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We report on the results of a multichannel calculation of fine-structure transition cross sections for collisions
of ground-state Ti with He. We find significant suppression of fine-structure level quenching over a wide range
of collision energies. We show that the suppression is due to a mechanism proposed by �Hancox et al., Nature
�London� 431, 281 �2004�� to explain similar suppression of Zeeman relaxation in collisions of magnetically
trapped rare-earth-metal atoms with cold He atoms. We find that the quenching rates are sensitive to the value
of the Born-Oppenheimer adiabatic potential surfaces of the Ti-He system in the region of the inner repulsive
wall. Adjusting the ab initio potentials for TiHe, available in the literature, we find good agreement with
laboratory measurements.
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I. INTRODUCTION

Fine-structure-changing collisions control the cooling of
interstellar clouds �1� and the heat budget of planetary atmo-
spheres �2,3�, allow for diagnostic probes of laboratory and
astronomical plasmas �4� and, therefore, have been the topic
of numerous theoretical and laboratory investigations �5–9�.
In the past decade, attention in the atomic collision commu-
nity has shifted to understanding and controlling cold and
ultracold matter. The advances that led to the first laboratory
demonstrations of Bose Einstein condensation �BEC� in
atomic vapors were confined to species in which the inter-
atomic interaction is largely isotropic. The recent focus is on
species that involve intrinsic, internal, orbital angular mo-
mentum, which leads to anisotropic interactions among the
collision partners �10–12�. Collisions involving atoms and
molecules that have nonzero internal orbital angular momen-
tum are expected to exhibit large inelastic cross sections that
can lead to the loss of the atoms in a magnetic trap�12,13�.
Doyle and co-workers �13� suggested the use of rare-earth-
metal atoms to address the problem of Zeeman relaxation
and trap loss due to anisotropic interactions with the buffer
gas. They argued that, in the rare-earth metals, angular cou-
pling effects may be suppressed due to the screening of the
open d-shell electrons by the closed outer s-shell electrons.
Detailed calculations �14–16� and laboratory measurements
�13� of m-changing collisions of rare-earth-metal atoms with
He have validated the general conclusion of that thesis.

In this study we consider the fine structure �FS� relaxation
of titanium with a He buffer gas. Because FS transitions are
also driven by anisotropic interactions �17�, one expects a
similar suppression. Here we undertake a study of fine-
structure relaxation in the Ti-He system that spans a collision
energy range from cold to superthermal. At higher energies
many partial waves participate in the collision, and aniso-

tropy effects become increasingly important. Previous work
focused on systems involving a strong magnetic field, but we
consider the zero-field limit where the Zeeman levels are
degenerate. Our choice to study the Ti-He system is several-
fold. Cold He is the buffer gas of preference in trapping
experiments �18�, the Ti-He system was studied in the
Zeeman-relaxation experiments of Doyle, and laboratory
measurements of FS relaxation in this system have recently
become available �19�. The results of our calculations add to
the collision database for Ti, which has many applications
including its use as a dopant in hydrogen-storage applica-
tions �20�.

In Sec. I we briefly summarize the multichannel theory
used in these calculations. A more detailed discussion of the
underlying theory has been given in Ref. �17�. Our results
are presented in Sec. II, and they suggest that the screening
mechanism of Doyle is also responsible for the suppression
of FS transitions over a wide collision energy range. At
higher collision energies, in the thermal to superthermal
range, suppression may be less effective since the system
samples regions where the He atom has significant overlap
with the electron cloud of the Ti atom. We introduce a small
modification of the ab initio, ground, Born-Oppenheimer
�BO� potentials for the TiHe molecule in order to bring the
results of the calculations into agreement with our laboratory
measurements. Our calculations suggest that a more accurate
description of the BO curves, in the region of the inner re-
pulsive wall, is required in order to make definitive predic-
tions for cross sections at thermal and higher collision ener-
gies. In the Appendix we briefly compare the theory
presented here with those used in previous calculations for
m-changing transitions. Atomic units are used throughout,
unless otherwise stated.

