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The stochastic variational method is used with a confining potential of the form V=�r12 to generate corre-
lated basis sets capable of accurately describing low-energy elastic scattering. Stabilization concepts are then
used to extract the phase shifts and other scattering observables. The method is applied to positron scattering
from H and He, and Ps scattering from H and He. The results of the calculations are in uniformly good
agreement with previous high quality calculations or with experiment. In particular, the scattering length for
Ps-He scattering is found to be 1.566a0 while the zero-energy 1Zeff was 0.1157. The Ps-He s-wave phase shift
is found to be incompatible with experimental momentum transfer cross sections obtained by the Doppler
broadening technique.
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I. INTRODUCTION

The stochastic variational method �SVM� �1–3�, and vari-
ants �4–8� have recently become some of the most powerful
methods for studying few-body systems. Among the notable
applications of the method are the description of small mol-
ecules without making the Born-Oppenheimer approxima-
tion �7� and the description of atoms with attached positrons
�9,10�. The success of the method is based on the analytic
properties of the explicitly correlated Gaussian �ECG�
�3,4,11,12�. The basis functions have the form

Gk = exp�−
1

2 � Aij
k xi · x j� , �1�

where xi is the coordinate of ith particle, The ECG basis
functions have the property that the multicenter integrals that
occur with correlated basis sets are surprisingly easy to
evaluate.

The basic strategy behind the SVM exploits the ease with
which the Hamiltonian matrix elements can be evaluated.
The wave function is expanded in a linear combination of
ECGs,

� = �
k

ckGk. �2�

The linear parameters are obtained by solving a generalized
eigenvalue problem. The optimal set of nonlinear parameters
of the ECGs come from an iterative trial-and-error search.
One simply adjusts the Aij exponents in a random process
and retains those sets of exponents that result in a decrease in
the energy.

The SVM had been adapted to perform elastic scattering
calculations �13,14� by using stabilization concepts �15,16�.
The most important applications of the SVM approach to
collision physics were to positronium-atom scattering. The
reason for this lies in the technical difficulties associated
with performing scattering calculations between two com-
posite objects with internal structure. The multicenter inte-
grals that naturally occur can greatly complicate the evalua-

tion of the scattering Hamiltonian. However, evaluation of
the scattering Hamiltonian is straightforward when ECGs are
used to describe the scattering wave function.

The present paper describes modifications to the SVM
scattering ansatz that leads to a more efficient procedure with
improved numerical stability. The method is then used to
determine the very low-energy s-wave phase shifts for e+-H,
e+-He, Ps-H, and Ps-He scattering. In addition, the direct
annihilation parameter Zeff is computed for the e+-H and
e+-He systems. Finally, the pick-off annihilation parameter

1Zeff for Ps-He scattering is determined and found to be in
reasonable agreement with experiment �17–20�.

II. THEORY

The stabilization concept exploits the fact that the radial
dependence of a positive energy pseudostate resulting from
the diagonalization of the Hamiltonian approximates that of
the true continuum wave function over a reasonably wide
range. Therefore, if the Hamiltonian is diagonalized in a ba-
sis that is capable of describing the interparticle dynamics,
then one should expect to get reasonably accurate phase
shifts. The problem of course is to construct the basis.

In the SVM stabilization method, the basis is constructed
by dividing space into two regions, an inner �or interaction�
region and an exterior �or asymptotic� region. In the interac-
tion region there are strong interactions between the projec-
tile and target. The basis for this region is generated by the
SVM �13,14�. In the asymptotic region, the wave function is
essentially a product of the target ground-state wave func-
tion, the projectile ground-state wave function, and a scatter-
ing wave function which can be written as sin�kR+��, where
R is the distance between the center-of-mass of target and
projectile. It is a simple matter to generate a basis of ECGs
that is capable of giving a good representation of the con-
tinuum wave function in the asymptotic region �13,14�.

There are many similarities between the present and pre-
vious �13,14� versions of the stabilization SVM. However,
some small but significant changes which relate to the man-
ner in which the inner and exterior basis sets are generated
have improved its reliability and extended its range of appli-
cability.*jxm107@rsphysse.anu.edu.au
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A. Generation of the inner basis

In the interaction region, the SVM �1,2,10� is used to
define an ECG basis �dimension=K� that gives an accurate
solution of the Schrödinger equation for the lowest-energy
state. This is easy to do in cases where the scattering com-
plex supports a bound state. However, in a number of cases
the complex does not support a bound state and so an uncon-
strained variational minimization would result in a wave
function with a very low-energy projectile localized a long
distance from the target.

The variational procedure has been modified to prevent
this from occurring. In previous work, the exponents �i of
the Gaussians connecting the electron and positron to the
nucleus were restricted to be larger than a certain minimum
size, say �i�0.001. This constrained the projectile and target
to be localized reasonably close together and gave a SVM
iteration procedure that effectively solved the Schrödinger
equation in a soft-sided box. However, the projectile and
target did exhibit a tendency to drift apart as the optimization
is carried out. Further, there is no well defined variational
principle involved and this makes it difficult to determine
whether the inner basis is giving converged expectation val-
ues.

