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A method to generate low-energy phase shifts for elastic scattering using bound-state calculations is applied
to the problem of e+-Mg and e+-Zn scattering after an initial validation on the e+-Cu system. The energy shift
between a small reference calculation and the largest possible configuration interaction calculation of the
lowest-energy pseudostate is used to tune a semiempirical optical potential. The potential was further fine-
tuned by utilizing the energy of the second lowest pseudostate. The s- and p-wave phase shifts for positron
scattering from Mg and Zn are given from threshold to the first excitation threshold. The e+-Mg cross section
has a prominent p-wave shape resonance at an energy of about 0.096 eV with a width of 0.106 eV. The peak
cross section for e+-Mg scattering is about 4800a0

2, while Zeff achieves a value of 1310 at an energy of 0.109
eV.
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One of the most technically demanding problems in quan-
tum physics is the scattering problem, i.e., the prediction of
the reaction probabilities when two objects collide �1�. The
underlying difficulty lies in the unbounded nature of the
wave function. This leads to a variety of computational and
analytic complications that are absent in bound-state calcu-
lations, e.g., the Schwartz singularities that occur in the
Kohn variational method for scattering �2,3�.

One approach used to solve scattering problems is to use
methods that have been used for bound-state calculations
�1,4,5�. There are many examples of such approaches, one of
the most popular being the R-matrix methods that use the
solutions of the Schrödinger equation in a finite sized cavity
to determine the behavior of the wave function in the inter-
action region �1,6–8�. The total wave function is constructed
by splicing the inner wave function onto the asymptotic
wave function.

This paper had its origin in a particular scattering prob-
lem, namely, the determination of the near threshold phase
shifts for positron scattering from the divalent group-II and
-IIB atoms. The dimension of the secular equations for
bound-state calculations on such systems are very large, for
example, a configuration-interaction �CI� calculation of the
e+Ca 2Po state resulted in equations of dimension 874 448
�9�. These dimensions are much larger than those that would
occur in a CI calculation of the 2Po ground state Ca−. The
exceptionally large dimensionalities occur because the va-
lence electrons tend to localize around the positron, thus giv-
ing a very slowly convergent partial wave expansion of the
wave function �10–15�. The ability to routinely solve the
secular equations associated with the CI basis using iterative
sparse matrix techniques �16� is one reason why CI calcula-
tions for positronic atoms �and, of course, for molecular sys-
tems� have been able to generate useful results.

Trying to generate scattering solutions for such systems
would be problematic for a number of reasons. For example,
application of the CI Kohn approach �5� to determine the
phase shifts for positron scattering from any group-II or -IIB
atom would result in linear equations with dimensions be-
tween 400 000 to 1 000 000. These are simply too large to be
solved by direct methods. Iterative methods for large linear
systems do exist, but there are no robust methods that abso-
lutely guarantee convergence �17�. The development of an
efficient linear solver for the class of problems that arise
from a basis set treatment of quantum scattering would likely
involve a good deal of initial experimentation and effort.
Similarly, the widely used R-matrix method with fixed
boundary conditions �7� requires the generation of all the
eigenvectors and eigenvalues of the Hamiltonian, which is
not feasible when the matrix dimensions exceed 100 000.

Very recently, a method was developed to extract phase
shifts from the positive energies of a pair of CI calculations
�18�. In that work, the energy shifts of a positive energy
pseudostate were used to tune a semiempirical optical poten-
tial which was then used to predict the close to threshold
phase shifts. This concept is refined in the present work and
it is shown that the reliability of the potential can be en-
hanced by tuning the potential to the energies of the two
lowest states. Next, the s- and p-wave phase shifts for posi-
tron scattering from Mg and Zn are computed from threshold
to the opening of the lowest-energy excitation channel. The
Mg and Zn atoms are interesting for positron scattering ex-
periments since Mg has been recently shown to possess a
prominent p-wave shape resonance �18�. The Zn system is
also interesting since the existence of a e+Zn bound state of
2Se symmetry �19� will manifest itself in a differential cross
section that is largest at backward angles �20�.

I. MODEL INDEPENDENT METHOD FOR GENERATING
PHASE SHIFTS

A. Box variational method

The idea behind the current method lies closest to the box
variational method �21–23�, which is exploited in quantum
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Monte Carlo �QMC� calculations of scattering �24–28�. In
the box variational method, one extracts the phase shift by
comparing the zero point energy of a finite size cavity to the
energy of the system wave function in the same cavity. In its
simplest incarnation for s-wave scattering, one diagonalizes
the Hamiltonian, in natural units where �=m=e=1,

H = −
1

2
�2 + V�r� , �1�

in a cavity of radius R. The wave function obeys the bound-
ary conditions ��0�=��R�=0. The positive energy states
�n�r�, with energy En, can be regarded as the small r part of
the exact scattering wave function, �n�r�, with that same
energy. The exact wave function can be written as
�n�r�=sin�knr+�� for r�R, where � is the phase shift and
the wave number kn=�2En. At the boundary, one has
sin�knR+��=0, giving

� = n� − knR �2�

�this expression assumes there are no bound states�.
For systems with nonzero angular momentum, the

asymptotic sin wave is replaced by the asymptotic form
��r�� j��kr�+tan����nk�kr�, where j��kr� and n��kr� are
spherical Bessel functions of the first and second kind. The
condition ��R�=0 gives the following expression for the
phase shift:

tan����kn�� = −
j��knR�
n��knR�

. �3�

B. Phase shifts using pseudostate energy shifts

The box variational method has two advantages: �a� it is
very simple to apply and �b� the B-spline basis sets currently
in use in many atomic structure applications easily satisfy the
necessary boundary conditions. However, there are other ba-
sis sets in use that do not satisfy the ��0�=��R�=0 bound-
ary conditions.

Consider the usage of a set of general L2 functions, u
= ��i�. These functions have a finite radial extent and thus the
basis can be regarded as defining a soft-sided cavity. A
simple procedure is used here to estimate the radius of the
resulting soft-sided box. Denoting E�u ,0�n to be the nth en-
ergy eigenstate resulting from a diagonalization of the V=0
potential in the basis u, then the effective radius of the soft
box is given by

R 	
X�n

�2E�u,0�n

=
X�n

k�u,0�n
, �4�

where X�n is the nth zero of the spherical Bessel function,
j��x�.

