
Hyperfine structure of Li and Be+

V. A. Yerokhin
Center for Advanced Studies, St. Petersburg State Polytechnical University, Polytekhnicheskaya 29, St. Petersburg 195251, Russia

�Received 6 May 2008; published 29 July 2008�

A large-scale relativistic configuration-interaction �CI� calculation is performed for the magnetic-dipole and
the electric-quadrupole hyperfine structure splitting in 7,6Li and 9Be+. Numerical results for the 2 2S, 3 2S,
2 2P1/2, and 2 2P3/2 states are reported. The CI calculation based on the Dirac-Coulomb-Breit Hamiltonian is
supplemented with separate treatments of the QED, nuclear-magnetization distribution, recoil, and negative-
continuum effects.
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I. INTRODUCTION

The hyperfine structure �hfs� of few-electron atoms has
been an attractive subject of theoretical studies for decades,
one of the reasons being a few ppm accuracy achieved in
experiments on Li and Be+ �1,2�. Despite the considerable
attention received, a high-precision theoretical determination
of hfs in few-electron atoms remains a difficult task. The
main problem lies in the high singularity of the hfs interac-
tion and, as a consequence, in the dependence of the calcu-
lated results on the quality of the many-electron wave func-
tion near the nucleus.

The hfs splitting of lithium has traditionally been one of
the standard test cases for different theoretical methods �3�.
Among various calculations reported in the literature, the
nonrelativistic ones are the most numerous; their technique is
well developed by now. The best numerical accuracy for the
nonrelativistic hfs value is achieved in variational calcula-
tions that use multiple basis sets in Hylleraas coordinates
�4–6�. Probably the most popular nonrelativistic approach
is the multiconfigurational Hartree-Fock �MCHF� method
�7,8�, which is less computationally intensive but also pro-
duces less accurate results. The main drawback of the non-
relativistic methods is that the relativistic effects should be
accounted for separately. There is a way to perform a direct
evaluation of the leading relativistic correction �9�, but such
a calculation is difficult and has not yet been done. So far,
the relativistic correction was estimated by comparing with
less accurate calculations based on the Dirac-Coulomb-Breit
Hamiltonian, or by rescaling the hydrogenic correction.

There were calculations performed for Li and Be+ with
the relativistic analog of the MCHF procedure, the multicon-
figurational Dirac-Fock �MCDF� method �10–12�. The com-
putational accuracy of these relativistic calculations turns out
to be lower than that of the best nonrelativistic studies. This
is to a large extent due to the fact that the electron correlation
is more difficult to be accurately accounted for relativisti-
cally than nonrelativistically.

Methods that allow a straightforward generalization to the
relativistic case are many-body perturbation theory �13� and
its all-order extensions known as the coupled-cluster �CC�
approach �14–18�. Calculations of the Li hfs performed with
these methods so far did not account for most of the triple
excitations �and, in most cases, for a part of the double ex-
citations as well�, which led to an incomplete treatment of

the electron correlation and to a relatively low accuracy of
the corresponding results. Significant progress in the CC cal-
culations was reported in Ref. �19� for the case of Na. In that
work, all valence triple excitations were included. Such an
approach, when applied to the Li hfs, would significantly
improve the accuracy of the CC results. The corresponding
calculation is presently underway �20�.

In the current investigation, a relativistic calculation of
the hfs splitting in Li and Be+ will be performed by employ-
ing the configuration-interaction �CI� method. Unlike the
MCDF procedure, the CI method does not involve a varia-
tional minimization and thus is not handicapped by the dan-
ger of the variational collapse into the negative continuum
�which manifests itself in a “sinking” of the ground-state
energy due to the admixture of the negative energy states
into the ground-state wave function�. The CI method has a
potential to be more accurate than the MCDF method. The
only problem is that it requires the Dirac spectrum to be
sufficiently well represented by the model space of one-
electron wave functions, whereas the MCDF method can
produce reasonable results with only a few configurations.
While this might come as a limitation in the case of compli-
cated many-electron atoms, the systems at hand, the Li-like
atoms, are sufficiently simple to be very accurately described
by the CI method.

The goal of the present investigation is to perform a cal-
culation of the hfs in Li and Be+ complete to the relative
order �2, where � is the fine-structure constant. Such a cal-
culation requires, besides a high-precision determination of
the dominant nonrelativistic contribution, a rigorous treat-
ment of the leading relativistic correction ��2 and the inclu-
sion of the QED effects �� and ��2. Nuclear effects �the
recoil and the magnetization distribution� also contribute on
this level. Because of their smallness, these effects can be
treated nonrelativistically. Since we are concerned with the
effects of order up to �2 only, the Dirac-Coulomb-Breit
Hamiltonian may be used as a convenient and sound starting
point for our investigation.

The calculation complete to the relative order �2 was re-
ported for the hfs splitting of the 2 2S and 3 2S states of Li
and Be+ in our previous paper �21�. In this work, we extend
our calculations to the 2 2PJ states and present a detailed
analysis of various corrections. In particular, the recoil cor-
rection to the magnetic dipole hfs interaction is derived for
the case of an arbitrary spin of the nucleus. This correction is
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shown to yield the dominant recoil contribution for the hfs
splitting of the P and higher-l states in medium-Z H-like
atoms. To the best of our knowledge, it has not previously
been accounted for in systems other than hydrogen and deu-
terium.

The paper is organized as follows. In Sec. II, a brief sum-
mary of the CI method is given. In Sec. III, we present some
basic formulas for the magnetic-dipole and the electric-
quadrupole interaction and describe our CI calculation of the
hfs splitting based on the Dirac-Coulomb-Breit Hamiltonian.
Various corrections to the hfs are calculated in Sec. IV. The
results obtained are discussed and compared with the experi-
mental data in Sec. V.

Relativistic units �=c=1 and �=e2 / �4�� are used
throughout this paper.