In the present work a confining potential of the form

VC�r� = �rn, �3�

is added to the Hamiltonian. The confining potential acts
between the nucleus and the light particles. The use of the
confining potential means that the inner basis is generated
with a well defined variational procedure with no constraints
governing the allowable ranges for the variational parameters
�apart from those implicit in ensuring a square integrable
basis function�. Inclusion of the confining potential meant it
was possible to relentlessly drive the inner basis to conver-
gence, something that was difficult to achieve with the pa-
rameter constraint approach used previously �13,14�.

It should be noted that Guerout et al. �21,22� have also
investigated the usage of a real confining potential to deter-
mine the solution of Schrödinger equation for scattering
problems. The confined wave function obtained by adapting
quantum chemistry codes was used within a multichannel
quantum defect theory formalism to model the transition in-
tensities to the Rydberg and continuum states of NO.

The functional form of VC�r� was influenced by three fac-
tors. First, it was desirable to have a potential that has matrix
elements that are easy to evaluate and furthermore has finite
matrix elements for an ECG basis. Second, we wish to have
a potential that is very small when the projectile and target
are close together. Finally, the potential should increase rap-
idly once r reaches a critical value. The second and third
criteria can be satisfied by choosing � to be small and n to be
large. For example, consider the choice �=10−19 and n=12.
At r=10 one has VC�r�=10−7. At r=16 one has VC�r�=2.8
�10−5. At r=30 one has VC�r�=5.3�10−2 and the potential
is beginning to confine the particles.

B. Generation of the exterior basis

Once the inner wave function has been obtained, a set of
ECGs designed to represent a positive energy projectile

coupled to the target are added to the basis. The particulars
are best explained by reference to a specific example,
namely, the Ps-He system.

The Ps and He ground states are represented by a linear
combination of ECGs which are constructed by performing a
normal bound state SVM calculation. The typical exterior
basis function consists of a product of the Ps and He ground
state wave functions coupled together with a Gaussian con-
necting the Ps center-of-mass coordinate to the nucleus. This
basis function can be written

�out
i = exp�− �iR

2�	Ps�r0 − r1�	He�r2,r3� , �4�

	Ps�r0 − r1� = �
j

cjFj
Ps�r0 − r1� , �5�

	He�r2,r3� = �
k

dkFk
He�r2,r3� , �6�

where R is the distance between the He nucleus and the Ps
center-of-mass. The 	Ps�r0−r1� and 	He�r2 ,r3� are the Ps
and He wave functions written as linear combinations of
ECGs �Fj

Ps , Fk
He�. The exponents of the center-of-mass

Gaussians, �i are generally chosen to form an even tempered
sequence.

The difference between this approach and a previous ap-
proach �13,23� is that the exterior basis functions are now
linear combinations of products of ECGs. In previous calcu-
lations, the individual ECGs were treated separately in the
final diagonalization giving a more flexible trial wave func-
tion. This gave a basis set that is larger in dimension, but
more prone to linear dependence problems �13,23�. Linear
dependency issues provided the limit on the size of calcula-
tion that could be done, and compromises in the size of the
basis were made in the earlier treatments of Ps-H and Ps-Ps
scattering �14,23�.

C. Obtaining the phase shifts and annihilation parameters

The Hamiltonian is diagonalized �with the confining po-
tential omitted� in the full inner plus exterior basis to gener-
ate the set of positive energy pseudostates. The phase shifts
were derived by a least-squares fit to the overlap of the target
and projectile wave functions with the pseudo-states. This is
best explained by reference to a specific example. The over-
lap function C�R� for the Ps-He system is defined as

C�R� =� d3r0d3r1d3r2d3r3�„�r0 + r1�/2 − R…

� 	Ps�r0,r1�	He�r2,r3���r0,r1,r2,r3� . �7�

A least-squares fit over a finite interval R� �Rin ,Router� to a
wave function with the asymptotic form B sin�kR+�0� was
used to extract the phase shift for each positive energy pseu-
dostate. The value of Rin should be sufficiently large for the
projectile and target wave functions to have minimal overlap.
Typically Rin was about 15a0. The value of Router should lie
in the region of space where the probability density region of
inner basis is still a reasonable fraction �e.g., 20%� of the
peak in probability density. Typically, Router was between 25
to 30a0.
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The form of the wave function over R� �Rin ,Router� was
not a pure sinusoidal form. Actually, B sin�kR+�0� is evalu-
ated at R=500a0 and then a numerical integration inwards is
done in the presence of the dominant long range field. In the
case of a positron-atom complex, this is −�d / �2r4� where �d
is the polarizability of the atom. In the case of a Ps-atom
complex, the dominant term is −C6 /R6 where C6 is the dis-
persion constant between the Ps and atomic ground states
�24,25�.

In addition to the phase shift, it is also necessary to deter-
mine the direct and pick-off annihilation rates. The direct
annihilation rate describes annihilation during positron-atom
or positron-molecule collisions and is usually expressed in
terms of Zeff. The parameter Zeff is defined as

Zeff = �
i
� d3r0d3x��ri − r0�	��x,r0�	2. �8�

Here ��x ,r0� is the total wave function of the system, r0 is
the positron coordinate, while x= 
r1 ,r2 , . . .� is the collective
set of electron coordinates. Zeff is equal to the number of
target electrons when the continuum positron wave function
is a plane wave. The definition of Zeff implicitly accounts for
spin averaging.

