the carbon
nanotube is infinitesimally thin in comparison with its radius,
the structure of nanotubes are defined by a two-dimensional*ynwang@dlut.edu.cn
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�2D� lattice vector R=na1+ la2, where n and l are integers
representing the vector characterizing the pattern of rolling a
planar sheet to a cylindrical cavity, and �a1�= �a2�=2.46 Å is
the lattice constant of a graphite sheet. According to the dual
index �n , l�, the nanotubes can be classified into zigzag �l
=0�, armchair �n= l�, and chiral nanotube �0�n� l�, exhib-
iting either metallic or semiconducting properties. For ex-
ample, a zigzag nanotube is metallic for n=3j �j is an inte-
ger� while an armchair nanotube always behaves like a metal
for any n. Thus the energy band structure of the electrons on
the nanotube surface, in charge of defining the difference
between metallic and semiconducting properties, may not be
neglected. But, neither the dielectric theory nor the hydrody-
namic theory can be valid enough for the investigations of
electron excitation and channeling in nanotubes. Much atten-
tion may be shed on the work including the band structure
effect. Considering the band structure of the electron energy
in the formulation of the quantum dielectric theory, Lin and
his colleagues have investigated the low-frequency elec-
tronic excitations in various carbon nanotubes �26–29�.
Moreover, a kinetic theory as well as the classical electrody-
namics have been proposed by Slepyan et al. �30� to describe
the electromagnetic processes in carbon nanotubes �31,32�.
In this paper, the semiclassical Boltzmann kinetic equation is
adopted in the framework of momentum-independent relax-
ation time approximation, trying to put forward a relatively
convenient way to investigate the electron excitation of
nanotubes under the channeling of the charged particles for
different band structure of the electrons.

We will extend the semiclassical kinetic theory �32� to
study the collective excitation in nanotubes, with charged
particles moving inside the SWNTs and parallel with their
axes. The theoretical model will depend on the geometric

structures, including the radius and the chiral angle of the
nanotube. The self-energy and the stopping power of charged
particles are also concerned. Our particular attention will be
focused on metallic nanotubes for both zigzag and armchair
nanotubes. The calculation details of the dielectric function,
the self-energy, and the stopping power function are given in
Sec. II. We will discuss the calculation results in Sec. III.
Section IV provides brief concluding remarks. We use the
cylindrical coordinate system r= �� ,� ,z� for the two kinds
of nanotubes, with the orientation of z parallel to the axis of
nanotube. Unless otherwise indicated, atomic units �a.u.�,
where me=�=e=1, will be used throughout this paper.

II. THEORETICAL MODEL

Both zigzag nanotubes �n , l=0� and armchair nanotubes
�n , l=n� are regarded as infinitesimally thin and infinitely
long cylindrical cavities. The radius a of a nanotube is con-
nected to l and n in the form of a= b�3�l2+ln+n2�

2� , where b
=1.44 Å is the length of the C-C bond of the surface of the
nanotube. The electrons of the nanotube surface are assumed
to meet the Fermi equilibrium distribution function, with the
chemical potential of graphite being null valued �32�,

f0�p� =
1

1 + exp�	�p�/kBT�
, �1�

where 	=	�p� is the electron energy with respect to Fermi
level, kB is the Boltzmann constant, T is the temperature
which remains at 273 K here, and p is the electron’s two-
dimensional quasimomentum tangential to the nanotube’s
surface. In this paper, we only take � electrons as our aim for
their important effects on electronic properties. By using the
tight-binding model, the energy dispersion relations for zig-
zag and armchair nanotubes can be given as �32–34�

	�p� = 
 �0�1 + 4 cos	3bpz

2�

cos	�3bp�

2�

 + 4 cos2	�3bp�

2�

 for zigzag�n,0� , �2�

	�p� = 
 �0�1 + 4 cos	3bp�

2�

cos	�3bpz

2�

 + 4 cos2	�3bpz

2�

 for armchair�n,n� , �3�

where pz and p� are the projections of p on the axis and the
� direction of the nanotube, �0=3.033 eV is the interaction
energy for the nearest-neighbor carbon atoms. The sign 

corresponds to the conduction and valence electrons, respec-
tively. Different from the graphene plane, carbon nanotubes
have a structure with a long fiber axis and a circumference of
atomic dimensions. So, while the number of allowed states in
the axial direction is large, the number of states in the cir-
cumferential direction is limited, resulting in the discrete val-
ues of the momentum p�. Using the periodic boundary con-
dition, the allowed values for p� can be

p� =
2��s
�3nb

s = 1,2, . . . ,n for zigzag�n,0� , �4�

p� =
2��s

3nb
s = 1,2, . . . ,n for armchair�n,n� , �5�

where � is the Planck constant divided by 2�.
When a charged particle goes through inside the nano-

tube, the instantaneous position of it is given by r0
= ��0 ,�0 ,vt� in the cylindrical coordination, involving the
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velocity of the particle v. We employ �2 to express the po-
tential outside the nanotube ��a�, while the values of the
total potential �1=�0+�ind inside the nanotube ���a� may
include the potential �0 from the moving charged particle
itself and the potential �ind from the charge polarization on
the nanotube surface induced by charged particle. Complying
with the work in Ref. �19�, these potentials could be ex-
panded in terms of Bessel functions as