II. CONFIGURATION INTERACTION METHOD

The relativistic Hamiltonian of an N-electron atom can be
written as

HDCB = �
i

hD�i� + �
i�j

�VC�i, j� + VB�i, j�� , �1�

where indices i , j=1, . . . ,N numerate the electrons, hD is the
one-particle Dirac Hamiltonian,

hD�i� = �i · pi + �� − 1�m + Vnuc�ri� , �2�

� and � are the Dirac matrices, Vnuc is the binding potential
of the nucleus, VC�i , j�=� /rij is the Coulomb part of the
electron-electron interaction, rij = �ri−r j�, VB is the Breit in-
teraction,

VB�i, j� = −
�

2rij
��i · � j + ��i · r̂ij��� j · r̂ij�� , �3�

and r̂=r /r. It is assumed that HDCB acts in the space of the
positive-energy eigenfunctions of some one-particle Hamil-
tonian.

The N-electron wave function of the system with parity P,
angular momentum quantum number J, and its projection M
is represented as a linear combination of configuration-state
functions �CSFs�,

��PJM� = �
r

cr���rPJM� , �4�

where �r denotes the set of additional quantum numbers that
determine the CSF. The CSFs are constructed as antisymme-
trized products of one-electron orbitals 	n of the form

	n�r� =
1

r
� Gn�r�
�nmn

�r̂�

iFn�r�
−�nmn
�r̂� 	 , �5�

where 
�m is the spin-angular spinor �22�, �
= �−1� j+l+1/2�j+1 /2� is the relativistic angular parameter, and
m is the angular momentum projection. In the present work,
we chose the one-electron orbitals 	n to be the �positive-
energy� eigenfunctions of the one-electron Dirac Hamil-
tonian with the frozen-core Dirac-Fock �DF� potential,

hDF = � · p + �� − 1�m + Vnuc�r� + VDF
N−1�r� . �6�

The �nonlocal� potential VDF
N−1 is defined by its action on a

wave function,

VDF
N−1�r1�	�r1� = �

c

 dr2	c

+�r2�
�

r12

��	c�r2�	�r1� − 	c�r1�	�r2�� , �7�

where the index c runs over the core orbitals. The eigenfunc-
tions of the Hamiltonian hDF form a complete and orthogonal
basis of one-electron orbitals.

In the CI method, the energy of the system and the mixing
coefficients cr in Eq. �4� are obtained by solving the secular
equation

det���rPJM�HDCB��sPJM
 − Er
rs� = 0. �8�

The matrix elements of the Hamiltonian between the CSFs
can be represented as linear combinations of the one- and
two-particle radial integrals,

��rPJM�HDCB��sPJM


= �
ab

drs�ab�I�ab�

+ ��
k

�
abcd

vrs
�k��abcd��Rk

C�abcd� + Rk
B�abcd�� . �9�

Here, a, b, c, and d specify the one-electron orbitals, drs and
vrs

�k� are the angular coefficients, I�ab� are the one-electron
radial integrals, and Rk

C �abcd� and Rk
B �abcd� are the Cou-

lomb and Breit two-electron radial integrals. The radial inte-
grals are defined by

�a�hD�b
 = 
�a,�b

ma,mb

I�ab� , �10�

�ab�VC,B�cd
 = ��
kmk

�− 1�k−mk+jc−mc+jd−md

2k + 1

� Cjama,jc−mc

kmk Cjdmd,jb−mb

kmk Rk
C,B�abcd� , �11�

where Cj1m1,j2m2

jm are the Clebsch-Gordan coefficients. After
integrating over angular variables, the expression for the
one-particle integral reads

I�ab� = 

0

�

dr�Fa� d

dr
+

�

r
	Gb − Ga� d

dr
−

�

r
	Fb

+ �GaGb + FaFb�Vnuc − 2mFaFb� . �12�

The Coulomb integral is given by

Rk
C�abcd� = �− 1�k��a�C�k���c
��b�C�k���d


� 

0

�

dr1dr2
r�

k

r�
k+1Wac�r1�Wbd�r2� , �13�

where Wab=GaGb+FaFb and C�J� is the spherical tensor with
components CM

�J��r̂�=�4� / �2J+1�YJM�r̂�. The expression for
the Breit integral is more complex; it can be found in Ref.
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�23�. The angular coefficients drs and vrs
�k� can be evaluated

analytically �24,25�. In the general case, formulas for them
are rather cumbersome. A number of packages are available
in the literature for the numerical evaluation of the angular
coefficients �24,26–29�.

III. HYPERFINE SPLITTING

A. Magnetic dipole hyperfine splitting

The relativistic Fermi-Breit operator of the magnetic di-
pole hyperfine interaction is given by

HM1 =
�e�
4�

� · T�1�, �14�

where � is the operator of the nuclear magnetic moment,
acting in the nuclear subspace. The operator T�1� acts in the
electronic subspace; it is given by the sum of the one-
electron operators t�1��i�,

T�1� = �
i

t�1��i� = �
i

ri � �i

ri
3 . �15�

In the nonrelativistic limit, the operator t�1� turns into tNR
�1�,

tNR
�1� =

1

m
� l

r3 +
3r̂�s · r̂� − s

r3 +
8�

3

�r�s� , �16�

where l and s are the one-electron operators of orbital angu-
lar momentum and spin, respectively. The three terms in the
brackets are often referred to as the orbital, the spin dipole,
and the Fermi contact term, respectively,

tNR
�1� = tl

�1� + tsd
�1� + tc

�1�. �17�

The relativistic value of the energy shift due to the mag-
netic dipole hyperfine interaction is obtained as the expecta-
tion value of the Fermi-Breit operator on the wave function
of the system with atomic angular momentum F and its pro-
jection MF. Employing the Wigner-Eckart theorem, the
nuclear variables are separated and integrated out and the
energy shift is represented in terms of the reduced matrix
element of the operator T�1�,

�EM1 = �FMF�HM1�FMF


=
�e�
4�

�

2I
�F�F + 1� − I�I + 1� − J�J + 1��

�
�J�T�1��J


�J�J + 1��2J + 1�
, �18�

where � is the magnetic moment of the nucleus, �
= �II��0�II
, I is the nuclear spin, and J is the total angular
momentum of the electron. Experimental data for the mag-
netic dipole hfs splitting are usually expressed in terms of the
hyperfine interaction constant AJ, which does not depend on
F,