Pick-off annihilation describes the quenching of ortho-Ps
by collisions with a gas. When positrons are injected into an
atomic or molecular gas they are subjected to a complex
sequence of elastic, inelastic and annihilating collisions
�26,27�. Eventually they slow down sufficiently so that no
further excitations are possible. After a sufficiently long
time, the dominant species left in the gas is ortho-Ps
�26–28�. The ortho-Ps state decays via the 3
 process with
an annihilation rate of 7.04�106 s−1 which is about 1000
times slower than the para�singlet�-Ps decay. In addition to
its own intrinsic decay, ortho-Ps can collide with the atoms
�molecules� of the gas and the positron can annihilate with
the atomic �molecular� electrons.

The pick-off annihilation parameter, namely, 1Zeff, is de-
rived from experiment using the identity �29�

�p = �ortho-Ps + 0.804n1Zeff. �9�

In this equation, �p is the decay rate directly measured from
experiment, �ortho-Ps is the decay-rate of ortho-Ps, and n is
the gas density in amagat. Variation of the gas density per-
mits the determination of 1Zeff.

Calculation of the pick-off parameter requires the evalua-
tion of the overlap matrix element between all the positron-
electron pairs in a singlet spin state for a total wave function
that is in a triplet spin state. It can be written as �29�

1Zeff = �
i
� d3r0d3xOS�i,0���ri − r0�	��x,r0�	2. �10�

Here ��x ,r0� is the Ps-scattering wave and OS�i ,0� is a pro-
jection operator that ensures only electron-positron pairs
�electron i� in a spin singlet state annihilate. It only makes
sense to talk of pick-off annihilation for closed shell targets,
since the much larger exchange quenching occurs for open-
shell targets �30�. In the plane wave Born approximation,

1Zeff reduces to N
4 , where N is the number of closed shell

electrons �31�.
The present calculation of the phase shifts and scattering

length is best described as quasivariational. Although, no for-
mal minimum principle applies, the tendency is for the de-
rived scattering length to decrease as the basis optimization
drives down the energy in the inner region.

D. Representation of the target wave function

In an initial series of calculations on the e+-He system it
was found that the phase shift and annihilation rate were
sensitive to the quality of the helium wave function used in
the exterior basis. The scattering length showed no signs of
convergence and continually increased as the dimension of
the inner basis was increased. This occurred when a rela-
tively small dimension wave function was being used to rep-
resent the He ground state in the exterior basis. The salient
point proved to be position of the E=0 threshold energy.
This is effectively determined by the energy of the helium
ground state wave function as given by the finite basis wave
function.

The phase shift is sensitive to the difference between the
potential in the interaction and exterior regions. Assuming an
attractive potential in the interaction region, the usage of a
poor He ground wave function leads to the local energy in
the asymptotic region being too large. This resulted in phase
shifts which were simply too large.

The solution to the problem was to simply use a better
wave function for the helium ground state. This required the
use of SVM wave functions with a ECG basis of dimension
40 or larger.

E. On determining the phase shift from the density

The phase shifts obtained in this work were all obtained
by computing overlap functions involving the projectile and
target ground states. This did increase program complexity.
A simpler alternative would be to extract the phase shifts
from the density of one of the particles. In the case of the
e+-H�He� systems, one computes the positron density and
then a fit to D sin2�kR+�0� can be used to get D and �0. In
the case of Ps-H�He� scattering, the positron density can be
taken as a surrogate of the Ps density and once again a fit to
D sin2�kR+�0� can be used to set the overall normalization
of the wave function in addition to the phase shift.

One feature of the SVM stabilization approach is the pres-
ence of fluctuations in the phase shift or Zeff �13,23�. In the
case of the present work, the fluctuations were most notice-
able for the e+-He system which has relatively small phase
shifts. The size of these fluctuations were always larger when
the phase shifts were extracted by fitting to the density, as
opposed to the wave function projection. The density can be
used to give reasonable estimates of the phase shift, but de-
termining the phase shifts from a wave function projection is
better.

III. POSITRON SCATTERING FROM HYDROGEN

The first test of the ability of the new stabilization SVM
was for the e+-H system. The inner basis dimension was 360
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and was generated with the confining potential VC�r�=6.0
�10−20r12. The mean radius of the positron in the confining
potential was 14.8a0.

The exterior basis consisted of 35 positron Gaussians �de-
fined by the relation �i=19.54 /1.45i−1� multiplying the hy-
drogen ground state wave function. The H ground state was
written as a linear combination of 10 ECGs which gave a
binding energy of −0.499999318 a.u. The presence of the
confining potential had hardly any effect on the binding en-
ergy of the H ground state, and only resulted in changes in
the twelfth and subsequent digits of the energy. The region
r� �16,27�a0 was used for the stabilization fit. The outer
limit of 27a0 was chosen to reduce the size of the fluctua-
tions in the two phase shifts with the lowest energy.

The s-wave phase shift and annihilation parameter are de-
picted in Figs. 1 and 2. The random fluctuations that seem to
be inherent with the stabilization approach are just notice-
able.

The scattering length, A was determined by fitting the
phase shifts with k�0.20a0

−1 to an expression from modified
effective-range theory �34–36�. The expression is

k cot ��k� = −
1

A
+

�d�k

3A2 +
2�dk2

3A
ln��dk2

16
� + Bk2 + Ck3,

�11�

where �d=4.5a0
3 is the polarizability of the hydrogen ground

state. The resulting value of the scattering length was

−2.094a0. This is within 1% of the close to exact value of
−2.1036a0 �37�.