�0�r,t� =
Q

�r − r0�
=

Q

�
�

m=−�

m=� �
−�

+�

dkeik�z−vt�+im��−�0�

�Im�k���Km�k�� , �6�

�ind�r,t� =
Q

�
�

m=−�

m=� �
−�

+�

dkeik�z−vt�+im��−�0�

�Im�k�0�Im�k��Am�k� , �7�

and

�2�r,t� =
Q

�
�

m=−�

m=� �
−�

+�

dkeik�z−vt�+im��−�0�

�Im�k�0�Km�k��Bm�k� , �8�

where k is the longitudinal wave number, m is the angular
momentum. Also in these above equations, Q is the charge of
the particle, Im�x� and Km�x� are the first and second kinds of
the modified Bessel function, and �� and � are the smaller
or larger of � and �0.

Furthermore, exposed to the intrusion of charged ions, the
distribution function of � electrons on the surface of carbon
nanotubes is assumed to satisfy the first-order Boltzmann
kinetic equation

� f1

�t
+ v · �sf1 = eE ·

� f0

�p
− �f1, �9�

where �s= 1
a

�
�� ê�+ �

�z êz is the two-dimensional differential
operator along the surface of the nanotube, E=−�� is the
electric field on the surface, and f1 is the perturbation of the
distribution function. And, � is the friction coefficient due to
electron scattering on the positive charge background, which
is introduced to satisfy the nonconservation of the system. In
terms of a Fourier expansion, the perturbation part f1 can be
expressed as

f1 =
Q

�
�

m=−�

m=� �
−�

+�

dkeik�z−vt�+im��−�0�f1m�a,p,k,�� . �10�

Combining Eqs. �9� and �10� with Eq. �8� in which �
= ��2�r , t���=a, we can obtain

f1m�a,p,k,�� =
� f0

�	

e�m��m/a�v� + kvz�
� − �m/a�v� − kvz + i�

, �11�

where �m= Im�k�0�Km�ka�Bm�k�, �=kv, and vz= �	
�pz

, respec-
tively. But for v�, considering p� a quantized variable given
in Eqs. �4� and �5�, we thus approximate the partial deriva-
tive with finite difference, as v�=	�pz , p��s+1��
−	�pz , p��s��.

In order to determine the coefficients Am�k� and Bm�k�, we
take into account the following boundary conditions at �=a:
the potential remains continuous at the cylinder,

��1�r,t���=a�=�2�r,t���=a, �12�

and the radial component of the displacement field at the
boundary keeps discontinuous because of the induced den-
sity on the surface nanotube n1�a ,� ,z , t�,

 ��2

��
�r,t�

�=a
−

��1

��
�r,t�

�=a

= 4�n1�a,�,z,t� . �13�

By using the Fourier expansion, the induced density
n1�� ,z , t� can be expressed as

n1�a,�,z,t� =
Q

�
�

m=−�

m=� �
−�

+�

dkeik�z−vt�+im��−�0�n1m�a,k,�� ,

�14�

where

n1m�a,k,�� =
4

�2���2� dpf1m�a,p,k,�� . �15�

Thus, inserting Eqs. �14�, �15�, and �11� into the boundary
condition in Eqs. �12� and �13�, the expressions of the coef-
ficients Am and Bm can be obtained as follows:

Am�k� =
Km�ka�
Im�ka�

��−1�k,m,�,a� − 1� , �16�

Bm�k� = �−1�k,m,�,a� . �17�

In Eqs. �16� and �17�, ��k ,m ,� ,a� is the dielectric function
of the electron gas on the nanotube surface with the form as

��k,m,�,a� = 1 − 4�aIm�ka�Km�ka���k,m,�,a� , �18�

where 4�aIm�ka�Km�ka� is the Fourier transform of the
electron-electron Coulomb interaction on the surface of
nanotube, and ��k ,m ,� ,a� is the response function, which
has different expressions for zigzag and armchair nanotubes
in this model:

��k,m,�,a� =
4

��

1
�3nb

�
s=1

n �
−2�/3b

2�/3b

dpz
� f0

�	

�m/a�v� + kvz

�m/a�v� + kvz − � − i�
for zigzag, �19�
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��k,m,�,a� =
4

��

1

3nb�
s=1

n �
−2�/�3b

2�/�3b

dpz
� f0

�	

�m/a�v� + kvz

�m/a�v� + kvz − � − i�
for armchair. �20�

So, the dielectric function we obtain here is not only related to the longitudinal wave number k, the angular momentum m, the
frequency � of the elementary excitation, and the radius of the nanotube, but also the chiral angle of the nanotube which
indicates the different energy dispersion relation of electrons in Eqs. �2� and �3�.