II. THEORY

We apply a theory of fine-structure excitation of complex
atoms that was introduced in Ref. �17�, and employed in �21�*bernard@physics.unlv.edu
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to estimate collisional fine-structure excitation rate coeffi-
cients for two oxygen atoms in their 3PJ manifold. Here we
consider the special case where one atom is a closed S-shell
system. We seek solutions to the multichannel scattering am-
plitudes Fj��R�, where the channel indices j� are the total
and azimuthal electronic angular momentum quantum num-
bers for the TiHe diatom. They satisfy the Schrödinger equa-
tion

�2Fj��R� − 2� �
j���

Vj�
j����R,�,��Fj����R� + kj

2Fj��R� = 0,

�1�

where � is the reduced mass of the Ti-He system, kj
2 is the

wave number for channel j� which depends on the FS en-

ergy defects of the TI atom, and Vj�
j����R ,� ,���V� �R ,� ,�� is

a multichannel potential discussed below. We ignore nona-
diabatic couplings, which are expected to be small �17�.

For two atoms a and b with total electronic angular mo-
menta ja and jb, respectively, the anisotropic interatom po-
tential is given by �17�

V�R,�,�� = �
��

�
LS

�j, j�, ja, jb, ja�, jb��
1/2�L,S�

��
�1

D�,�1

j ��,�,− ��D�1,��
j� ��,− �,− ��

��L S j

� � − �1
��L S j�

� � − �1
�

�	la sa ja

lb sb jb

L S j

	la� sa� ja�

lb� sb� jb�

L S j�

��SL�R� �2�

where

D�,��
j ��,�,− �� � �j��exp�− i�jz�exp�− i�jy�exp�i�jz��j��


�3�

is a Wigner rotation matrix, L and S are the total electronic
orbital and spin angular momenta of the system, la , lb and
sa ,sb are the individual atomic orbital and spin angular quan-
tum numbers, respectively, j , j� are the total diatomic elec-
tronic angular momenta, and ��SL�R� are the Born-
Oppenheimer eigenenergies for the molecular system formed
in the approach of the two atoms. Equation �2� is applicable
if we can make a one-to-one correspondence between the
asymptotic state quantum numbers and the quantum numbers
that itemize the Born-Oppenheimer states �17�. Such was the
case considered in Ref. �21�, that of two atoms in the �2S+1�PJ
manifold. It also applies to the case considered here, one
atom in an la=0,sa=0, ja=0 state �the He atom� and the
other in j= jb=4,3 ,2 states �the Ti atom�. Inserting these
quantum numbers into Eq. �2� we arrive at the simplified
expression

V�R,�,�� = �
�1

�j, j��1/2D��1

j ��,�,− ��D�1��
j� ��,− �,− ��

� �
�MS

�L S j

� MS − �1
��L S j�

� MS − �1
����R� ,

�4�

where L= lb=3, S=sb=1, and we itemized the BO potentials
���R� solely in terms of the projection of the orbital elec-
tronic angular momentum on the internuclear axis. In deriv-
ing Eq. �4� we made use of the fact that

	0 0 0

lb sb jb

L S j

 =

	L,lb
	S,sb

	 j,jb

�j,L,S�1/2 . �5�

To gain a better understanding of the mechanism that induces
fine-structure-changing transitions, in the molecular frame-
work, we reparametrize the Born-Oppenheimer potentials to
have the form

���R� = �̄�R� + 	��R� , �6�

where �̄�R� is the mean value of ���R� and 	��R� is the
energy defect from it. Inserting this expression into Eq. �3�
we obtain

V� �R,�,�� = 	 j,j�	�,���̄�R� + W� �R,�,�� , �7�

where W� �R ,� ,�� has the same form as Eq. �4� except that
the term ���R� is now replaced with 	�. The first term in Eq.
�7� is isotropic and diagonal in the fine-structure quantum
numbers, but the anisotropic term W� �R ,� ,�� induces fine-
structure transitions. The strength of the couplings associated
with those transitions is proportional to the defects 	��R�.