AJ =
�EM1

�FMF�I · J�FMF

=

�e�
4�

�

I

�J�T�1��J

�J�J + 1��2J + 1�

. �19�

The reduced matrix element of the operator T�1� should be
evaluated with the CI many-electron wave functions �4�, ob-

tained by solving the secular equation �8�. Matrix elements
of the operator T�1� between individual CSFs can be ex-
pressed as linear combinations of matrix elements of the one-
electron operator t�1� between the single-particle orbitals,

��rPJ�T�1���sPJ
 = �
a�b

drs
�1��ab��a�t�1��b
 , �20�

where a and b numerate the one-electron orbitals and drs
�1� are

the angular recoupling coefficients. Packages for the numeri-
cal evaluation of the coefficients drs

�1� are available in the
literature �26,29�. The reduced matrix element of the one-
electron operator t�1� is given by

�a�t�1��b
 = − ��a + �b��− �a�C�1���b


�

0

�

drr−2�GaFb + FaGb� . �21�

The energy shift due to the hfs splitting can easily be
calculated for the hydrogenlike ion. In this case, the sum �20�
consists of a single term and the radial integral in Eq. �21� is
calculated analytically �in the point-nucleus limit�. In the
present work, we will need the nonrelativistic limit of Eq.
�21� for the hydrogenlike ion, which reads

�njl�t�1��njl
NR =
2�Z��3m2

n3

1

2l + 1
� 2j + 1

j�j + 1�
. �22�

Using this result, it is convenient to introduce the following
parametrization of the magnetic hyperfine constant AJ:

AJ =
��Z��3

n3

m2

mp

�

�N

1

IJ�J + 1��2L + 1�
GM1�Z� , �23�

where n is the principal quantum number of the valence elec-
tron, mp is the proton mass, and �N= �e� / �2mp� is the nuclear
magneton. The function GM1�Z� is dimensionless; its numeri-
cal value is unity for a hydrogenlike nonrelativistic atom in
the point-nucleus and nonrecoil limit. GM1 is a slowly vary-
ing function of the nuclear charge number Z and the quantum
numbers J and L, which is convenient for the representation
of numerical results. This definition of the function GM1 dif-
fers slightly from the one used in our previous work �21� by
the fact that it does not include the nonrelativistic mass scal-
ing factor �1+m /M�−3. We presently choose to treat this part
of the recoil effect �also referred to as the normal mass shift�
on an equal footing with the other recoil corrections. A pa-
rametrization similar to that in Eq. �23� was previously used
in Refs. �30,31�.

Numerical results of nonrelativistic calculations are often
presented in terms of the orbital �al�, the spin-dipole �asd�,
and the Fermi contact �ac� hyperfine parameters, induced by
the three terms in Eq. �17� and defined as �3�

al = �LSMLMS��
i=1

N
l0
�1��i�
ri

3 �LSMLMS
 , �24�

asd = �LSMLMS��
i=1

N
2C0

�2��i�s0
�1��i�

ri
3 �LSMLMS
 , �25�
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ac = �LSMLMS��
i=1

N
2s0

�1��i�
�ri�
ri

2 �LSMLMS
 , �26�

with ML=L and MS=S. The connection of the �nonrelativis-
tic limit of the� function GM1 with the hyperfine parameters
expressed in atomic units is given by

GM1�Z� =
n3J�J + 1��2L + 1�

2Z3 �clal + csdasd + ccac� . �27�

The coefficients ci are �3�

cl =
�L · J


LJ�J + 1�
, �28�

csd =
3�S · L
�L · J
 − L�L + 1��S · J


SL�2L − 1�J�J + 1�
, �29�

cc =
�S · J


3SJ�J + 1�
, �30�

where

�L · J
 = �J�J + 1� + L�L + 1� − S�S + 1��/2, �31�

�S · J
 = �J�J + 1� − L�L + 1� + S�S + 1��/2, �32�

�S · L
 = �J�J + 1� − L�L + 1� − S�S + 1��/2. �33�

B. Electric quadrupole hyperfine splitting

The scalar part of the interaction between an electron and
the nucleus is given by

V�r,rp1
, . . . ,rpZ

� = − ��
j=1

Z
1

�r − rpj
�
, �34�

where r and rpj
are the coordinates of the electron and the jth

proton, respectively. Averaging this interaction over the in-
ternal nuclear coordinates and using the standard multipole
expansion of �r−rpj

�−1, one obtains �see Ref. �32� for the
details�

Vav�r,�,�� � �V
intern = − ��
l=0

� 

0

�

dr�r�2�l�r��

�� rl

r�l+1��r� − r� +
r�l

rl+1��r − r���
�C�l��r̂� · C�l���,�� , �35�

where �¯
 denotes the averaging, � and � are the angles
that fix the orientation of the intrinsic nuclear system with
respect to the laboratory frame, and the nuclear charge den-
sity component �l is defined as

�l�r� =
 dr̂��r�C0
�l��r̂� . �36�

The first term in Eq. �35� �l=0� yields the standard Coulomb
interaction between the electron and the nucleus with an ex-

tended charge distribution. The term with l=1 vanishes after
averaging with the electron wave function of a definite par-
ity. The term with l=2 gives rise to a splitting of the energy
level �of an electronic state with J�1 /2�, known as the elec-
tric quadrupole one. The corresponding interaction is conve-
niently written in the form

HE2 = �T�2� · Qav
�2�. �37�

Here, Qav
�2� is the operator of the nuclear quadrupole moment

averaged over the internal �radial� nuclear coordinates,

Qav
�2� = �Q�2�
intern = NC�2���,�� . �38�

The normalization constant N is

N = 

0

R

drr4�2�r� , �39�

where R is the nuclear radius. The operator T�2� acts on the
electronic variables. It is given by

T�2� = �
i

t�2��i� = − �
i

f�ri�C�2��r̂i� , �40�

where the radial distribution function f�r� is

f�r� = �
1

r3 , r � R ,

1

N



0

R

dr�r�2�2�r��
r�

2

r�
3 , r � R .� �41�

The distribution function f�r� can easily be calculated ana-
lytically for several simple models of the nuclear-charge dis-
tribution. So, if �2 does not depend on r within the nucleus,
�2�r����R−r�,

f�r� =
r2

R5�1 + 5 ln
R

r
	, r � R . �42�

If �2�r��
�R−r�, then

f�r� =
r2

R5 , r � R . �43�

In the point-quadrupole limit, the function f�r� takes the
standard form, f�r�=r−3.