From the equations given above, the induced potential inside the nanotube can be written as

�ind�r,t� =
Q

�
�

m=−�

m=� �
−�

+�

dkeik�z−vt�+im��−�0�Im�k�0�Im�k��
Km�ka�
Im�ka�

��−1�k,m,�,a� − 1� . �21�

The self-energy and the stopping power for the ion moving
inside a carbon nanotube can also be obtained to show how
the electrons’ polarization act on the ion channeling. The
detailed expressions of the self-energy and stopping power
are given as

Eself = 1

2
Q�ind�r,t�

r=r0�t�

=
Q2

2�
�

m=−�

m=� �
−�

�

dkIm
2 ��k��0�

Km��k�a�
Im��k�a�

��Re��−1�k,m,�,a�� − 1� , �22�
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FIG. 1. The dielectric functions dependent on the frequency �
for �a� zigzag �27, 0� and �b� armchair �15, 15� nanotubes, with m
=0, �=0.001�p and different k=0.1, 0.2, and 0.3. The real �	1� and
the imaginary �	2� of the dielectric function is shown by the solid
and the dash curves, respectively.
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FIG. 2. The loss functions dependent on the frequency � for �a�
zigzag �27, 0� and �b� armchair �15, 15� nanotubes, with m=0, and
different k and � values.
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S = Q
��ind�r,t�

�z


r=r0�t�

= Q2

� �
m=−�

m=� �
−�

�

dkkIm
2 ��k��0�

Km��k�a�
Im��k�a�

Im�− �−1�k,m,�,a�� .

�23�

From Eq. �23�, one may notice that the resonant excitations
could be figured out in the case that the damping coefficient
approaches zero ��→0+�. As the function Zm�k ,��=1
−4�aIm�ka�Km�ka�Re ��k ,m ,� ,a� equals zero, the energy
loss function Im�−�−1�k ,m ,� ,a�� in Eq. �23� transforms into
a Delta function, leading to

S = Q2 �
m=−�

m=�

kmIm
2 ��km��0�

Km��km�a�
Im��km�a�

 �Zm�k,��
�k


k=km

−1

,

�24�

where km is determined by the condition of the collective
resonance Zm�k ,��=0.

III. RESULTS AND DISCUSSION

The dielectric functions ��k ,m ,� ,a� vs the frequency �
for �a� zigzag nanotube �27, 0� and �b� armchair nanotube
�15, 15� are shown in Fig. 1, with �=0.001�p, m=0 and
three different values of k. Here, �p= �

4�n0

a �1/2�0.5 a.u., n0
is the surface density of the valence electrons, which is ob-
tained from the integration of equilibrium distribution func-
tions n0= 4

�2���2 �dpf0�a ,p�. The real part �1 and the imagi-
nary part �2 of the dielectric function are shown by the solid
and the dash curves, respectively. One can see from this fig-
ure that the curves of �1 and �2 exhibit similar shapes which
have been presented in Refs. �27,28�, in which the theoretical
formulation is based on the quantum RPA. Obviously, as the
arrows point out in Fig. 1, the trend of �1 is becoming zero
with the increasing of �, while �2 approaches zero with the
infinitesimally small damping, corresponding to collective
excitations on the nanotube surface. Plasmon peaks are also
shown in Fig. 2, in which the energy loss function Im�
−�−1�k ,m ,� ,a�� is calculated dependent on the frequency �
but for different damping �. The biggest damping factor
adopted here is �=0.05�p�0.68 eV. It can be observed that
the plasmon peaks are damped to become lower and wider
for more friction from the atoms. And also, the plasmon
excitation tends to occur at higher frequency as the longitu-
dinal wave number k increases. Figure 3 shows the energy
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FIG. 3. The loss functions dependent on the frequency � for �a�
zigzag �27, 0� and �b� armchair �15, 15� nanotubes, with �
=0.001�p, and different k and m values.
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loss function vs � for different angular momentum m=0, 1,
and 2. As m decreases and k increases, the peak value keeps
increasing, suggesting more energy loss, different from the
work in Refs. �27,28�. However, considering the asymptoti-
cal properties of the modified Bessel function, the term
Km��k�a� / Im��k�a� in Eqs. �23� and �24� approaches zero at a
rapid rate as k increases. Thus more contribution will be
made to the stopping power in the case of smaller m and k in
this theoretical model.