In time-independent scattering theory, it is useful to ex-
pand the scattering amplitude into a sum of partial waves and
express the scattering equations in terms of radial ampli-
tudes. Following the procedure in Ref. �17� we define

Fj��R� = �
lm

�
JM

� j l J

� m − M
��J�1/2Ylm����

Gjl
JM�R�
R

,

�8�

where Gjl
JM�R� is a radial amplitude. According to 3j selec-

tion rules, the indices J ,M in Eq. �8� represent the total an-
gular momentum of the diatom. Inserting Eq. �8� into Eq.
�1�, we obtain the coupled radial equations �17�.

d2Gjl
JM�R�

dR2 −
l�l + 1�

R2 Gjl
JM�R� − 2��

j�l�

Vjl
j�l��R,JM�Gj�l�

JM �R�

+ kj
2Gjl

JM�R� = 0 �9�

for a given J and M. The multichannel radial potential is
given by �17�
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Vjl
j�l��JM,R� = �

�MS

�
�

�j, j��1/2�l,l��1/2

�� j l J

� 0 − �
�� j� l� J

� 0 − �
�

��L S j�

� MS − �
�

��L S j

� MS − �
����R� . �10�

In this expression anisotropy manifests as nonvanishing cou-
plings among channels of different orbital angular momenta.
Vjl

j�l��JM ,R� couples channels that satisfy angular momen-
tum triangle inequalities as is evident in Table I. If the energy
defects among the Born-Oppenheimer potentials �� are ig-
nored, 3j symbol closure rules can be applied in Eq. �10�,
and Vjl

j�l��JM ,R� reduces to the standard form for an isotropic
radial potential, which does not contain couplings between
channels of different l and j. From this perspective, aniso-
tropy is a consequence of splittings in the BO energy levels
of different �.

Vjl
j�l��JM ,R� is in block-diagonal form with respect to the

quantum numbers JM, and it is useful to itemize the channel
indices, for given JM, as in Table I. Solving the radial equa-
tions and imposing scattering boundary conditions on the
asymptotic limit R→
 we extract the multichannel radial S
matrix Sj�l�

jl �JM�. The scattering amplitude for the system to
undergo a transition from electronic state j��� into j� and
for the nuclei to scatter into solid angle d��d� sin �d�
following an initial approach defined by angles �i�i is �17�

f j�
j������;�i�i�

= �
lm

�
l�m�

�
JM

�J�� j l J

� m − M
�

�� j� l� J

�� m� − M
�

�Ylm����Yl�m�
� ��i�i�

2�i

kj�
1/2kj

1/2 �	 j,j�	l,l�

− Sj�l�
jl �JM�� . �11�

The total cross section for Ti to undergo a transition from
state jb�= j� to jb= j is

��j� → j� =
v j

v j�

1

2j� + 1 �
���

1

4�
� d� d�i�f j�

j������;�i�i��2,

�12�

where v j� ,v j are the initial and final velocities of the projec-
tile, respectively. Evaluating Eq. �12� we obtain

��j� → j� =
�

kj�
2 �2j� + 1�

�
l,l�

�
J

�2J + 1��Tj�l�
jl �J��2 �13�

where

Tj�l�
jl �J� = 	 j�l�

jl − Sj�l�
jl �J�

is a radial partial T matrix.

III. RESULTS

In its ground state, titanium has an electronic configura-
tion in which a pair of 3d2 electrons are “submerged” �22� in
a closed 4s2 shell. It is characterized by a 3FJ term that
consists of fine-structure levels J=4,3 ,2 with splittings �23�
EJ=3-EJ=2=1.55�10−3Ry and EJ=4-EJ=2=3.53�10−3Ry. In
the close approach of Ti with He, the system is described by
the BO potentials of the TiHe diatom. They have recently
been calculated by Klos et al. �22�, and in Fig. 1 they are
plotted as a function of interatom distance. In that figure, it is
evident that the BO energies are nearly degenerate. At the
well minimum, the largest energy defect, between the 3� and
3
 states, has the value 0.187 cm−1 �22�. In contrast, sys-
tems in which the valence electrons are not submerged, such

TABLE I. Itemization of quantum numbers associated with the channel indices for a given value of total
angular momentum J. The set of 21 channels can be decomposed into two subsets of different parity. The
channel orbital angular momenta l are expressed in terms of J.