The finite nuclear size effect is very small for the electric
quadrupole splitting and its inclusion in calculations is not
necessary at present. However, we observed that the usage of
the extended charge distribution considerably improves the
stability and the convergence of numerical calculations. The
reason for this is that the extended distribution removes the
r−3 singularity of the point-quadrupole interaction.

Using the standard technique of the angular-momentum
algebra �see, e.g., Ref. �3��, the energy shift due to the elec-
tric quadrupole interaction can be expressed in terms of the
reduced matrix elements of the electronic operator T�2�. The
correction to the energy is usually expressed in terms of the
hyperfine structure constant BJ, which does not depend on
the total angular momentum of the system F,
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�EE2 =
3
4C�C + 1� − I�I + 1�J�J + 1�

2I�2I − 1�J�J + 1�
BJ, �44�

where C=F�F+1�− I�I+1�−J�J+1� and

BJ = 2Q� 2J�2J − 1�
�2J + 1��2J + 2��2J + 3�

�J�T�2��J
 . �45�

Here, Q is the nuclear quadrupole moment, defined as

Q = �IM��
j=1

Z

�3zpj

2 − rpj

2 ��IM
M=I = 2�II�Q0
�2��II
 . �46�

The reduced matrix element of the operator T�2� should be
evaluated with the many-electron wave functions �4�, ob-
tained by the solution of the secular equation �8�. Matrix
elements of the operator T�2� between individual CSFs can
be expressed as linear combinations of matrix elements of
the one-electron operator t�2� between the single-particle or-
bitals,

��rPJ�T�2���sPJ
 = �
a�b

drs
�2��ab��a�t�2��b
 , �47�

where a and b numerate the one-electron orbitals and drs
�2� are

the angular recoupling coefficients �26�. The reduced matrix
element of the one-electron operator t�2� is given by

�a�t�2��b
 = − ��a�C�2���b


0

�

drf�r��GaGb + FaFb� .

�48�

Similarly to the magnetic dipole hyperfine constant AJ,
the electric quadrupole hyperfine constant BJ can be conve-
niently parametrized by introducing the dimensionless func-
tion GE2, which turns into unity for a nonrelativistic hydro-
genlike ion in the point-nucleus and nonrecoil limit,

BJ = Q
��Z��3m3

n3

2J − 1

J + 1

1

��� + 1��2L + 1�
GE2�Z� , �49�

where �= �−1�J+L+1/2�J+1 /2�.
Results of nonrelativistic calculations are often expressed

in terms of the quadrupole parameter bq, defined as

bq = �LSMLMS��
i=1

N
2C0

�2��r̂i�
ri

3 �LSMLMS
ML=L,MS=S. �50�

The connection between the �nonrelativistic limit of the�
function GE2 and the parameter bq expressed in atomic units
is given by

GE2�Z� =
n3�J + 1���� + 1��2L + 1�

Z3�2J − 1�
�− cqbq� , �51�

where the coefficient cq is �3�

cq =
6�L · J
2 − 3�L · J
 − 2L�L + 1�J�J + 1�

L�2L − 1��2J + 3��J + 1�
. �52�

C. Details of the CI calculation

To perform a CI calculation, we devised a code, incorpo-
rating and adapting a number of existing packages
�24,26–28,33� for setting up the CSFs, calculating angular-
momentum coefficients, and diagonalizing the Hamiltonian
matrix. The largest number of CSFs simultaneously handled
was about a half a million. A careful optimization of the code
was necessary to keep the time and memory consumption of
the calculation within reasonable limits. Care was taken to
prevent recalculating the angular-momentum coefficients for
the pairs of CSFs that differ by the principal quantum num-
ber of a single electron only. An optimized ordering of CSFs
allows one to drastically reduce the number of angular-
momentum coefficients to be evaluated. A similar optimiza-
tion was introduced in the calculation of the Coulomb and
Breit radial integrals. The radial integrals with the same pair
of electron states in the innermost radial integration were
grouped together and evaluated simultaneously.

The dominant part of the hfs splitting is delivered by the
Dirac-Coulomb Hamiltonian. This is the most demanding
part of the calculation, since a high relative precision is re-
quired. One of the factors defining the accuracy of the cal-
culation is the quality and the size of the space of one-
electron orbitals from which the CSFs are constructed. We
take this space to be a part of the finite basis set of eigen-
vectors of the Dirac equation, obtained by the dual-kinetic-
balance method �34� and constructed with B-splines �35�.

For a given number of B-splines na, all eigenstates were
taken with the energy 0���mc2�1+Z�Emax� and the orbital
quantum number l� lmax, where the value of Emax was varied
between 0.5 and 6, and lmax between 1 and 7. Three main sets
of one-electron orbitals were employed in the present work:
�A� 20s 20p 19d 19f 18g 18h with na=44 and Emax=3.0, �B�
14s 14p 14d 13f 13g 13h 12i 12k with na=34 and Emax
=0.5, and �C� 25s 25p 25d with na=54 and Emax=6.0. Here,
e.g., 20p means 20p1/2 20p3/2. Calculational results were first
obtained with the set �A� and then corrected for contributions
of the higher partial waves with the set �B� and for a more
complete representation of the Dirac spectrum with the set
�C�. The computation became rather intensive for the P
states, so the basis set �A� was reduced to include the states
with l�3 only in this case. Usage of several sets of one-
electron orbitals allowed us to efficiently control the com-
pleteness of the representation of the Dirac spectrum in our
calculations.

The analysis of the convergence of the partial-wave ex-
pansion was performed by identifying increments of the re-
sults induced by the increasing cutoff parameter lmax. The
omitted tail of the expansion was estimated by a polynomial
least-squares fitting of the increments in 1 / l. In most cases,
the error due to the termination of the expansion was found
to yield the largest uncertainty to the Dirac-Coulomb hfs
value.