The potential V=V�r� is then diagonalized in the same
basis to give E�u ,V�n, and hence k�u ,V�n=�2E�u ,V�n. The
phase shift is then extracted using

tan���� = −
j��k�u,V�nR�
n��k�u,V�nR�

. �5�

Figure 1 shows the radial probability density, 
��r�
2
= 
�	c	r
	
2, of the four lowest-energy �=0 wave functions
computed by the diagonalization of a V=0 potential in a
basis of 30 Laguerre-type orbitals �LTOs� with the scale pa-
rameter �=1. The general definition for the LTOs was


	�r� = N	r� exp�− �	r�Ln	−�−1
�2�+2� �2�	r� , �6�

where the normalization constant is

N	 =��2�	��n	 − � − 1�!
�� + n	 + 1�!

. �7�

The function Ln	−�−1
�2�+2� �2�	r� is an associated Laguerre poly-

nomial that can be defined in terms of a confluent hypergeo-
metric function �29�. The probability densities go to zero for
r�60. The wiggles in the probability densities are not a
numerical artifact, rather they are a manifestation of the slow
convergence of the L2 basis to the exact continuum wave
function �30�.

Table I gives the energies, and the effective radius, of the
soft box for this basis as given by Eq. �4�. The four states
have an effective radius of about 61.5, which is consistent
with Fig. 1. It is reasonable to conclude that Eq. �4� gives an
estimate of the range of a pseudostate that is sufficiently
accurate to be useful.

This LTO basis was also used to diagonalize the Woods-
Saxon potential,

V�r� = −
V0

1 + exp� �r−W0�
a � , �8�

with the choice V0=0.97, W0=1, and a=0.05. The energies
and phase shifts derived from Eq. �5� are listed in Table I.
The phase shifts obtained by numerically integrating the
Schrödinger equation for the Woods-Saxon potential are also
listed in Table I and are exact to all quoted digits. The two
sets of phase shifts agree with each other to an accuracy of
about 2%.

This procedure has also been validated for p-wave scat-
tering. Figure 2 shows the result of diagonalizing the V=0
potential for p-wave scattering in a basis of 30 LTOs with
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FIG. 1. The radial probability densities 
��r�
2, for the four
lowest s-wave pseudostates resulting from a diagonalization of the
V=0 potential in a basis of 30 LTOs. The pseudostates have all been
normalized to unity.
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�=1 and �=1.0. Once again, the range of the pseudostate
solutions is roughly the same. Table I lists the effective box
radius for each pseudostate as derived from Eq. �4�.

The Woods-Saxon potential with the choice V0=0.173,
W0=4.0, and a=1.0 was then diagonalized in this basis. The
phase shifts obtained from Eq. �5� are tabulated in Table I
along with phase shifts generated by a numerical solution of
the Schrödinger equation. The two sets of phase shifts agree
to within 3%.

II. MODEL DEPENDENT METHOD FOR GENERATING
PHASE SHIFTS

It has long been known that the positive energy pseu-
dostates resulting from the diagonalization of the Hamil-
tonian in an L2 basis often give a reasonable approximation
to the exact scattering wave function over a finite range
�31–36�. Methods which exploit this result are sometimes
called stabilization methods. While convergence of the pseu-
dostate to the continuum wave function is relatively slow,
matrix elements formed by the pseudostate often have rea-
sonable convergence properties �30�. In effect, while the
pointwise properties of the wave function can be inaccurate,

the convergence in the mean of the wave function over a
suitable range can be quite good. This raises the possibility
that the expectation values of positive energy pseudostates
can be used to define a semiempirical optical potential to
describe low-energy scattering.

Our method proceeds as follows. The initial calculation
uses a reference basis of square integrable single particle
orbitals ��i�r��, designed to give a good representation of the
wave function in a bounded interaction region. The Hamil-
tonian H0 for a free particle with V=0 is diagonalized, yield-
ing the wave function

�0 = �
i

ci�i�r� , �9�

and the energy expectation,

Efree = ��0
H0
�0 . �10�

The wave function of the target atom is constructed from a
linear combination of configurations ��i�X��, of the same
symmetry as the ground state �X is the collective set of target
coordinates�. So one can write

gs�X� = �
i

ci�i�X� , �11�

while

Egs = �gs
Htarget
gs . �12�

The reference energy E0 is determined by diagonalizing the
Hamiltonian in the product basis gs�X��i�r�, to give

E0 = ��0
Htarget
�0 , �13�

where

�0 = �
i

ci�i�r�gs�X� . �14�

The basis sets ��i�r�� and ��i�X�� are then augmented by a
large number of additional functions �
i�r�� and ��i�X�� to
represent the correlations between the projectile and the tar-

TABLE I. Parameters derived from the diagonalization of the free-wave and Woods-Saxon potential in a
basis of 30 LTOs with �=1. The pseudostate energies for V=0 are denoted E0, while the Woods-Saxon
energies are denoted EWS. The radius of the soft box is denoted R0, while the phase shift from Eq. �5� is �.
The phase shift obtained by integrating the Woods-Saxon potential numerically is �exact. All energies and
lengths are given in natural units.

n E0 R0 EWS � �exact

�=0

1 0.001286 61.95 0.001170 0.1451 0.1470

2 0.005170 61.79 0.004705 0.2897 0.2852

3 0.011734 61.52 0.010736 0.4098 0.4092

4 0.021116 61.15 0.019362 0.5333 0.5148

�=1

1 0.002474 63.87 0.002450 0.0212 0.0211

2 0.007361 63.67 0.007147 0.1114 0.1103

3 0.014810 63.36 0.013964 0.3132 0.3073

4 0.024969 62.94 0.022844 0.6087 0.5903

0.00

0.01

0.02

0.03

0.04

0.05

0 10 20 30 40 50 60 70

|Ψ
(r

)|2

r (arbitrary units)

Ψ1 Ψ2Ψ3 Ψ4

FIG. 2. The radial probability densities 
��r�
2, for the four
lowest p-wave pseudostates resulting from a diagonalization of the
V=0 potential in a basis of 30 LTOs. The pseudostates have all been
normalized to unity.
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get constituents. None of these additional functions have the
same symmetries as those used in ��i�r�� and ��i�X��. This
augmented trial function can be written as