Parity �−1�J Parity �−1�J+1

Channel l j Channel l j

1 J+2 2 12 J+1 2

2 J 2 13 J−1 2

3 J−2 2 14 J+3 3

4 J+2 3 15 J+1 3

5 J 3 16 J−1 3

6 J−2 3 17 J−3 3

7 J+4 4 18 J+3 4

8 J+2 4 19 J+1 4

9 J 4 20 J−1 4

10 J−2 4 21 J−3 4

11 J−4 4 - - -
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as CHe, OHe, etc., splittings on the order of tens of cm−1

�15� are typical.
The suppressed BO energy splittings are a consequence of

screening by the outer closed 4s2 shell charge density of the
inner d-shell electrons �22�. According to the discussion in
the previous sections and Eq. �7� the resulting diminished
“couplings” 	i should lead to an inhibition of fine-structure-
changing transitions. In Fig. 2 we plot the calculated values
for the j�=3→ j=2 fine-structure-quenching cross sections.
For the sake of comparison, we also plot the j�=3→ j=3
elastic scattering cross sections. The latter are a factor of, at
least, 104 greater in magnitude than the quenching cross sec-
tion for the entire energy range considered. At a collision
energy E�0.43 K, the quenching cross sections exhibit a
pronounced local maximum, which is also mirrored in the
elastic scattering cross sections. They correspond to a shape
resonance for the l=3 partial wave. In Fig. 3 we illustrate the
behavior of the elastic l=3 radial scattering wave functions
as the collision energy sweeps through the resonance. Near
the resonance energy, the wave function developes a new
node and exhibits a rapid variation in its phase shift. Since
the collision time delay �24� is proportional to the derivative
of the phase shift with respect to energy, transitions are en-

hanced near the resonance energy. A less pronounced reso-
nance also appears at E�1.4K.

In Fig. 4 we plot all three fine-structure-quenching cross
sections in this energy range. It is evident from the figure that
all cross sections exhibit similar behavior as a function of
energy, including the resonance structures. The 3→2 transi-
tion is the dominant one, presumably because the energy
defect between j=4 and j=3 levels is about 5/3 larger than
the j=3 to j=2 defect. Typically, cross sections for transi-
tions with larger energy defects are smaller.

In Fig. 5 we plot all fine-structure-quenching cross sec-
tions for collision energies that correspond to the cryogenic
to superthermal temperature range. The cross sections show
a steep rise as the collision energy is increased, a conse-
quence of the system sampling the inner repulsive walls of
the TiHe BO potentials. In that region, the defects 	i�R� be-
come larger, thus leading to enhancement of transition prob-
abilities. At higher collision energies we can ignore the en-
ergy defects of the Ti fine-structure levels, and a statistical
approach to the collision problem predicts that the cross sec-
tions should behave as
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FIG. 1. �Color online� Ab initio potential curves for the ground
triplet states of the TiHe molecule. The curves are labeled by the
electronic BO orbital angular momentum quantum numbers �
=� ,� ,� ,
.
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FIG. 2. �Color online� Plot of j�=3→ j=3 elastic scattering
cross sections, multiplied by a factor of 10−3, and the fine-structure-
quenching cross sections for the j�=3→ j=2 transition. Dashed
lines represent cross sections obtained using the ab initio potentials,
whereas the solid lines represent corresponding values obtained us-
ing the scaling function introduced in Eq. �15�. Collision energies
are expressed in units of kelvin.