The set of the CSFs employed in the calculation was ob-
tained by taking all single, double, and triple excitations of
the reference configuration with at least one electron orbital
with l�1 present. The contribution of the remaining triple
excitations was found to be negligible for the S states. For
the P states, it was estimated by repeating the calculation
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with a smaller basis but with the above restriction replaced
by l�2.

Inclusion of the Breit interaction into the Dirac-Coulomb
Hamiltonian yields only a small correction in the case of Li
and Be+. Because of this, it is sufficient to use much smaller
basis sets for its evaluation, which simplifies the computation
greatly. The Breit-interaction correction was obtained as the
difference of the CI results with and without the Breit inter-
action included into the Hamiltonian, evaluated with the
same set of CSFs.

Results of our CI calculations of the magnetic dipole and
the electric quadrupole hfs splitting are presented in Tables I
and II, respectively. The CI values obtained with the Dirac-
Coulomb Hamiltonian are listed under the entry “Coulomb;”
the entry “Breit” contains the correction due to the inclusion
of the Breit interaction. The comparison presented in the
tables demonstrates significant deviations of our CI values
from the MCDF results by Bieroń et al. �10,11� and from the
CC results of Johnson et al. �18�. In the case of Be+, Ref.
�11� reports estimations of the calculational errors, consid-
ered by the authors to be the conservative ones, but our CI
results are well out of these error bars for all the states stud-
ied.

The deviation from the MCDF calculations is the stron-
gest for the quadrupole splitting in Be+. In this case, our CI
value differs from the MCDF one already in the second digit,
while the claimed accuracy of the MCDF result is about
10−5. A similar deviation is observed also for the quadrupole
splitting in Li. At the same time, agreement of our calcula-
tions with the nonrelativistic studies �8,36� is much better, on
the level of 10−3. This observation leads us to a conclusion
that the MCDF results for the quadrupole splitting are, most
probably, in error. A possible explanation for this is that the
highly singular point-quadrupole interaction might lead to
considerable numerical errors when evaluated on approxi-
mate relativistic wave functions. In our calculations, we de-
tected such problems; they were solved by using the ex-
tended charge distribution for the quadrupole interaction.

In order to make possible a detailed comparison with
high-precision nonrelativistic results available in the litera-
ture, we have to identify the nonrelativistic part of our CI
values. This was achieved by repeating the full set of the CI
calculations for different values of the fine-structure constant
� �namely, three values with ratios �� /�=0.9, 1, and 1.1
were used�. For each value of �, the finite nuclear-charge
distribution correction was evaluated �as described in the
next section� and subtracted from the CI values. The point-
nucleus results thus obtained were fitted to a polynomial in
�, assuming the absence of the linear term. In this way, the
CI results with the physical value of � were separated into
three parts: the nonrelativistic point-nucleus contribution, the
relativistic correction, and the finite nuclear-charge correc-
tion.

For the P states and the magnetic dipole hfs, the nonrel-
ativistic limit of the CI results needs to be separated into
three parts, corresponding to the three terms of the nonrela-
tivistic decomposition of the hfs operator �17�. To this end,
we carried out identical calculations both for the relativistic
magnetic dipole hfs operator �15� and for the spin-dipole and
the orbital parts of its nonrelativistic decomposition. Apply-

ing the fitting procedure described above, we identify the
nonrelativistic limit of the CI values as well as the spin-
dipole and orbital hfs parameters al and asd. The remaining
contact parameter ac is then unambiguously deduced. �We
prefer not to perform a direct calculation for the contact term
since the corresponding operator contains a 
 function and
needs a regularization when evaluated on relativistic wave
functions.�

The nonrelativistic hfs parameters obtained in this way
are listed in Table III. The nonrelativistic results for the 2 2P
state were obtained from the relativistic calculations for the
2 2P1/2 state. Since in the present work the hfs parameters are
needed for the purpose of comparison only, we do not assign
the uncertainty to them �which is difficult to do reliably since
they are obtained by a fit�. The comparison with the previous
nonrelativistic calculations �5,8,36� presented in the table ex-
hibits a remarkably good agreement of our values with the
high-precision results obtained in a Hylleraas-type calcula-
tion by Yan et al. �5�.

In Tables I and II, the entry “NR�point�” labels the non-
relativistic, point-nucleus limits of the functions GM1 and
GE2 obtained by the fitting procedure described above. Be-
cause of the fitting, the uncertainties are not ascribed to
them; we expect that they are somewhat less accurate than
the corresponding relativistic values. The comparison is
drawn with the most accurate previous nonrelativistic calcu-
lations. A much better agreement is observed with the previ-
ous nonrelativistic results than with the relativistic ones.

IV. CORRECTIONS TO THE HYPERFINE
SPLITTING

While the evaluation of the relativistic hfs value is the
most computationally intensive part of the calculation, a
high-precision theoretical determination of the hfs splitting
requires inclusion of a number of important corrections. In
this section, we present a detailed description of each of
them in turn.

A. QED effects

For the magnetic dipole hfs splitting, the leading �in Z��
QED contribution originates from the anomalous magnetic
moment of the electron ge. The effect is accounted for by
multiplying the spin-dependent terms in Eq. �16� by ge /2
�� / �2��; see, e.g., Ref. �3�. So, the leading QED correction
to the function GM1 is given by


GM1
QED,0�Z� =

�

2�
�GM1,sd�Z� + GM1,c�Z�� , �53�

where GM1,sd and GM1,c are the contributions to the function
GM1 induced by the spin-dipole and the contact term in Eq.
�16�, respectively.

The higher-order terms of the Z� expansion �the binding
QED corrections� induce important contributions and should
be taken into account alongside the leading effect. The bind-
ing corrections to the contact term can be written in a form
analogous to that for the hydrogen hfs �5,9,44�,
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TABLE I. Individual contributions to the magnetic dipole hfs splitting in 6,7Li and 9Be+, in terms of the function GM1 if not specified
otherwise. For 6Li, only the contributions different from those for 7Li are listed. The values of the nuclear magnetic moments are taken from
Ref. �37�. The entries are labeled as follows: “NR�point�” denotes the point-nucleus nonrelativistic result; “Relativistic” is the total relativ-
istic correction; “Coulomb” is the relativistic hfs value obtained with the Dirac-Coulomb Hamiltonian; “Breit” is the Breit-interaction
correction; “BW” is the nuclear magnetization distribution correction; “NMS” is the normal mass shift; “SMS” is the specific mass shift;
“SO” is the sum of the normal and specific spin-orbital recoil corrections induced by Eqs. �61� and �62�; and “Negative-energy” is the
contribution of the negative-energy part of the Dirac spectrum.