�1 = �
i,j

ci,j�i�X�� j�r� + �
i,j

di,j�i�X�
 j�r� . �15�

The trial wave function �1 is used to diagonalize Hexact giv-
ing an energy

E1 = ��1
Hexact
�1 . �16�

Next, the basis ��i�r�� is diagonalized in a parametrized po-
tential designed to describe the most important features of
the interaction between the projectile and the target. This
potential can be written formally as

Vopt�r� = Vdir�r� + Vpol�r� . �17�

The potential Vdir is the direct interaction between the target
and projectile. This can be approximated by the direct inter-
action between the projectile and the target Hartree-Fock
�HF� ground-state wave function HF, which can be slightly
different from gs. The polarization potential Vpol�r� is semi-
empirical in nature with the asymptotic form

Vpol�r� � −
	d

2r4 , �18�

where 	d is the static dipole polarizability of the target. In
previous work �18,20,37,38�, a simple one-parameter form

Vp1�r� = −
	d

2r4 �1 − exp�− r6/�6�� , �19�

has usually been adopted for Vpol�r�. It is thought that this
functional form has the incorrect shape at intermediate val-
ues of r, e.g., r	5a0. �The reasons why we originally be-
come suspicious about the reliability of Eq. �19� are not dis-
cussed here, but the results obtained later will clearly show
the limitations of this type of cutoff polarization potential.�
The present work will also use a more complicated expres-
sion for Vpol�r�, with an additional adjustable parameter AQ
to give an improved description of the potential between
target and atom. This form was

Vp2�r� = −
	d

2r4 �1 − exp�− r6/�6�� −
AQ

2r6 �1 − exp�− r8/�8�� .

�20�

While the second term has the functional form of a quadru-
pole polarization potential, it should be regarded as primarily
empirical in nature. This functional form was chosen as a
screened quadrupole-type potential because it was computa-
tionally convenient.

The energy expectation value of the ground state, or
lowest-energy pseudostate

Eopt = ��opt
Hopt
�opt , �21�

is adjusted by tuning the parameters in Vp1 until
Eopt=E1−Egs.

Determination of the Vp2 required additional information,
since there are two parameters, � and AQ, that need to be

fixed. In this case, the optical potential is tuned to two energy
levels rather than one. This does increase the overall time of
the calculation since it is necessary to extract the lowest two
eigenvalues from the CI calculation.

Once the optical potential has been fixed, it is a simple
matter to generate the exact continuum solution of the
Schrödinger equation for the Hamiltonian given by Eq. �17�.

A. Positron annihilation

Besides obtaining the phase shifts in the low-energy re-
gion, it is also possible to determine the annihilation param-
eter, Zeff �10,39,40�. The fundamental idea is to compare ex-
act and model potential calculations of Zeff, and so fix the
enhancement factor, G �38,41,42�. Enhancement factors were
first introduced in the calculation of the annihilation rate of
positrons in condensed matter systems �43–45�. They incor-
porate the tendency for attractive electron-positron correla-
tions to increase the electron density at the position of the
positron.

It has been shown that model potential calculations of
s-wave positron scattering from hydrogen and helium that
were tuned to give the correct phase shift at a reference en-
ergy also reproduced the low-energy behavior of Zeff�k� up to
a multiplying constant �i.e., G� �38�. The annihilation param-
eter for the model potential wave function follows the model
of Mitroy and Ivanov �38�, and is written as

Zeff =� d3r�Gv�v�r� + Gc�c�r��
�opt�r�
2, �22�

where �c�r� and �v�r� are the electron densities associated
with the core and valence electrons of the target atom, and
�opt�r� is the positron scattering function obtained in the
tuned model potential. The notation Zeff

��� is used to denote the
annihilation parameter for the �th partial wave.

For the core orbitals, Gc is set to 2.5 due to reasons out-
lined in Ref. �38�. The valence enhancement factor Gv is
computed by the simple ratio

Gv =
�v

CI

�v
model , �23�

where �v
CI is the annihilation rate of the positron with the

valence orbitals as given by the CI calculation and �v
model is

the valence annihilation rate predicted by the model potential
calculation with G=1.

III. FIXED CORE POTENTIALS

All calculations on the e+Cu, e+Mg, and e+Zn systems
used a fixed core Hamiltonian. The details of the core poten-
tials have been discussed previously �20,29,46–48�, but a
short description is worthwhile. The model Hamiltonian is
initially based on a HF wave function for the neutral atom
ground state. One- and two-body semiempirical polarization
potentials are added to the potential field of the HF core and
the parameters of the core-polarization potentials defined by
reference to the spectra of Cu, Mg+, and Zn+ �20,29,46,47�.
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The effective Hamiltonian for the systems with two va-
lence electrons �r1 and r2� and a positron �r0� was

H = −
1

2
�0

2 − �
i=1

2
1

2
�i

2 − Vdir�r0� + Vcp1�r0� + �
i=1

2

�Vdir�ri�

+ Vexc�ri� + Vcp1�ri�� − �
i=1

2
1

ri0
+

1

r12
− Vcp2�r1,r2�

+ �
i=1

2

Vcp2�ri,r0� . �24�

The direct potential �Vdir� represents the interaction with the
HF electron core. The direct part of the core potential is
attractive for electrons and repulsive for the positron. The
exchange potential �Vexc� between the valence electrons and
the HF core was computed without approximation.