FIG. 3. �Color online� The heavy solid line represents the effec-
tive �, l=3, radial potential as a function of internuclear distance R.
The bold dashed line represents the resonance energy at E
�0.43K. The lighter solid lines represent the elastic scattering ra-
dial wave functions �not drawn to scale� for collision energies
�shown by the light dashed lines� that sweep through the resonance
energy.
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FIG. 4. �Color online� Plot of fine-structure-changing cross sec-
tions for low collision energies. Collision energies are expressed in
units of kelvin.
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��j� → j� �
2j + 1

2j� + 1
�̃ , �14�

where �̃ is an effective mean inelastic cross section. Accord-
ing to Fig. 5, ��4→2�

��4→3� =0.6, ��4→2�
��3→2� =0.7, and ��4→3�

��3→2� =1.2 at E
�6000K. The corresponding values predicted by Eq. �14�
are 0.7, 0.8, and 1.1, respectively, showing good agreement
with the former. Using these results we estimate �̃�8
�10−17 cm2 at a collision energy of 6000 K. Though much
larger than our calculated cross sections at cryogenic tem-
peratures, �̃ is still smaller than typical �5� fine-structure-
changing cross sections at higher energies. In Table II we
tabulate the fine-structure-quenching rate coefficients for a
large temperature range. Suppression is clearly evident for
temperatures up to T�100 K. In studies of fine-structure
transitions of C�3P� and Si�3P� in collisions with He �9�,
rates on the order of 10−11cm3s−1 were reported for the tem-
perature range 100�T�390K. In contrast, according to
Table II, only at room temperature do the rates approach the
10−12 cm2 s−1 figure.

Recent experiments by Lu et al. �19� measured the fine-
structure-changing rate coefficients

k�j� → j� � �v��j� → j�


where the � 
 notation implies thermal averaging over colli-
sion velocities v, for the TiHe system at cryogenic tempera-

tures. The results of those measurements are presented in
Fig. 6 along with the values obtained in our theoretical cal-
culations. The dashed line in that figure is the calculated rate
using the ab initio potential curves given by Klos et al. �22�
and shown in Fig. 1. The calculated rates are in reasonable
agreement with the measurements, exhibiting a similar en-
ergy dependence. However, the former values are somewhat
smaller in magnitude when compared to those obtained by
the laboratory measurements. In a study of the Zeeman re-
laxation rate of Ti, in a strong magnetic field, by collisions
with He, Hancox et al. �15� found that use of the ab initio
BO potentials failed to predict the precise measured values.
However, by a rescaling of the ab initio potentials, they were
able to calculate rates that are in harmony with experiment.
In Table I of that paper they provide “experimental” values
for the difference in binding energies, �D, between the
ground electronic states of the TiHe molecule. They are
given by �D�-�=0.056, �D�-�=0.049, and �D�-
=0.077
expressed in units of cm−1. They differ from the ab initio
values �D�-�=0.138, �D�-�=0.120, and �D�-
=0.187,
respectively. Though an explicit form for the rescaled poten-
tials was not given in �15�, here we rescale each
���R� ,���R� ,�
�R� BO curve by a constant factor in order to
reproduce the binding energies given in Ref. �15�. Using the
rescaled potentials we calculated k�3→2� and plotted those
values by the dash-dotted line in Fig. 6. Indeed, the resulting
rates seem to be in better agreement with experiment, though
they do not fall within the experimental error bars. In our
calculations we found that the ��3→2� cross sections are
very sensitive to the value of the BO potentials near the inner
repulsive wall. We therefore consider an alternative rescaling
of the BO potentials from that given in Ref. �15�. We intro-
duce the scaling function

w�R� = 1.0 +
a

1 + exp� �R − R0�2

d
� �15�
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FIG. 5. �Color online� Fine-structure-quenching cross sections
at high collision energies.

TABLE II. Fine-structure-quenching rate coefficients, expressed
in units of cm3 s−1. Temperature is expressed in kelvin.