2 2S 3 2S 2 2P1/2 2 2P3/2 Ref.

7Li

NR�point� 0.215251 0.168340 0.073905 −0.024348

0.215254�4� 0.168351�13� Hylleraas �5�
0.21519 0.16828 0.07389 −0.02451 MCHF �8�

Relativistic 0.000205 0.000159 0.000018 −0.000036

Coulomb 0.215385�5� 0.168440�9� 0.073923�1� −0.024364�10�
0.21527 0.07396 −0.02476 MCDF �10�
0.21565 0.16861 0.07389 −0.02425 CCSD �18�

Breit 0.000016 0.000016 −0.000003 0.000000

QED 0.000182�4� 0.000143�3� 0.000048�1� −0.000085�2�
BW −0.000024�5� −0.000019�4� −0.000002 0.000009�2�
Recoil NMS −0.000050 −0.000039 −0.000017 0.000006

SMS 0.000002 0.000002 0.000027 −0.000055

SO 0.000000 0.000000 −0.000001�1� −0.000002�1�
Negative-energy 0.000002�1� 0.000002�1� −0.000003�1� −0.000003�2�
Total 0.215512�8� 0.168544�11� 0.073972�2� −0.024493�10�
Totala �MHz� 401.755�15� 93.095�6� 45.966�1� −3.044�1�
Experiment �MHz� 401.7520433�5�b 93.106�11�c 45.914�25�d −3.055�14�d

46.010�25�e

46.024�3�f

6Li

Coulomb 0.215382�5� 0.168438�9� 0.073922�1� −0.024363�10�
BW −0.000022�13� −0.000017�10� −0.000002�1� 0.000008�5�
Recoil NMS −0.000059 −0.000046 −0.000020 0.000007

SMS 0.000002 0.000002 0.000031 −0.000064

Total 0.215504�14� 0.168538�14� 0.073974�2� −0.024502�11�
Totalg �MHz� 152.122�10� 35.250�3� 17.4058�5� −1.1530�5�
Experiment �MHz� 152.136839�2�b 35.263�15�c 17.375�18�h −1.155�8�h

17.386�31�e

17.394�4�f

9Be+

NR�point� 0.390544 0.335066 0.221132 0.00989

0.390549�9� Hylleraas �5�
0.39050 0.33504 0.22113 0.00967 MCHF �8�

Relativistic 0.000664 0.000563 0.000162 −0.00015

Coulomb 0.391030�6� 0.335468�9� 0.221302�2� 0.009800�25�
0.39094�4� 0.22140�1� 0.0091�4� MCDF �11�

Breit 0.000039 0.000042 −0.000021 −0.000001

QED 0.000289�12� 0.000248�10� 0.000137�5� −0.000181�7�
BW −0.000062�6� −0.000053�5� −0.000005�1� 0.000027�3�
Recoil NMS −0.000071 −0.000061 −0.000040 −0.000002

SMS 0.000002 0.000002 0.000057 −0.000080
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GM1
QED,bind�Z� =

�

�
GM1,c�Z��Z���ln 2 −

5

2
	

+ �Z��2�−
8

3
ln2�Z�� + a21 ln�Z�� + a20�� .

�54�

The coefficients a21 and a20 are different from the hydro-
genic case and not known at present. One can, however, use
their hydrogenic values as crude estimates. In our calcula-
tions, we will use the results for the hydrogenic 2s state,
a21=−1.1675, a20=11.3522 �44,45�, and assume a 100% un-
certainty for them. This treatment of the QED effects coin-
cides with those of Refs. �5,6� but is different from other
previous investigations, where the binding effects were con-
tinually neglected. Such neglect can hardly be justified since
the higher-order terms change the total QED contribution by
40% for lithium and by 60% for beryllium.

The binding corrections to the spin-dipole and orbital
parts of hfs are relevant for the states with l�0 only. They

enter in the relative order ��Z��2 and are presently unknown.
Numerical calculations for the hydrogenic case �46� show
that their nominal order can be enhanced by the second
power of logarithm. We thus estimate the uncertainty due to
their neglect by

�GM1,sd + GM1,l�
�

�
�Z��2 ln2�Z�� . �55�

For the electric quadrupole splitting, the QED correction
has not been calculated so far. Its relative nominal order is
��Z��2. According to our analysis, this correction diverges in
the point-quadrupole limit R→0, which means that the
nominal order is enhanced by ln R�6. We therefore estimate
the error in GE2 due to the neglect of the QED effects by
multiplying it by the factor of

10��Z��2.

TABLE I. �Continued.�

2 2S 3 2S 2 2P1/2 2 2P3/2 Ref.

SO 0.000000 0.000000 −0.000007�2� −0.000018�5�
Negative-energy 0.000005�3� 0.000005�2� −0.000009�4� −0.000011�6�
Total 0.391233�15� 0.335651�15� 0.221413�7� 0.009533�27�
Totali �MHz� −625.08�2� −158.897�7� −117.919�4� −1.015�3�
Totalj �MHz� −625.11�3� −158.905�7� −117.925�4� −1.016�3�
Experiment �MHz� −625.00883705�1�k −118.6�36�l

a��7Li�=3.2564268�17�.
bBeckmann et al., 1974 �1�.
cBushaw et al., 2003 �38�.
dOrth et al., 1975 �39�.

eWalls et al., 2003 �40�.
fDas and Natarajan, 2008 �41�.
g��6Li�=0.8220473�6�.
hOrth et al., 1974 �42�.

i��9Be�=−1.177432�3�.
j��9Be�=−1.177492�17�.
kWineland et al., 1983 �2�.
lBollinger et al., 1985 �43�.