The one-body core polarization potentials �Vcp1� are semi-
empirical in nature. They have the functional form

Vcp1�r� = − �
�m

	dg�
2�r�

2r4 
�m��m
 . �25�

The factor 	d is the static dipole polarizability of the core
and g�

2�r� is a cutoff function designed to make the polariza-
tion potential finite at the origin. The same cutoff function
has been adopted for both the positron and electrons. In this
work, g�

2�r� was defined to be

g�
2�r� = 1 − exp�− r6/��

6� , �26�

where �� is an adjustable parameter. The two-body polariza-
tion potential �Vcp2� is defined as

Vcp2�ri,r j� =
	d

ri
3rj

3 �ri · r j�gcp2�ri�gcp2�rj� , �27�

where gcp2�r� is chosen to have a cutoff parameter �cp2, ob-
tained by averaging the ��. The core dipole polarizabilities
were set to 0.4814a0

3 for Mg �29,46�, 5.36a0
3 for Cu �47�, and

2.294a0
3 for Zn �20�. The cutoff parameters for Mg were

�0=1.1795a0, �1=1.302a0, �2=1.442a0, �3=1.52a0,
���4=1.361a0, and �cp2=1.361a0. The cutoff parameters for
Cu were �0=1.9883a0, �1=2.03a0, �2=1.83a0, �3=1.80a0,
���4=1.91a0, and �cp2=1.91a0. The cutoff parameters for Zn
were �0=1.63a0, �1=1.80a0, �2=2.30a0, �3=1.60a0,
���4=1.83a0, and �cp2=1.83a0. This model has been used to
describe many of the features of neutral Be, Mg, Ca, and Sr
to quite high accuracy �29,46,49�.

IV. VERIFICATION FOR e+-Cu SCATTERING

Previously, a validation of the method was performed for
s-wave e+-H scattering �18�. In the present work the method
is further verified by computing the low-energy phase shifts
and annihilation parameters for s-wave and p-wave e+-Cu
scattering. The model copper atom used here has a dipole
polarizability of 41.65a0

3 �29� and, therefore, provides a more
stringent test of the procedure used to tune the shape of the
polarization potential than the previous test upon the e+-H
system �where 	d=4.5a0

3�.

The explicit CI calculation on the e+-Cu ground state and
the CI Kohn calculations of e+-Cu scattering closely follow
those previously reported �5,47,48�. Briefly, the wave func-
tion expansion consists of a large number of single particle
orbitals and includes terms with ��10. The single particle
orbitals are usually represented as Laguerre-type orbitals
�LTOs�.

The e+Cu ground-state calculation included orbitals up to
L�16 with a minimum of 18 electron LTOs and 18 positron
LTOs per �. The CI reference wave function �0 consisted of
the copper atom ground state multiplied by a positron basis
of 30 �=0 LTOs. The orbital basis was slightly reduced for
the calculation of the lowest-energy 2Po pseudostate. In this
case, the calculation included terms up to L=14 with a mini-
mum of 18 electron LTOs and 18 positron LTOs per �. The
CI reference wave function �0 in this case consisted of the
copper atom ground state multiplied by a positron basis of 33
�=1 orbitals.

One difficulty present in all CI calculations of positron-
atom interactions is the slow convergence of the energy with
L �14,48,50�. The convergence pattern of the atomic CI ex-
pansion �48,51–56�, suggests the use of an asymptotic analy-
sis that utilizes the result that successive increments
�EL= �EL− �EL−1 can be written as an inverse power series,
viz.,

�EL 	
AE

�L + 1
2�4 +

BE

�L + 1
2�5 +

CE

�L + 1
2�6 + ¯ . �28�

The L→� limits have been determined by fitting sets of �EL
values to asymptotic series with either 1, 2, or 3 terms. The
factors AE, BE, and CE for the three-term expansion are de-
termined at a particular L from four successive energies
��EL−3, �EL−2, �EL−1, and �EL�. The series is summed to �
once the linear factors have been determined.

Some expectation values of the e+Cu 2Se ground state and
the lowest-energy 2Po pseudostate in the L→� limits are
given in Table II. It should be noted that the leading term of
the inverse power series for the annihilation rate � is
A� / �L+1 /2�2 �48,55�. There is some uncertainty in the ex-
trapolation procedure and we estimate uncertainties of about
1% for the energy and 5% for the annihilation rate. However,
this does not impact the present verification exercise. The
extrapolation procedures were applied consistently to both
the CI calculations used to define the model potentials �and
enhancement factors�, as well as the independent CI Kohn
scattering calculations �5� used to validate the model poten-
tial calculations. Note that the errors in the extrapolated re-
sults introduced by the use of a finite basis set have a ten-
dency to fortuitously cancel out �48�.

The trial function �0 was then used to diagonalize the
model potential, Eq. �20�, with two different polarization po-
tentials. In the first instance, Eq. �19� was used and the pa-
rameter � varied until the energy matched that of the CI
calculation. This potential will be referred to as the Vp1 po-
tential. In the second instance, the parameters AQ and � of
Eq. �20� were both varied until both the energy of the ground
state and lowest-energy pseudostate were the same as the CI
calculations. This potential will be termed the Vp2 potential.
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The enhancement factor Gv was determined after the model
potentials were finalized. In the case of the Vp2 potential the
ratio in Eq. �23� was evaluated for the ground state. The
details of the model potential parameters are summarized in
Table III.

Figure 3 shows a comparison of the Vp1 and Vp2 polariza-
tion potentials for the 2Se symmetry. The Vp1 potential is
always smaller in magnitude than the 	d / �2r4� asymptotic
form. The Vp2 potential bulges below the 	d / �2r4�
asymptotic form and is stronger than a pure dipole potential
in the outer valence region of the atom. This is entirely rea-
sonable. The slow convergence of the single-center expan-
sion occurs as a result of the localization of the valence elec-
trons in the vicinity of positron �10–15�. This, in turn,
enhances the strength of the polarization potential in the
outer valence region.

The superiority of the Vp2 potential in describing the 2Se

bound state is apparent from Tables II and III. The Vp2 cal-
culation overestimates the core annihilation rate by 26%
while the Vp1 potential overestimates this parameter by more
than 120%. Additionally, the Vp2 potential gives a better es-

timate of the mean positron radius �rp. The value of 8.822a0
is about 2% smaller than the CI value of 9.037a0, while Vp1
gave �rp=8.46a0 �	6% smaller�.

Accurate phase shifts for the full e+-Cu scattering Hamil-
tonian were obtained from CI Kohn variational calculations
�5� of the e+-Cu system using exactly the same short-range
orbital basis sets as used in the CI calculation. The only
difference between the CI Kohn and regular CI basis sets is
the addition of two continuum basis functions �5�. The phase
shifts for the Vp1 and Vp2 potentials were obtained by inte-
grating the Schrödinger equation.