T �K� k�3→2� k�4→3� k�4→2�

5 3.53�10−15 5.67�10−16 1.25�10−17

10 4.91�10−15 8.78�10−16 1.68�10−17

20 9.77�10−15 2.15�10−15 3.48�10−17

40 2.87�10−14 8.57�10−15 1.4�10−16

60 6.44�10−14 2.33�10−14 4.58�10−16

100 2.02�10−13 9.13�10−14 2.7�10−15

140 4.47�10−13 2.3�10−13 9.5�10−15

180 8.13�10−13 4.57�10−13 2.47�10−14

220 1.31�10−12 7.88�10−13 5.29�10−14

300 2.71�10−12 1.8�10−12 1.7�10−13

FIG. 6. �Color online� Fine-structure-quenching rate coeffi-
cients. Dashed line represents theoretical predictions based on ab
initio potential curves calculated in Ref. �22�. The dash-dotted line
represents the results of the calculation using the scaled potentials
suggested in Ref. �15�. Solid line represents the calculated collision
data obtained using the rescaled potentials discussed in this paper.
Plotted points, measured values.
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with adjustable parameters a ,R0, and d, and we multiply all
BO potentials by this common factor. With the choice a
=−0.6, R0=9.0, and d=0.3, we employ the resulting poten-
tials to calculate k�3→2�. The results are plotted by the solid
line shown in Fig. 6. The calculated rates are in excellent
agreement with the measured rates at higher temperatures. At
T=5.2K the calculated rate is in fair agreement with the ex-
perimental value, just missing the lower error bar. Because
the contribution from the resonance, shown in Fig. 2, to the
lower-energy rate coefficients is significant, a more accurate
description of the BO potentials, which predicts the exact
location of the resonance, is needed. Additional measure-
ments at T�0.5K will help facilitate such a program. The
advantage of the scaling suggested by Eq. �15� is that,
with the choice of parameters given above, it modifies the
ab initio potentials only in the inner region of the repulsive
wall in a localized region near R=9a0. The scaling leads to
an insignificant change in the binding energies predicted by
the ab initio calculations, as well as the value of the poten-
tials in the regions of R to the right of the minimum and in
the asymptotic region. In Fig. 2 we also plot ��3→2� as well
as the elastic cross sections obtained using our scaled poten-
tials. The effect of the rescaling on the elastic cross sections
is hardly perceptible in that figure; however, it has a pro-
nounced effect on the values of the fine-structure-changing
cross section, even toward the ultracold limit. The data illus-
trated in Figs. 4 and 5, as well as the rate coefficients tabu-
lated in Table II, were generated using the rescaled potentials
described above.

IV. DISCUSSION AND CONCLUSION

We presented FS changing cross sections and rate coeffi-
cients for the Ti-He system for collision energies correspond-
ing to temperatures that span the millikelvin to superthermal
range. Our calculations show that the resulting cross sections
are significantly suppressed over a wide collision energy
range. Our investigations indicate that the mechanism pro-
posed by Doyle �13� to explain suppression effects in relax-
ation of Zeeman split m levels is also responsible for sup-
pression of J-changing transitions. Our calculations suggest
that the effect may persist into the thermal collision energy
range. We found that the use of the ab initio Ti-He potentials
of Klos et al. �22� in our calculations gave reasonable agree-
ment with the results of the laboratory measurements �19� for
the j=3→2 rate coefficients in the 5–20 K temperature in-
terval. In order to bring the theoretical rates into better agree-
ment with the experimental results, we proposed a slight
modification, in terms of a simple scaling function, of the ab
initio potentials. We found that FS quenching rates are sen-
sitive to the value of the BO energies in the region of the
inner repulsive wall. Our rescaling is significant only in that
region and results in a less than 1% change in the value of
the BO binding energies. This conclusion differs from that
given in Ref. �15�, in which it was argued that the
m-changing quenching rates are sensitive to the details of the
BO potentials in the region to the right, and at larger inter-
atomic separations, of the BO potential minimum. Their res-
caling leads to significant differences from the ab initio val-
ues in the BO binding energies.
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APPENDIX

In the study of Zeeman relaxation by m-changing transi-
tions in Ref. �14�, Krems et al. employ an effective interac-
tion that has the form