A fit using the expression

Zeff�k� = Zeff
�0� + Zeff

�1�k2 + Zeff
�2�k4, �12�

was made to the values of Zeff with k�0.15a0
−1. The effective

range expansion for Zeff does not have any terms propor-
tional to k �38�. The fit gave a zero-energy annihilation rate
of Zeff

�0�=8.75. This value is only 1.2% smaller than the close
to exact value of 8.87 �37�. The threshold values of the scat-
tering parameters are summarized in Table I.

IV. POSITRON SCATTERING FROM HELIUM

The ability of the stabilization SVM to describe more
complicated systems was tested in a calculation of s-wave
e+-He scattering. The inner basis dimension was 1000 and
was generated with the confining potential VC�r�=3.2
�10−19r12. The mean radius of the positron for the final con-
verged basis was 13.6a0. The outer basis consisted of 35
positron Gaussians, defined by the relation �i
=19.54 /1.45i−1, multiplying the He ground state wave func-
tion. The basis dimension for the He ground state was 50 and
the energy of this state was −2.90372295 a.u. �the exact He
energy is −2.90372438 a.u. �39��. The energy of the He
ground state in the field of the confining potential was in-
creased by less than 10−14 Hartree. The annihilation param-
eter was stable to better than 0.1% against further enlarge-
ment of the dimension of the He ground state. The
stabilization fit was performed over the interval R� �15,26�
a0. A value of 1.3832a0

3 �40� was adopted for the He polar-
izability.

There is some uncertainty in the existing values of the
positron-helium s-wave phase shifts that mainly relate to the
description of the helium ground state. The use of inexact
wave functions is known to cause problems in variational
calculations �41–44�. The calculations can be divided into
two classes, those that use a helium ground state wave func-
tion of roughly Hartree-Fock quality �41,42�, and those that
use a Hylleraas wave function to describe the helium ground
state �43,44�.

Figure 3 shows the present calculation of the s-wave
phase shift. The stabilization fluctuations of 
0.003 rad are
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FIG. 1. The s-wave phase shift �0 for e+-H scattering as a func-
tion of k �units of a0

−1�. The solid line represents a continuous fit to
the phase shifts taken from a large scale close coupling calculation
�32� which gives phase shifts that are about 0.5% below the close to
exact values of Bhatia et al. �33�.
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FIG. 2. The s-wave annihilation parameter Zeff for e+-H scatter-
ing as a function of k �units of a0

−1�.

TABLE I. The scattering length and Zeff�k=0� �experimental
values for helium are at thermal energies�.

Method A �units of a0� Zeff
�0�

Hydrogen

Present SVM −2.094 8.75

Kohn-variational �37,41� −2.1036 8.868

Helium

Present SVM −0.474 3.955

Kohn-variational �45� −0.50 3.932

Experiment 3.89
0.04�17�
3.94
0.02�28�
3.86
0.04�18�
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noticeable since the phase shifts are so small. A scattering
length of −0.474a0 was obtained by fitting Eq. �11� to the
phase shifts satisfying k�0.20a0

−1.
Figure 3 also shows phase shifts taken from some earlier

variational calculations. The calculation of Ho and Fraser
�42� �using their HF2 He ground state� is taken as represen-
tative of calculations that use a Hartree-Fock quality wave
function for the He ground state. The phase shifts computed
with the 22-term Hylleraas ground state �43� by Humberston
and co-workers are also depicted in Fig. 3. The present SVM
phase shifts are compatible with the phase shifts of Humber-
ston �43�. While Humberston did not report a scattering
length, it is possible to deduce a scattering length of
−0.50
0.02a0 from the tabulated phase shift of
0.035
0.01 rad at k=0.1a0

−1 �43�.
Figure 4 shows the SVM calculation of Zeff�k� and com-

pares the results with the Kohn variational calculation of van
Reeth and Humberston �45�. Threshold values of Zeff are
given in Table I. The agreement between the two calculations
is between 1% and 3%. The threshold Zeff for a three-term
effective range expansion using Eq. �12� for k� �0,0.30�a0

−1

was 3.955. This is within 1% of the Kohn-variational value
of 3.932 �45�. The graphed Kohn-variational Zeff was taken
from a polynomial fit to the calculated values. It should be
noted that the Kohn-variational polynomial fit had a term
linear in k �45�, but effective range theory suggests that such
a term is not possible �38�. The present values of Zeff are

marginally larger than the Kohn variation values for k
�0.08a0

−1 and marginally smaller for k�0.10a0
−1.

Two experimental values of Zeff at thermal energies are
3.89
0.04 �17� and 3.94
0.02 �28�. The SVM stabilization
value of Zeff is compatible with both of these values.

V. POSITRONIUM SCATTERING FROM HYDROGEN

The description of Ps-H scattering is technically demand-
ing despite the system only having four particles. It is nec-
essary to solve the Schrödinger equation for the scattering of
two composite objects, each with their own center of sym-
metry and allowing for the possibility of exchange between
the target electron and the electron that is part of ortho-Ps.

The positronium-hydrogen system has two different sym-
metries which depend on the spin state of the two electrons.
The electron-spin singlet actually has a bound state with a
total energy of −0.7891968 a.u. �46�. The electron-spin trip-
let does not have a bound state.