The Vp2 scattering length estimate of 12.8a0 is within 2%
of the CI Kohn estimate of the scattering length, namely,
13.05a0. The Vp1 scattering length of 12.4a0 is too small by
5%. Figure 4 shows the comparison between the model po-
tential s-wave phase shift and the CI Kohn phase shift for
k� �0,0.2�a0

−1. The Vp1 model slightly overestimates the CI
Kohn phase shifts �modulo �� over the entire range. The Vp2
fit to the CI Kohn phase shifts is clearly superior.

The phase shift for p-wave scattering is shown in Fig. 5
The Vp1 potential overestimates the CI Kohn phase shift as

TABLE II. Expectations values obtained from CI calculations of the bound 2Se states and the 2Po

pseudostates for the e+Cu, e+Mg, and e+Zn systems. The binding energy � �in hartree� is negative for bound
states and positive for pseudostates. The mean positron radius �rp is in units of a0. The core ���c� and
valence ���v� annihilation rates are given in units of 109 s−1. All of the values given in this table are the
results of extrapolating L→�.

System Symmetry � �rp ��c ��v

e+Cu 2Se −0.005124 9.037 0.0322 0.5035

e+Cu 2Po 0.001860 35.23 0.000413 0.0186

e+Mg 2Se −0.01704 6.930 0.0109 1.004

e+Mg 2Po 0.003989 13.87 0.00110 0.3729

e+Zn 2Se −0.003794 9.726 0.0244 0.4269

e+Zn 2Po 0.006885 20.24 0.000609 0.0190

TABLE III. Definitions of the Vp1 and Vp2 model potentials used to describe s-wave and p-wave scattering of e+-Cu, e+-Mg, and
e+-Zn. The s-wave potentials were tuned to the properties of the 2Se ground state and the lowest-energy pseudostate, while the p-wave
potentials were tuned to the two lowest-energy p-wave pseudostates. The binding energy � �in hartree� is negative for bound states and
positive for pseudostates. The mean positron radius and scattering length Ascat are in units of a0. The core and valence annihilation rates are
given in units of 109 s−1.

Atom Potential L 	d AQ � Gv � �rp ��c ��v Ascat

Cu Vp1 0 41.65 0.0 2.7434 18.94 −0.005124 8.46 0.0730 0.5036 12.4

Cu Vp2 0 41.65 480.0 3.6248 26.35 −0.005124 8.822 0.04088 0.5034 12.8

Cu Vp1 1 41.65 0.0 2.1231 20.01 0.0057801 35.18 0.00275 0.0186

Cu Vp2 1 41.65 360.0 3.0829 36.70 0.0057801 35.22 0.000868 0.0186

Mg Vp1 0 71.35 0.0 2.9927 13.12 −0.017072 6.21 0.0243 1.004 6.09

Mg Vp2 0 71.35 2280.0 4.4794 24.74 −0.017072 6.982 0.00738 1.004 7.23

Mg Vp1 1 71.35 0.0 2.5626 12.35 0.003989 12.90 0.00654 0.3729

Mg Vp2 1 71.35 1250.0 3.8406 28.15 0.003989 13.80 0.00115 0.3729

Zn Vp1 0 41.25 0.0 2.6579 9.91 −0.003794 9.34 0.0412 0.4269 14.3

Zn Vp2 0 41.25 430.0 3.5344 14.35 −0.003794 9.71 0.0219 0.4269 14.7

Zn Vp1 1 41.25 0.0 2.1604 10.45 0.006885 20.21 0.00177 0.0190

Zn Vp2 1 41.25 252.0 3.0117 17.45 0.006885 20.26 0.000770 0.0190
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the energy increases and there is a 15% discrepancy at k
=0.20a0

−1. The Vp1 potential also tends to underestimate the
phase shift for k�0.10a0

−1, although this is difficult to see
from the figure. The Vp2 potential reproduces the CI Kohn
phase shifts very well and the agreement is perfect within the
resolution of the graph.

Besides obtaining phase shifts, this procedure was used to
determine the valence annihilation parameter which is shown
in Figs. 6 and 7. The Vp2 enhancement factor of Gv=26.35
gives an s-wave annihilation parameter Zeff

�0� that is within 5%
of the explicit CI Kohn calculation over the entire energy
range. Somewhat surprisingly, Zeff

�0� from the Vp1 model is
almost the same as that from the Vp2 model.

This pattern is repeated in Fig. 7, where Zeff
�1� is plotted as

a function of k. The Vp1 potential tends to overestimate the
CI Kohn values at the higher momenta with the discrepancy
at k=0.20a0

−1 being 15%. However, the Vp2 potential does an
excellent job of reproducing the CI Kohn Zeff

�1� over the entire
momentum range. The Vp2 Zeff

�1� is too large at the higher
momentum, but the difference is only 2% at k=0.20a0

−1.
The final confirmation of the improved quality of the Vp2

potential comes from the comparisons of the pseudostate ex-
pectation values in Tables II and III. The �rp given by Vp2 is
closer to the CI value than the Vp1 value. Furthermore, the
Vp2 potential is better than the Vp1 potential at reproducing
the CI core annihilation rate of 0.0322�109 s−1 �this value
assumes Gc=1�.

V. POSITRON SCATTERING FROM MAGNESIUM

A. CI calculations

Although many of the specifics of the calculations upon
e+Mg have been reported previously �18,57�, further details
concerning the wave function construction are given here.
The trial wave function adopted for the CI calculations con-
sists of a linear combination of states which are antisymmet-
ric in the interchange of the two electrons,


�;LSa = �
i

ci
�i;LSa. �29�

Each antisymmetrized state is constructed as a linear combi-
nation of coupled but not antisymmetrized states. Two elec-
trons �particles 1 and 2� are coupled first to each other, then
the positron �particle 0� is coupled to form a state with net
angular and spin angular momentum, L and S. The antisym-
metric states are written as


�i;�ab�LISIpLSa =
1

�2�1 + �ab�
�
�a1b2�LISIp0

+ �− 1��a+�b+LI+SI
�a2b1�LISIp0� ,

�30�

where the subscript by each orbital denotes the electron oc-
cupying that particular orbital.
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The e+Mg CI basis was constructed by letting the two
electrons and the positron form all the possible configura-
tions with a total angular momentum of L, with the two
electrons in a spin-singlet state, subject to three selection
rules,

max��0,�1,�2� � L , �31�

min��1,�2� � Lint, �32�

�− 1���0+�1+�2� � + 1 or − 1. �33�

In these rules, �0, �1, and �2, are, respectively, the orbital
angular momenta of the positron and the two electrons. The
even �odd� parity states require �−1���0+�1+�2�� +1 �−1�.