Ṽ = �
k

Ṽk�R�Pk�r · R� = �
k

Ṽk�R��
m

4�

2k + 1
Ykm

� �r̂�Ykm���� ,

�A1�

where r are the electronic coordinates and R is the interatom
separation vector �25�. Pk is a Legendre polynomial of order

k, and Ṽk�R� is an effective radial potential �14�. A similar
expansion was employed �4� in a study of fine-structure ex-
citation, via long-range interactions, of hydrogenic ions by
collisions with protons. Below we demonstrate that Eq. �4�,
the interaction potential that drives J-changing transitions, is
equivalent to an expression that is obtained when taking ma-
trix elements of expansion �A1� with respect to the
asymptotic basis states �j�
.

The interaction potential given by Eq. �4� can be ex-
panded by the complete set of functions on the two-sphere,
the spherical harmonics. Thus

V�R,�,�� = �
km

ckm�R�Ykm��,�� , �A2�

where the expansion coefficients ckm�R� are obtained by
equating this expression with Eq. �4� and projecting out the
spherical harmonics. In carrying out this program, using Eq.
�73� in Ref. �17�, we obtain

ckm�R� = �
�MS

�
�1

�4��k, j, j���− 1��1+��

�� k j j�

m � − ��
��k j j�

0 �1 − �1
�

��L S j

� MS − �1
��L S j�

� MS − �1
����R� .

�A3�

We introduce a spherical tensor Tm
�k� of rank k in the

asymptotic product space �LM
 � �SMS
 for L=3 and S=1
and which is spanned by �j�
��j��LS�
 �17�. Thus, accord-
ing to the Wigner-Eckart theorem,

ckm�R� = �j��Tm
�k��j���
 , �A4�

provided that the reduced matrix element,
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�j��T�k���j�
 = �
�MS

�
�1

�4��k, j, j��

��− 1��1+��+�+j�k j j�

0 �1 − �1
�

��L S j

� MS − �1
��L S j�

� MS − �1
����R� .

�A5�

Now Vj���
j� �� ,� ,R� can be expressed as matrix elements of

the scalar product of spherical tensor operators of rank k, i.e.,

Vj���
j� ��,�,R� = �j��V0�j���
 ,

V�0� � �
k

Y�k����� · T�k� = �
k

�
q

�− 1�qYkq����T−q
�k�.

�A6�

In the same manner Eq. �A1� can be expressed as

Ṽ = Ṽ�0� � �
k

Y�k����� · T̃�k� �A7�

where

T̃�k� = Y�k��r̂� � IVk�R� �A8�

is a direct product in �LM
 � �SMS
 space, and I is the iden-
tity operator in spin space. Taking the matrix elements of Eq.
�A1� with respect to the asymptotic states �j�
, we obtain

�j��Ṽ�R��j���
 = �
k

Y�k����� · �j��T̃�k��j���
. �A9�

The reduced matrix element can be evaluated �26�, to give

�j��T̃�k���j�
 = Ṽk�R��4�j, j���
�k�

�L��− 1�S+j�+k

��L k L

0 0 0
��L j S

j� L k
� . �A10�

According to Aquilanti and Grossi �27� the multipole mo-
ments Ṽk�R� can be expressed in terms of the BO eigenval-
ues �� by the relation

�L k L

0 0 0
�Ṽk�R� = �

�

�k�
�L�

�− 1���L k L

� 0 − �
����R� .

�A11�

Inserting Eq. �A11� into Eq. �A10� we obtain

�j��T̃�k���j�
 = �
�

�4��k, j, j���− 1�S+j�+k+�

��L k L

� 0 − �
��L j S

j� L k
����R� .

�A12�

Using the identity �26�

�
MS

�− 1� j+MS�k j j�

0 �1 − �1
�

��L S j

� MS − �1
��L S j�

� MS − �1
�

= �− 1�S+j��L k L

� 0 − �
��L j S

j� L k
� �A13�

and comparing expressions �A12� and �A5�, we find

�j��Tk��j�
 = �j��Tk˜ ��j�
 , �A14�

and this, according to Eqs. �A6� and �A7�, proves our
assertion.
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