Recent developments �13,14,47–49� have resulted in cal-
culations that can correctly describe most of the dynamical
features of Ps-H scattering in the low-energy region. The first
of these calculations used the SVM stabilization method
�14�. The size of this earlier SVM calculation �14� was lim-
ited by linear dependence issues and the dimension of inter-
action region basis for the electron-spin triplet configuration
was only 350. Of the other calculations, the most precise is
the �complex� Kohn variational calculation �49�. The
R-matrix calculation had a channel space including 14
H-type states and 14 Ps-type states �48�. Finally a quantum
Monte Carlo �QMC� of s-wave scattering has also been re-
ported �47�.

The inner basis for the singlet symmetry had a dimension
of 1000 ECGs and gave a PsH ground-state energy of
−0.7891966. The inner basis for the triplet symmetry had a
dimension of 900 and was generated in the confining poten-
tial VC�r�=5.0�10−20r12. The mean radius of the positron
was 15.2a0.

The exterior basis for both symmetries consisted of 35
functions constructed from products of the Ps and H frag-
ments with the connecting Gaussians specified by the rela-
tion �i=19.54 /1.45i−1. The Ps ground state was represented
by a linear combination of 10 ECGs with an energy of
−0.249999665 Hartree. The H ground state was represented
by a linear combination of 10 ECGs with an energy of
�0.499999318 Hartree. A value of C6=34.79 a.u. �25� was
adopted for the Ps-H dispersion coefficient. The stabilization
fit was performed over the interval R� �16,29�.

The singlet and triplet phase shifts for the individual pseu-
dostates are plotted in Fig. 5. Also shown are effective range
fits �using pseudostates with k�0.30a0

−1� to the expression

k cot ��k� = −
1

A
+

1

2
r0k2 + Bk3. �13�

The presence of a van der Waals interaction between Ps and
H does lead to O�k3� terms in the effective range expansion.
The influence of this term and all other higher order terms on
the cotangent of the phase shift are absorbed in the empirical
Bk3 term.
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The derived values of the Ps-H scattering lengths are
listed in Table II and compared with the other high quality
calculations of Ps-H scattering. The results of five indepen-
dent calculations give singlet scattering lengths that agree to
within 2%. The most accurate of the scattering lengths listed
in Table II is that of the Kohn variational calculation �49� and
the SVM scattering length agrees with the Kohn value to
better that 1%. Examination of the effective range, r0 reveals
a greater spread of values. This is not surprising, since r0 will
be sensitive to the inclusion of additional terms in the effec-
tive range expansion �all the fits apart from the present one
only have two adjustable parameters� and also to the range of
momentum over which the fit is carried out.

There is a larger spread �of about 8%� between the triplet
channel scattering lengths listed in Table II. But significantly,
the present SVM scattering length of 2.126a0 and the com-
plex Kohn variational scattering length of 2.126a0 �49� are in
perfect agreement �the agreement to an extreme accuracy of
better than 0.001a0 does have an element of luck�. The small
R-matrix estimate of the scattering length, namely, 2.06a0
�48� would therefore seem to be an aberration. The previous
SVM scattering length of 2.22a0 �14� should be regarded as

being superseded by the present calculation. The QMC cal-
culation gave A=2.23a0 which is about 5% different from
the value of A=2.126a0 given by the complex Kohn calcu-
lation �49�. While QMC phase shifts are potentially very
accurate, uncertainties in defining the nodal surfaces can lead
to errors �47,50�.

A calculation of Ps-H scattering in the triplet channel has
also been performed in the fixed core SVM �FCSVM� �31�.
The scattering length was 2.19a0. The main source of uncer-
tainty in this calculation was the exact specification of the
polarization interactions of the electron and positron in the
positronium projectile with the frozen hydrogen ground
state. The scattering length in Table II was computed with a
cutoff parameter that was tuned to an average value with
respect to polarization potentials that reproduce positron-
hydrogen and electron-hydrogen �triplet channel� scattering
�31�.

VI. POSITRONIUM SCATTERING FROM HELIUM

A. Calculation details

The extra electron in the helium target makes the descrip-
tion of Ps-He scattering a much more formidable proposition
than Ps-H scattering. It would be fair to say that a fully ab
initio calculation of the Ps-He system is almost an order of
magnitude more demanding than the Ps-H calculation. With
the exception of a QMC calculation �47�, an R-matrix calcu-
lation �51�, and a T-matrix calculation �52� most of the cal-
culations of the system have been performed using a frozen
helium target �13,31,53–57�. An additional observable for
helium is the pick-off annihilation rate. Despite being one of
the standard observables extracted from positron annihilation
experiments �27,58�, there has never been a first principles
calculation of 1Zeff for any physical system that is expected
to be accurate to within a factor of 2.

Most previous calculation of Ps-He pick-off annihilation
used scattering Hamiltonians based on a frozen He target
�31,53–55�. The only fully ab initio calculations of Ps-He
scattering which relaxed the frozen core approximation
�47,51,52� did not determine 1Zeff. While model polarization
potentials can be used to incorporate the impact of the cor-
relations between projectile and target on the phase shift
�13,57�, short-range correlations have a major impact upon
the �-function expectation value �10,59–62�. Calculations of
positron interactions that use model potentials will underes-
timate the direct and pickoff annihilation rates unless the
�-function matrix element is multiplied by an enhancement
factor �60,62�.

The actual details of the calculation of Ps-He scattering
were as follows. The inner basis had a dimension of 1600
and was generated in the confining potential VC�r�=3.2
�10−19r12. The mean radius of the positron was 13.0a0.