In the following calculations, we will discuss a proton
�Q=1� moving along the axis of the nanotube ��0=0� in
zigzag nanotubes and armchair nanotubes, respectively.
Thus, on account of axial symmetry, only m=0 can be relied
on, and the term of v� would be ignored in the expression of
the response function in Eq. �11�. Considering a set of values
of �, Figs. 4 and 5 show the effects of the friction coefficient
� on �a� the self-energy and �b� stopping power which are
functions of the proton’s velocity v, for zigzag and armchair
nanotubes, respectively. Here, the upper limits of the inte-
grals in Eqs. �22� and �23� are cut off at about k=0.6 where
the integrands are already convergent to zero. As for results
of the stopping power in Figs. 4�b� and 5�b�, the two curves
labeled � /�p=0 are obtained from Eq. �24�. As we observe,
these two curves come much closer to those labeled � /�p
=0.001, showing us a small enough value of the variable �
close to the case without damping.

We also notice a sudden increases in the stopping powers
at threshold values, for the damping � /�p=0 or 0.001. We

plot in Fig. 6 the dispersion relation of resonant excitation
spectrum in k−� space, obtained from Z0�k ,��=0. Consid-
ering the expression �=kv here, the plasmon mode can only
contribute to the stopping power when the straight dotted
lines touch the plasmon curve. So, with zero damping, the
collective excitation takes place when the proton velocities
locate in the range 0.63�v�4.0, as seen from Fig. 6.

In addition, we could easily see that both the self-energy
and the stopping power keep decreasing in magnitude, while
the self-energy negative peaks and the stopping power
maxima move to lower velocities, with the increasing damp-
ing factors, similar to the works given by Refs. �15,16,19�.
As the peaks move with the increasing �, the threshold be-
havior for stopping power at low velocities also disappears.
So, from Figs. 4�b� and 5�b�, with the factor � larger than
0.001�p, the stopping can also be noticed for the proton with
speed v�0.63, showing relaxing effects from damping of
the plasmon resonances.

Figures 7 and 8 show the impact of the nanotube chiral
parameter n on the self-energy and stopping power, also for
zigzag and armchair nanotubes, respectively, with the fric-
tion coefficient �=0.001�p and �=0.05�p. From these two
figures one can see that, as the chiral parameter n and the
radiuses of nanotubes increase, protons along the axis keep
away from the nanotube surface, resulting in the decrease in
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magnitude of the self-energy and stopping power, similar to
the work in Refs. �16,19�. And also, by comparing the cases
of different damping values, the increase of gamma brings a
decrease of the stopping power and self-energy values and
the proton speed thresholds relax, but with almost slight
shifts of the extrema position for nanotubes with different
radiuses. So more damping is the main reason for the shift of
collective excitation to the lower speed region and the indis-
tinctness of the threshold effect.

IV. CONCLUDING REMARKS

In this work, a theoretical model based on the semiclassi-
cal kinetic theory is employed to describe the electron exci-
tation on the surface of the zigzag and armchair nanotubes of
metallic character. By adopting the electron dispersion rela-
tion of the nanotube, the real band structure of electrons can
be embodied to affect the characters of the dielectric function
��k ,m ,� ,a� and the loss function Im�−	−1�k ,m ,� ,a��. Gen-
eral expressions of the dielectric function and energy loss
function are accordingly derived, which are relative to the
radius and chiral angle of the nanotubes. The plasmon exci-
tation, which is dependent on the nanotube geometry, the
longitudinal wave number, the angular momentum, and the
friction coefficient, can be identified from the dielectric func-
tion profiles and the sharp peaks in the loss function.

And then, analytical expressions of the induced potential,
the self-energy, and the stopping power are obtained for a
charged particle moving paraxially in nanotubes. Here, we
focus our attention on the case where protons move along the

axis of the nanotubes. The simulation results are shown and
indicate strong dependences on the damping factor and the
nanotube geometry. As the damping factor � increases, the
self-energy and the stopping power keep decreasing in mag-
nitude, and the extrema position of the stopping power move
to the lower velocity region, suggesting more damping ef-
fects on the collective excitation. The stopping power results
also show that the damping �=0.001�p is small enough to
be taken as a case without damping. And in this case, as the
radius of the two kinds of nanotube increases, the self-energy
and the stopping power decrease in magnitude, but with al-
most no shifts of the maxima position. However, this
maxima position of the stopping power, located at about v
=1.6, is much different from the works in RPA �16� and
hydrodynamics formulations �19�. From our comprehension,
aside from the introduction of the electron band structure, the
kinetic model which is suitable for both high and low veloc-
ity cases is also one of the reasons.

In conclusion, we try to provide a new way of simulating
the electron excitation and the stopping power for charged
particles moving along the nanotube axes in this paper. The
results obtained make us believe that the kinetic model is
available and apt for studies of the transport behavior
through nanotubes, especially for different nanotube geom-
etries and even for multiwalled nanotubes in future work.
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