TABLE II. Individual contributions to the electric quadrupole hfs splitting of the 2 2P3/2 state, in terms of
the function GE2 if not specified otherwise. The notations are the same as in Table I. The values of the nuclear
quadrupole moments are taken from Ref. �37�.

7Li 6Li 9Br+ Ref.

NR�point� 0.050260 0.050260 0.172140
0.0498 0.1717 MCHF �8�
0.0498 0.1727 FCPC �36�

Relativistic −0.000004 −0.000004 −0.000013
Coulomb 0.050260�3� 0.050260�3� 0.172150�7�

0.051085 0.18356�3� MCDF �10,11�
Breit −0.000004 −0.000004 −0.000024
QED 0.000000�2� 0.000000�2� 0.000000�11�
NMS −0.000012 −0.000014 −0.000031
SMS 0.000012 0.000014 0.000030
Total 0.050256�4� 0.050256�4� 0.172125�13�
Total �MHz� −0.216�4�a −0.0044�1�b 2.281�16�c

Experiment �MHz� −0.221�29� −0.010�14� �39,42�
aQ�7Li�=−40.55�80� mb.
bQ�6Li�=−0.82�2� mb.
cQ�9Be�=−52.88�38� mb.
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B. Nuclear recoil

Within the nonrelativistic approach, the nuclear recoil ef-
fect on the energy levels and on the wave functions of the
system is accounted for by introducing two additional terms
in the Hamiltonian, traditionally referred to as the normal
mass shift �NMS� and the specific mass shift �SMS�. They
are given by

HNMS = �
i

pi
2

2M
, �56�

HSMS = �
i�j

pi · p j

M
, �57�

respectively, where M is the mass of the nucleus. Alterations
of the wave function due to the additions to the Hamiltonian
give rise to the corresponding corrections to the hfs. The
NMS part of the recoil can be factorized out and expressed in
terms of the reduced mass. It is accounted for by multiplying
the nonrelativistic hfs value by a factor of �1+m /M�−3 �47�.
The inclusion of HNMS into the CI Hamiltonian leads to the
same effect but adds some relativistic corrections. The SMS
part of the recoil effect is to be evaluated numerically, by
incorporating HSMS into the CI Hamiltonian and by identify-
ing the corresponding alteration of the hfs splitting.

It should be stressed that, despite the fact that our original
CI Hamiltonian is the relativistic one, the inclusion of the
operators HNMS and HSMS in it does not fully account for the
relativistic recoil effects, since the operators themselves are
obtained within the nonrelativistic approximation only. This
fact was often disregarded in the past, e.g., in Ref. �48�. The
complete treatment of the leading ���Z��2� relativistic recoil
correction to energy levels of the system is achieved by em-
ploying the operator �49�

Hrec =
1

2M
�
ij
�pi · p j −

Z�

ri
��i + ��i · r̂i�r̂i� · p j� . �58�

Numerical calculations with this operator were performed,
e.g., in Ref. �50�. In our present investigation, the relativistic
recoil effects are negligible as compared to other sources of
the theoretical uncertainty. We thus use the nonrelativistic
operators for the description of the recoil effects.

Matrix elements of HSMS between the individual CSFs
can be expressed in terms of the angular coefficients vrs

�k�

introduced in Eq. �9�, with the multipolarity k=1,

��rPJM�HSMS��sPJM
 = −
1

M
�
abcd

vrs
�1��abcd�V�ac�V�bd� ,

�59�

where the radial integrals are �see, e.g., Ref. �48��

V�ac� = ��a�C�1���c


0

�

dr

��Ga� d

dr
−

�a��a + 1� − �c��c + 1�
2r

�Gc

+ Fa� d

dr
−

�a��a − 1� − �c��c − 1�
2r

�Fc� . �60�

So far, we discussed the recoil corrections to hfs that are
induced by the wave functions. There are, however, also re-
coil corrections to the hyperfine interaction itself. The recoil
correction to the magnetic dipole hfs interaction arises
through the spin-orbit coupling in the scalar component of
the nuclear current. This correction depends on the spin of
the nucleus I. In the case of hydrogen �I=1 /2�, it was de-
rived many years ago in Ref. �51�, whereas in Ref. �52� it
was reported for the case of deuterium �I=1�. To the best of
our knowledge, this correction was previously unknown for
the arbitrary spin of the nucleus and was not accounted for in
calculations of the hfs of systems other than hydrogen and
deuterium.

The spin-orbital �SO� recoil correction to the magnetic
dipole hfs interaction is obtained in the Appendix by using
the expression for the current of a particle with an arbitrary
spin derived in Ref. �53�. The result is represented by Eq.
�A7�. It can be conveniently split into the normal �SON� and
specific �SOS� parts, analogously to the normal and the spe-
cific mass shift of energy levels, HSO=HSON+HSOS, with

HSON =
Z�

2M2 �g − 1�I · �
i

li

ri
3 , �61�

HSOS =
Z�

2M2 �g − 1�I · �
i�j

tSOS�i, j� , �62�

TABLE III. Nonrelativistic hfs parameters, in a.u.

Ion
2 2S
ac

3 2S
ac

2 2P

Ref.ac asd al bq

Li 2.90589 0.67336 −0.21467 −0.013477 0.063125 −0.022617 This work
2.90592�5� 0.67341�5� −0.21478�5� Hylleraas �5�
2.9051 0.6731 −0.2151 −0.01346 0.06311 −0.02239 MCHF �8�
2.903 0.6745 −0.2136 −0.01341 0.06309 −0.02242 FCPC �36�

Be+ 12.4974 3.1769 −1.0842 −0.10269 0.48520 −0.18362 This work
12.4976�3� Hylleraas �5�
12.496 3.1767 −1.0856 −0.10265 0.48516 −0.18310 MCHF �8�
12.493 3.181 −1.070 −0.1020 0.4851 −0.1842 FCPC �36�
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tSOS�i, j� =
ri � p j

ri
3 +

r j � pi

rj
3 . �63�

Here, I is the operator of the nuclear spin, li is the operator of
the orbital angular momentum of the ith electron, and g is the
g factor of the nucleus,

g =
�

�N

M

mp

1

I
. �64�

The SON interaction is proportional to the orbital part of
the nonrelativistic decomposition of the magnetic dipole hfs
operator. It is easy to see that this part of the SO recoil effect
can be accounted for by modifying the orbital hyperfine pa-
rameter al by

al → al�1 +
m

M
Z

g − 1

g
� . �65�

It is interesting to note that, comparing to the NMS effect,
the SON correction is enhanced by a factor of Z, which
makes it a dominant recoil effect in the hfs splitting of
medium-Z H-like ions �for electronic states with l�0�. For
Li2+, the ratio of the SON and the NMS effects is −0.5 for
the 2p1/2 state and −1.2 for the 2p3/2 state. For the lithiumlike
systems, however, the SON and the SOS corrections tend to
cancel each other, the net effect being rather small numeri-
cally.