The Hamiltonian for the e+Mg 2Se state was diagonalized
in a CI basis including orbitals up to �=12. There were a
minimum of 15 radial basis functions for each �. There were
19 �=0 positron orbitals. The largest 2Se calculation was
performed with L=12 and Lint=4. The Lint parameter does
not have to be large since it is mainly concerned with de-
scribing the more quickly converging electron-electron cor-
relations �46�. The CI basis for the e+Mg 2Po symmetry in-
cluded orbitals up to �=14. There were a minimum of 14
radial basis functions for each �. There were 20 �=1 positron
orbitals. The largest 2Po calculation was performed with L
=14 and Lint=3.

A summary of e+Mg expectation values taken to the L
→� limit are given in Table II. The binding energy �, for
each symmetry, is calculated with respect to the energy of
the Mg ground state using the basis for that symmetry. The
overall binding energy of the 2Se ground state was
−0.017 072 hartree, with the first pseudostate at 0.002 503
hartree. The energies of the two lowest pseudostates of 2Po

symmetry were 0.003 989 and 0.012 012 hartree, respec-
tively.

B. Model potential calculations

The � parameter of the Vp1 potential was tuned to repro-
duce the energies of the lowest 2Se and 2Po states. The values
of � and the expectation values of the lowest state of each
symmetry are given in Table I. The values of AQ and � for
the Vp2 potential were tuned to the lowest two energies. Ex-

amination of the expectation values of Tables II and III re-
veals that the Vp2 potential again does a better job at repro-
ducing the CI expectation values. The Vp1 potential
underestimates the mean positron radius by 10% and further
overestimates the core annihilation rate by a factor of 2. The
Vp2 potential gives a value of �rp that is too large by 1%.
The Vp2 underestimation of �c is about 30%. While the Vp2

model potential may not be perfect, it does a better job of
describing the radial distribution of the positron density than
the Vp1 potential.

The situation for the 2Po pseudostate is similar to that for
the 2Se state. The Vp1 potential underestimates the mean pos-
itron radius by 10% and overestimates the core annihilation
rate by a factor of 6. The Vp2 potential, on the other hand,
gives an �rp within 1% of the CI value and overestimates the
core annihilation rate by only 5%.

The s- and p-wave phase shifts are plotted in Fig. 8. The
10% difference between the two model potential scattering
lengths manifests itself in the slightly different s-wave phase
shifts. The difference between the Vp1 and Vp2 potentials is
larger for the p-wave phase shift, although both predict a
resonance at k	0.09a0

−1. The d-wave phase shift plotted in
Fig. 8 was computed with the Vp2 p-wave potential. The �
�2 phase shifts used in the computation of the total cross
section also used the Vp2 p-wave potential.

Figure 9 shows the elastic cross section for e+-Mg scat-
tering below the Ps formation threshold �at k	0.25a0

−1� as
computed with the Vp2 potentials. The p-wave resonance
leads to the total elastic cross section achieving a peak value
of 4800a0

2.
The existence of the resonance in the phase shift also

leads to a resonance in the annihilation parameter Zeff �18�.
The curve in Fig. 10 was computed with an enhancement
factor of Gc=2.5 for core annihilation, an s-wave valence
enhancement factor of Gv=24.7, and a p-wave enhancement
factor of Gv=28.2. The total Zeff shown in Fig. 10 is almost
completely dominated by the contribution from the p wave
and the value of Zeff at the resonance peak was 1310.

The resonance parameters were determined by performing
a fit to the function
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� = �0 + a�E − �R� + tan−1� �

2��R − E�� + bE2. �34�

This gave a value of �R=0.003 51 hartree for the resonance
position and a width of �=0.003 90 hartree.

C. Reliability of the resonance prediction

The possible sources of error in the e+-Mg calculations
are �a� the reliability of the underlying model potential for
the CI calculation, �b� the extent to which the CI calculations
have converged, and �c� the ability of the scattering model
potential to reliably reproduce the scattering parameters.

The cutoff parameter for the positron part of the core
polarization potential �refer to Eq. �25�� is chosen to be the
same as the cutoff for the electron. This is likely to underes-
timate the strength of the positron interaction since there is a
good deal of evidence for closed shell systems that suggests
the positronic part of the polarization potential is stronger
than the electronic part �50�. However, the impact of this is
likely to be small since the core polarizability of 0.4814a0

3 is
more than 100 times smaller than the neutral atom polariz-
ability of 71.35a0

3. Any correction would tend to shift the
resonance to a lower energy and increase the height of the
maximum in the cross section.

The CI calculations of the 2Se ground state are believed to
be converged to about 2% in the energy. An independent
calculation of the e+Mg ground state has been done with the
fixed core stochastic variational method �FCSVM� �58�. The
FCSVM Hamiltonian is very similar to the fixed core Hamil-
tonian used for the present calculation and the current best
FCSVM estimate of the binding energy is 0.017 117 hartree.
However, it has also proved possible to make an estimate of
the variational limit of the FCSVM calculation. This estimate
is between 0.017 35 and 0.017 40 hartree �58�, which is
about 2% more tightly bound than the CI calculation. The
calculation of the 2Po state is expected to have an accuracy
similar to that of the ground state.

The existence and position of the resonance is indepen-
dent of the exact form of Vpol. Besides the calculations re-
ported here, alternate calculations with some other parametri-
zations were reported earlier �18�. All of these calculations
gave a resonance almost at the same position and magnitude.
The reason for this lies in the accident that the energy of the
2Po pseudostate, at k=0.0893a0

−1, lies close to the center of
the resonance. At this energy, the determination of the phase
shift will be largely model independent since the stabilization
concept ensures that the L2 wave function is a reasonable
approximation to the actual continuum wave function. The
phase shifts of the two potentials at the energy of the pseu-
dostate were �1=1.157 and �1=1.153 rad, for Vp1 and Vp2,
respectively. Additional plots of the phase shifts obtained
with other functional forms for Vpol have tended to have a
common intersection point near k	0.089a0

−1.
Finally, the simple potential independent approach of Eq.