The Ps ground state was represented by a linear combina-
tion of 9 ECGs with an energy of −0.2499991 Hartree. The
helium wave function was written as a linear combination of
45 ECGs and had an energy of −2.90372244 a.u.. The exte-
rior basis consisted of 35 functions constructed from prod-
ucts of the Ps and He fragments with the connecting Gauss-
ians specified by the relation �i=19.54 /1.45i−1. The wave
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FIG. 5. The s-wave phase shifts �modulo �� for Ps-H scattering
as a function of k �units of a0

−1�. Phase shifts are shown for both the
singlet and triplet electron-spin configurations. The lines represent
effective range fits to the phase shifts using Eq. �13�.

TABLE II. The scattering length A, and effective range r0 for
the Ps-H system. The numbers in brackets for the QMC calculations
represent the statistical uncertainty in the last digits.

Method A �units of a0� r0 �units of a0�

Electron-singlet channel

Present SVM 4.339 2.198

QMC �47� 4.375�34� 2.228�50�
R-matrix �48� 4.41 2.19

Kohn �49� 4.311 2.27

Previous SVM �31� 4.34 2.39

Electron-triplet channel

Present SVM 2.126 2.385

QMC �47� 2.246�50� 1.425�43�
R-matrix �48� 2.06 1.47

Kohn �49� 2.126 1.39

FCSVM �31� 2.19 1.35

Previous SVM �31� 2.22 1.29
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function is of course constructed with due consideration to
antisymmetry. A value of C6=13.37 a.u. �25� was adopted
for the Ps-He dispersion coefficient. The stabilization fit was
performed over the interval R� �15,30�.

B. Effective range fits to the results

The s-wave phase shifts resulting from the stabilization
calculation are plotted in Fig. 6. The least-squares fit to the
effective range expansion �13� for k�0.4a0

−1, gave a scatter-
ing length of 1.566a0 �the statistical uncertainty associated
with the fit was about 0.006a0�. The net decrease in the scat-
tering length when the inner basis was increased in dimen-
sion from 1200 to 1600 ECGs was only 0.03a0, this is sug-
gestive of an overall level of convergence of about 1%.

The variation of the pick-off annihilation rate 1Zeff, as a
function of k is shown in Fig. 7. The zero-energy value of the
annihilation rate was determined from a least-squares fit us-
ing the effective range expansion �38�

1Zeff�k� = 1Zeff
�0� + 1Zeff

�1�k2, �14�

for k�0.30a0
−1. The value of 1Zeff

�0� for the largest calculation
was found to be 0.1157 while 1Zeff

�1� was −0.0346. The net
increase in 1Zeff

�0� when the basis was increased from 1200 to
1600 was 0.003. However, calculations on the similar triplet
state of the Ps-Li+ bound state revealed that the pick-off rate
was one of the most slowly converged expectation values. So
it is not possible to absolutely guarantee that 1Zeff is con-
verged to better than 10%. The present 1Zeff

�0� is compared

with experimental data and other calculations in Table III.

C. Comparisons with other work

The experimental difficulties in measuring the Ps-He
cross section has resulted in a wide variance between the
different estimates of the low-energy cross section
�17,19,65,68�. Accordingly, experiments cannot be used to
directly assess the quality of the SVM scattering length.
However, 1Zeff has been extracted from the 
-decay spectrum
by a number of groups �17–20�. The most careful experiment
reported a 1Zeff value with a stated precision of about 2%,
namely, 0.125
0.002 �28�. However, this value of 1Zeff was
determined by fitting Eq. �8� with a value of �ortho-Ps that was
3% larger than the most modern estimates of �ortho-Ps. It is
possible that the stated precision of 2% is a bit optimistic.

Scattering lengths from a number of earlier calculations
are listed in TableIII. The ab initio QMC calculation �47�
gave a scattering length of 1.405a0 and did not give 1Zeff. A
good indicator of the accuracy of the QMC scattering length
comes from the examination of the Ps-H scattering lengths in
the electron-spin triplet channel. As noted earlier, the QMC
calculation gave a scattering length that was 5% larger than
the present SVM and previous Kohn variational �49� scatter-
ing lengths. A 5% error for the dynamically similar Ps-H
system suggests a slightly larger uncertainty for Ps-He. The
most likely reason for the discrepancy with the present scat-
tering length of 1.566a0 lies in the definition of the nodal
surfaces �47,50�.

The fixed core stochastic variational method calculation
�FCSVM� �31� estimate of the scattering length was A
=1.568a0. The FCSVM calculation was also performed us-
ing the stabilization approach. The correlations between the
Ps constituents and the He ground state �31� were modeled
with semiempirical polarization potentials. There is some un-
certainty in the exact value of the FCSVM scattering length
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TABLE III. Scattering length, effective range, and 1Zeff�k=0�
for the Ps-He system.

Method A �units of a0� r0 �units of a0� 1Zeff
�0�

QMC �47� 1.405

R-matrix �56� 1.822

R-matrix �51� 1.60

FCSVM �31� 1.568 0.914 0.0378

Experiment 0.125
0.002�28�
1.46
0.08 �17� 0.129
0.006�17�

0.118
0.016�20�
0.116
0.004�18�

1.50 �19�
1.49 �63�
1.42 �64�

1.77
0.25 �65�
1.51
0.18 �66�

1.18−0.4
+0.3 �67�

Present SVM 1.566 2.133 0.1157
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due to the ambiguity in the details of the polarization poten-
tials which were determined by reference to e
-He scattering
calculations. The range of allowable scattering lengths was
identified as between 1.482 and 1.625a0 �31�. The present
SVM scattering length lies within this range.