�5� has been applied to determine the phase shift at the pseu-
dostate energy. The energy of the positron p-wave LTO basis
in the V=0 potential was 0.007 572 hartree. The radius of the
box giving this energy is Rbox=36.5a0. Evaluating Eq. �5� at
k=0.0893a0

−1 gives �=1.16 rad.

VI. POSITRON SCATTERING FROM ZINC

Positron binding to zinc has been known with some de-
gree of certainty since 1999 �19,20�, following some earlier,
less conclusive work �59–61�. The neutral zinc atom has an
ionization potential of 0.345 23 hartree �62� and a polariz-
ability of 38.8�0.8a0

3 �63�. The present model potential for
the Zn2+ core predicts an ionization potential of 0.335 19
hartree and a polarizability of 41.25a0

3 �20�.
The present CI calculations upon the e+Zn ground state

used the same core potential as the earlier CI calculations
�20�, but the size of the basis has been enlarged. The maxi-
mum number of partial waves has been increased to L=12,
the number of LTOs per � has been increased to 16, and
finally, Lint was increased from 3 to 4. The overall dimension
of the CI calculation has increased by an order of magnitude.
The summary of e+Zn expectation values for the series of
calculations with increasing L are given in Table IV. The
energy of the Zn ground state with respect to the Zn2+ core
for the electron basis was −0.995 492 51 hartree.

An examination of Table IV reveals that the present ex-
trapolated binding energy of 0.003 794 4 hartree is within
2% of the previously obtained binding energy. To a certain
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extent, this high level of agreement is fortuitous. The method
used to extrapolate the energy increment to the L→� limit
in Ref. �20� had an inherent tendency to overestimate the
binding energy. However, this compensated for the tendency
of a finite dimension LTO basis to increasingly underesti-
mate the energy increment as L→� �48�. The lowest posi-
tive energy 2Se pseudostate had an energy of 0.002 470 6
hartree above the Zn ground state.

The Hamiltonian for the e+Zn 2Po state was diagonalized
in a CI basis including orbitals up to �=10. The two elec-
trons were in a spin-singlet state, with a minimum of 16
radial basis functions for each �. There were 20 �=1 positron
orbitals. The largest calculation was performed with L=10
and Lint=3. The energy of the lowest-energy 2Po pseudostate
was 0.006 885 hartree above threshold. Other expectation
values for this state are listed in Table II. The second lowest
2Po pseudostate was located at 0.019 055 hartree.

The parameters for the Vp1 and Vp2 potentials, tuned to the
CI data in Table II, are listed in Table III. A casual glance at
the entries in these two tables reveals that the Vp2 potential
again does better at reproducing the properties of the 2Se

physical state and the 2Po pseudostate.
The s- and p-wave phase shifts are plotted in Fig. 11. The

small e+Zn binding energy leads to a large value for the
scattering length, namely, 14.7�0.1a0. The energy region
below k�0.144a0

−1 would be interesting for an experimental
investigation as the s-wave phase shifts are in a different
quadrant from all the other phase shifts. Consequently, the
differential cross section will be larger at backward angles
than at forward angles. This peaking of the near threshold
differential cross section at backward angles is a signature of
the existence of the e+Zn bound state �20�.

The low-energy elastic cross section below the Ps forma-
tion threshold as shown in Fig. 12 was computed with the
Vp2 potentials. The phase shifts for ��1 are taken from the
�=1 model potential. The large value of the cross section at
E=0 is characteristic of a potential supporting a weak bound
state. The quickly rising p-wave phase shifts leads to a shoul-
der in the cross section near k	0.2a0

−1. The p wave causes a
more pronounced structure in Zeff, which is easily noticeable
in Fig. 13 as the bump at k	0.2a0

−1.
The experimental observation of the e+Zn p-wave reso-

nance precursor in the cross section would be complicated by
the large s-wave cross section which tends to obscure the
feature in the total elastic cross section. The resonance struc-
ture would be most visible in a measurement of Zeff or in a
differential cross section.

TABLE IV. Results of the CI calculations for e+Zn atoms for a given L. The E column gives the energy with respect to the doubly ionized
frozen core and � is the binding energy with respect to the lowest-energy dissociation channel at E=−0.995 492 51 hartree. The radial
expectation values �in a0� of the electron and positron are listed in the �re and �rp columns. The ��v and ��c columns give the valence and
core annihilation rates �in 109 s−1�. The results in the row labeled 10� are taken from an earlier calculation �20�. The results under the
heading L→� incorporate an L→� correction.

L Ne Np NCI �EL ��L �reL �rpL ��cL ��vL

0 19 16 3040 −0.97217702 −0.02331549 2.76525 29.69360 0.0002583 0.0002144

1 37 32 11248 −0.99240348 −0.00308903 2.75421 26.43204 0.0009532 0.0023477

2 55 48 30112 −0.99441912 −0.00107339 2.75879 21.51407 0.0037086 0.0144975

3 71 64 58336 −0.99562488 0.00013237 2.77148 16.80037 0.0086564 0.0456435

4 87 80 101264 −0.99653983 0.00104732 2.78651 13.89104 0.0133632 0.0872535

5 103 96 153744 −0.99719181 0.00169930 2.79963 12.32951 0.0167251 0.1279350

6 119 112 210576 −0.99768537 0.00219287 2.80986 11.46661 0.0189393 0.1632760

7 135 128 271248 −0.99805166 0.00255915 2.81770 10.94916 0.0204117 0.1929861

8 151 144 334096 −0.99832262 0.00283011 2.82371 10.61913 0.0214113 0.2176885

9 167 160 398864 −0.99852427 0.00303176 2.82833 10.39734 0.0221079 0.2382207

10 183 176 463632 −0.99867583 0.00318336 2.83190 10.24428 0.0226023 0.2553248

11 199 192 528400 −0.99879107 0.00329856 2.83471 10.13275 0.0229647 0.2696997

12 215 208 593168 −0.99887979 0.00338728 2.83692 10.05093 0.0232336 0.2818534

10* �20� 104 97 63712 −0.9983995 0.0030385 2.82927 10.32455 0.022292 0.24023

L→� extrapolations

Present –0.9992869 0.0037944 2.8475 9.72595 0.02434 0.42692

Previous �20� –0.999092 0.003731 2.8451 9.9139 0.02393 0.3927
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VII. COMPARISONS WITH PREVIOUS WORK

The present calculations are not the only calculations of
the e+Mg and e+Zn scattering systems. However, the other
calculations were of a much more speculative nature
�37,38,61,64–68�. For example, the many-body perturbation
theory-based calculation of Gribakin and King predicted that
the 2Po symmetry of e+Mg had a bound state �66�. None of
the other calculations on the e+-Mg system gave a cross sec-
tion with the prominent 2Po shape resonance.

While some previous model potential calculations were
based on reasonable estimates of the e+Mg binding energy
�37,38�, the uncertainties in defining the functional form of
the polarization potential detracted from the reliability of the
p-wave phase shift. The present calculations are more defini-
tive, and the main source of uncertainty is in the definition of
the underlying core polarization potential in the CI calcula-
tions.

VIII. SUMMARY

An energy-fitting technique has been developed and used
to determine the phase shifts for low-energy positron-atom
scattering from magnesium and zinc. The phase shifts are
determined by tuning an optical potential to the energy of a
bound state or a positive energy state. The tuning of an op-
tical potential to features such as bound state energies and

resonance positions is well known. However, using a pseu-
dostate energy shift to tune the optical potential is unconven-
tional �18�. One improvement over our previous implemen-
tation is the use of a second energy to fine-tune the shape of
the optical potential. Another possible improvement requir-
ing further research would be to use other expectation values
�e.g., the mean positron radius� to further refine the shape of
the optical potential. The use of experimental information to
tune optical potentials is known �e.g., the role of the deuteron
radius in tuning the n-p potential�.

There are two different concepts that can be regarded as
providing motivation for the present approach. The first is
the stabilization concept, namely, a positive energy pseu-
dostate will provide a reasonable approximation to the scat-
tering state with that energy over a finite radial range �31,32�.
The alternate motivation comes from the box variational
method, namely, that the energy shift of the wave function in
a hard-sided box is used to estimate the phase shift �21–23�.
Diagonalization of the Hamiltonian in a finite dimension
LTO basis can be regarded as equivalent to diagonalizing the
Hamiltonian in a soft-sided box.

The most significant result of the present investigation is
the prediction of a close to threshold 2Po shape resonance for
elastic scattering from magnesium. There is no experimental
evidence for the existence of shape resonances in positron-
atom or positron-molecule scattering �50�. The present pre-
diction has the virtue of being readily amenable to experi-
mental verification. Indeed, the Detroit group has measured
the total cross section for positron-magnesium scattering
down to an energy of 2.0 eV �69�. As can be seen from Fig.
14, the lowest energy for which their measurements were
done is just too high to detect the resonance. An earlier ex-
periment measured down to an energy of 1.0 eV �70�, but
these results are not shown in the figure as they are similar to
those in Ref. �69�, while having larger reported errors. Their
most recent e+-Mg measurements went down to 0.12 eV,
however, they only reported the positronium formation cross
section �71�.
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With some reflection on the differences between positron-
atom and electron-atom interaction potentials it is not sur-
prising that the magnesium atom supports a shape resonance.
It has been noticed that the positrons are more strongly at-
tracted to closed �sub�shell atoms than are electrons �50�
�this result is based on results for systems with 2Se symme-
try�. Since there is a low-energy 2Po shape resonance in
e−-Mg scattering �72,73�, one could reasonably infer that the
e+-Mg system would also have a 2Po shape resonance or,
alternatively, support a bound state.

The e+-Zn cross section has a broad feature in the p wave
at about 0.6 eV that could be interpreted as a resonance or a
precursor to a resonance. It should be noted that a similar
feature occurs in e−-Zn scattering �74� at roughly the same
energy. Figure 15 compares the p-wave phase shift from the
B-spline R-matrix �BSRM� calculation of e−-Zn scattering
�74� with the present e+-Zn phase shift. While the BSRM is
probably not converged with respect to the enlargement of
the channel space, the low-energy elastic cross section does a
reasonable job at reproducing the electron transmission ex-
periment of Burrow et al. �75�. The similarity between the
electron and positron p-wave phase shifts for k�0.10a0

−1 is
expected since the low-energy phase shifts will be dominated
by the long-range polarization potentials. It is interesting to
speculate upon whether the polarization potential will lead to
e+-Zn phase shifts that are larger than the e−-Zn phase shifts

for the 2Po symmetry, as well as the 2Se symmetry. The com-
parison depicted in Fig. 15 shows that the e−-Zn 2Po phase
shift is larger than the e+-Zn phase shift for k�0.14a0

−1. This
is possibly due to the electron seeing an attractive static po-
tential as it penetrates the centrifugal barrier, while the pos-
itron experiences a repulsive potential. However, it would be
best to test this conjecture using models for the Zn target,
which are exactly the same.

The existence of the e+-Mg resonance and the structure in
e+-Zn suggest that other group-II atoms might support a 2Po

shape resonance. The dipole polarizability of beryllium is
only a bit smaller than that of Zn, so some sort of structure in
the 2Po partial wave is expected. The cadmium atom, on the
other hand, has a larger polarizability than zinc, so a more
pronounced resonance should be expected.

The actual polarization potentials used here represent a
departure from those used in some previous calculations of
positron-atom interactions �20,37,38,76,77�. All of these pre-
vious works use polarization potentials with a cutoff function
that leads to a potential that is always smaller in magnitude
than that of the 	d / �2r4� asymptotic potential. The present
polarization potentials have bulges in the outer valence re-
gion that are larger in magnitude than the asymptotic poten-
tial in that region.

A possible area of application of the current approach
would be to positron-molecule scattering. However, this
would require improvements in the technology of positron-
molecule CI calculations. The best calculations so far carried
out �78–80� do not treat the electron-positron dynamics
nearly was well as the present CI calculations on atoms.
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