The level of agreement of the FCSVM Ps-H and Ps-He
scattering lengths with the present ab initio calculations is
quite reasonable. This gives added confidence to FCSVM
estimates of the scattering lengths for Ps-Ne and Ps-Ar scat-
tering �31�.

However, the FCSVM gives a pick-off annihilation rate of

1Zeff
�0�=0.0378 that is much too small. This gives conclusive

proof that the short-range electron-positron correlations in-
cluded in the fully correlated SVM wave function are neces-
sary for the correct prediction of the pickoff annihilation rate.

Other calculations of the low-energy cross section, and in
some case 1Zeff exist �53–56,69,70�. But none of these cal-
culations treat the near threshold region with the same level
of technical sophistication as the present SVM calculation or
the calculations discussed in the previous two paragraphs
�31�.

The FCSVM 1Zeff can be bought into closer agreement
with experiment by multiplication with an enhancement fac-
tor �62�. The enhancement factor may be evaluated in a va-
riety of ways, but is essentially the ratio of the exact annihi-
lation rate divided by an annihilation rate calculated by
simply multiplying the electron and positron densities. One
enhancement factor of 2.92 was determined by a model po-
tential analysis of e+-He scattering; the annihilation rate of
the model potential wave function was scaled to give the
annihilation rate from the Kohn variational calculation
�62,71�. Another value of 2.75 was obtained from a con-
strained basis calculation of the e+-He system; the annihila-
tion rate was evaluated with the full correlated wave function
and also using just the product of the electron and positron
densities �62�. Using the improved e+-He wave function of
the present work increases the enhancement factor to 2.84.
Finally an enhancement factor of 2.67 was obtained from the
present Ps-He wave function by taking the ratio of the exact
pick-off annihilation rate with the value determined by mul-
tiplying the positron density with the electron density of the
He ground state. Using these three enhancement factors with
the FCSVM 1Zeff of 0.0378 results in values that range from
0.101 to 0.110. The overall accuracy of 10–20 % is reason-
able.

The energy dependence of the s-wave part of 1Zeff is one
of decreasing pick-off annihilation as energy increases. The
actual rate of decrease is very small, and at k=0.3a0

−1 the
decrease from the zero-energy value was only 3%. This is
almost the same as the energy decrease in the FCSVM cal-
culation with a scattering length of 1.568a0 �31�. This indi-
cates the enhancement factor for pick-off annihilation has a
slow variation with energy near the E=0 threshold. Experi-
mentally the pick-off annihilation rate has been measured in
two experiments to increase with increasing temperature
�17,72� and in one experiment to decrease with increasing
temperature �73�. The resolution of this conundrum will
probably require a first principles calculation of the p-wave
behavior of 1Zeff.

D. The momentum transfer cross section

The scattering length of 1.566a0 implies that the zero-
energy cross section should be 9.81 �a0

2. One class of ex-
periments examined the thermalization of ortho-Ps in gas
phase experiments to give estimates of the very low-energy
momentum transfer cross section. In terms of phase shifts,
the momentum transfer cross section is defined

�m = �
l=0

�
4�l + 1�

k2 sin2��l+1 − �l� �15�

The estimates of the zero energy cross section are
8.4
0.5�a0

2 by Canter et al. �17�, 9.0 �a0
2 by the University

College London group �19�, and 12.5
3.4�a0
2 by the Tokyo

group �65�. The momentum transfer cross section of
2.6
0.5�a0

2 by the Michigan group �68� was obtained at
slightly higher energies �68�. Most recently, an energy-
dependent cross section given by �m=4.9−13.5E+8.5E2 was
derived by the Wisconsin group �67�. In this expression, the
cross section is in Å2 and the energy is in eV. It should be
noted that there is a good deal of uncertainty in the Wiscon-
sin group cross section at E=0. The actual data measured by
the Wisconsin group correspond to an energy greater than
0.50 eV, and the use of a momentum transfer cross section
with a quadratic form to extrapolate their cross section to
E=0 is a major source of uncertainty. The energy depen-
dence of the low-energy cross section would be best de-
scribed using effective range theory �74,75�, and the qua-
dratic form adopted by the Wisconsin group is of
questionable accuracy �67�.

Estimates of the scattering length have been obtained
from the analysis of ortho-Ps annihilation in liquid helium
and high density gaseous helium �17,63,64,66,76�. These
model-dependent estimates are generally slightly smaller
than the present scattering length. Estimates of the scattering
length include 1.49a0 �63�, 1.42a0 �64�, and 1.51
0.18a0
�66�.

The present s-wave phase shift was used to construct a
momentum transfer cross section by making reference to a
published R-matrix elastic cross section for the P-wave �51�
and using a long range analysis to estimate the D-wave cross
section. The R-matrix calculation included seven Ps states
and seven He states. The R-matrix phase shifts were deduced
by digitizing the published partial wave elastic cross sections
and then converting them to phase shifts �51�.

The R-matrix s-wave phase shift is not much different
from the present phase shift. The R-matrix scattering length
was 1.60a0 which is only 2% larger than the present scatter-
ing length.

The p-wave phase shift was digitized after assuming the
phase shift was negative. The Ps-He p-wave phase shift is
expected to be similar to the p-wave phase shift for Ps-H
scattering in the electron spin-triplet configuration and this
phase shift is known to be negative �14,51�. After digitiza-
tion, the phase was then fitted to an empirical fitting formula
based on effective range theory, viz.
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tan��2� = − Ak3 + Bk5 + Ck7. �16�

Values of A=1.0 a.u. and B=−2.4 a.u. and C=8.4 a.u.
were chosen. This expression neglects a k4 term arising from
C6 �77–79�, but C6 is quite small and the impact it does have
will be partly compensated by the k5 and k7 terms.

The lowest order term in the d-wave phase shift comes
from the C6 /r6 van der Waals interaction. The lowest order
term in the expression for the phase shift can be evaluated
via perturbation theory �77–80�. It is

tan��2� �
12�C6k4

945
, �17�

where C6=13.37 a.u. �25�. At k=0.4a0
−1 this expression

gives �2=0.0137 rad. Short range effects for the d-wave are
repulsive �52,81�.

The composite momentum transfer cross section calcu-
lated from the present s-wave phase, the digitized and fitted
R-matrix p-wave phase, and Eq. �17� for the d-wave phase is
plotted and compared with various experimental values in
Fig. 8. This composite cross section is compatible with the
rough estimate of the momentum transfer cross section given
by Coleman et al. �19�. However, the composite cross sec-
tion is incompatible with those of Skalsey et al. �68� and the
Wisconsin group et al. �67� which use the Doppler broaden-
ing technique. In fact, it is absolutely impossible to reconcile
the current s-wave phase shift with either of the Doppler
broadening derived cross sections at E=0.6 eV �k�0.3a0

−1�.
At this energy, the d-wave phase shift can be neglected and
the momentum transfer cross section reduces to

�m �
4�

k2 �sin2��0 − �1� + 2 sin2��1�� . �18�

The s-wave phase shift is �0=0.480 rad. The absolute mini-
mum value that �m can achieve is 6.7�a0

2 for a p-wave phase
shift of �1=−0.15 rad. Any other value of �1 will result in a

larger momentum transfer cross section. Although the Wis-
consin group state that their cross section is consistent with
other experiments that have a zero energy cross section of
�10�a0

2, this statement should be given little weight since
the quadratic form they use to describe the energy depen-
dence of the momentum transfer cross section is not founded
in effective range theory �74,75�.

Both the Skalsey et al. and the Wisconsin group et al.
experiments use the Doppler broadening of the annihilation

-ray spectrum to deduce the momentum transfer cross sec-
tion �other approaches have looked at the angular correlation
of the annihilation radiation �19,65��. The analysis of the
Doppler broadening data is quite complicated, and it is pos-
sible that there are invalid assumptions in the extraction of
the cross section from the raw data.

Finally, Fig. 9 shows the elastic and momentum transfer
cross sections as a function of energy up to 0.05 Hartree. The
L=0 partial cross section, �0 is also depicted. The elastic
cross section is dominated by the L=0 partial cross section
for the energy range shown. The cancellation between the s
and p wave phase shifts causes the momentum transfer cross
section to be about 30% smaller than the elastic cross section
at E=0.05 Hartree.

VII. CONCLUSION

To summarize, an improved version of the SVM stabili-
zation ansatz has been developed and used to describe the
close to threshold scattering of four systems, namely, the
e+-H, e+-He, Ps-H, and Ps-He systems. The results on the
e+-H and e+-He systems can be regarded as validation exer-
cises that demonstrate the ansatz is capable of achieving
1–2 % accuracy for both the phase shifts and annihilation
rate. One positive aspect of the present approach is that the
linear dependence problems associated with the method
seem to be have been largely eliminated �23�. The other im-
provement relates from the use of the confinement potential.
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The inner basis could be systematically improved since a
well defined variational principle was in operation

One advantage of the method lies in its ability to treat
positronium scattering since this type of projectile is difficult
to treat by other methods. The comparison with the Kohn
scattering lengths for Ps-H scattering suggest that the low
energy s-wave phase shifts are now known with an accuracy
of about 1%.

The results for the Ps-He system represent an ab initio
determination of the scattering length that has an accuracy of
about 1–2 %. A previous R-matrix calculation gave a scat-
tering length only 2% larger than the present calculation
�51�. The authors of the R-matrix calculation did not make
any statements about the overall level of accuracy of their
phase shifts, possibly due to approximations in their repre-
sentation of the ground and excited states of the He target. So
the two most sophisticated ab initio calculations of Ps-He
now give consistent results. The level of agreement between
the calculated and experimental pickoff annihilation rates

gives confidence that the present SVM calculation has cap-
tured most of the physics necessary to describe low-energy
Ps-He scattering.

One future application of the method would be to extend
it to encompass p-wave scattering. This would permit a more
precise evaluation of the momentum transfer cross section.
Further, it would permit a definitive description of the energy
dependence of 1Zeff below 1–2 eV incident energy. Another
extension would involve the description of Ps-H2 scattering.
Somewhat surprisingly, this system could possibly be easier
to treat than either the e
-H2 systems. Since the projectile is
electrically neutral, the long range interactions fall off as
O�1 /R6�, and so the nonspherical interactions of the H2 mol-
ecule are mainly confined to short distances.
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