In the present work, we calculate the SOS correction by
using perturbation theory to the lowest order. For the elec-
tronic configuration with a single valence electron beyond
the closed core shell, the contribution to the function GM1
due to the SOS effect can be expressed as


GM1
SOS = � �Z��3m3

n3J�J + 1��2L + 1��−1Zm

M

g − 1

g �
�c

�− 1�

��cv�tSOS0
�vc
 , �66�

where v denotes the valence electron state with the angular
momentum projection �v=1 /2, c is the core electron state
with the angular momentum projection �c, and tSOS0

is the
zeroth spherical component of the operator tSOS. The radial
integral is evaluated to yield

�cv�tSOS0
�vc
 =� 6

jv�jv + 1��2jv + 1�

� � 1 1 1

jv jv jc
�U�cv�V�vc� , �67�

where

U�cv� = ��c�C�1���v


0

�

drr−2�GcGv + FcFv� , �68�

and V�vc� is defined by Eq. �60�. It is easy to see that the
radial integral �67� vanishes for the S states.

The calculational results for the individual recoil contri-
butions to the magnetic dipole hfs splitting are listed in Table
I under entries “NMS,” “SMS,” and “SO.” The results ob-
tained for the NMS and SMS parts are in good agreement

with the previous evaluations of these corrections. The entry
“SO” represents the sum of the SON and the SOS correc-
tions. Because of a large cancellation between these two
parts, we calculate both of them by perturbation theory. The
uncertainty specified in the table was evaluated by compar-
ing results obtained with different potentials in the zeroth-
order Hamiltonian.

The scalar component of the nuclear current yields also a
correction to the electric quadrupole interaction �52,53�. This
correction is induced by the nuclear spin and can be inter-
preted as a shift of the nuclear quadrupole moment �see the
Appendix for details�. The induced contribution is included
into the observable value of the nuclear quadrupole moment
and thus is not needed to be taken into account in the theo-
retical description of the electric quadrupole hfs.

C. Nuclear size and magnetization distribution

Due to a high singularity of the hfs interaction at the
origin, the nuclear structure effects �particularly, the distribu-
tion of the nuclear magnetic moment� have a significant in-
fluence on the magnetic dipole hfs and should be taken into
account in atomic calculations. An accurate theoretical de-
scription of these effects is a demanding problem. A way for
its rigorous solution was paved in recent studies �54–56�.
Practical realizations of this approach, however, are so far
restricted to two- and three-nucleon systems �54,55� and
their extension to more complex nuclei like 7Li and 9Be
looks problematic.

The most widely used approach up to now is to account
for the extended nuclear magnetization distribution �the
Bohr-Weisskopf �BW� effect� by means of the Zemach for-
mula �57�. According to the original formulation, the nuclear
correction to the magnetic dipole hfs of an S state of an
H-like atom is represented by a simple multiplicative factor,


GM1
nuc�Z� = − 2Z��r
emGM1�Z� , �69�

where �r
em is the Zemach moment obtained by folding to-
gether the electric charge �e�r� and magnetization �m�r� den-
sities

�r
em =
 drdr��e�r��m�r���r − r�� . �70�

Formula �69� accounts for both the charge and the mag-
netization distribution. Since the charge-distribution effect is
usually taken into account in a more complete way by modi-
fying the Coulomb nuclear potential in the Hamiltonian �2�,
it should be subtracted from the total Zemach correction. The
finite nuclear charge �FNC� correction is obtained from Eq.
�69� by setting �r
em= �r
e, where �r
e is the electric charge
radius defined as

�r
e =
 dr�e�r��r� . �71�

More detailed studies of the FNC correction in H-like atoms
with including the relativistic effects were reported in Refs.
�30,58�. For lithium and beryllium, the relativistic effects are
small and enter mainly through the alteration of the exponent
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in the Z� and �r
e dependence by terms ��Z��2.
Using the hydrogenic result �30� for the exponent of the

Z� and �r
e dependence, we write the generalization of the
nonrelativistic FNC correction in the form valid for an arbi-
trary state of few-electron atoms,


GM1
FNC�Z� = − 2�Z��r
e�2�−1GM1,c�Z� , �72�

where �=�1− �Z��2 and GM1,c is the contact part of GM1.
Using Eq. �72�, one should keep in mind that the charge
radius �r
e is different from the charge root-mean-square
�rms� radius �r2
e

1/2, which is usually listed in tables. The
conversion factor depends somewhat on the model of the
nuclear charge distribution. For the Gaussian model, the con-
nection is �r
e=�8 / �3���r2
e

1/2. The values of the rms radii of
the nuclei 6,7Li and 9Be were taken from Ref. �59�. The rms
radii and the numerical results for the FNS correction ob-
tained by Eq. �72� are presented in Table IV �the relative
values of the correction, 
GM1

FNC /GM1,c, are listed�. An inde-
pendent evaluation of the FNS correction was performed, by
repeating the CI calculations for different values of the
nuclear radius and by fitting the increments to the analytical
form �72�. The FNS correction obtained in this way agreed
very well with the analytical results presented in the table.

In the present investigation, separate values of the FNS
correction are not necessary since this effect is already in-
cluded in the CI part of the calculation. However, we use the
values of the FNS correction in order to identify the point-
nucleus limit of our results �particularly, for the comparison
with the point-nucleus results of Ref. �5�� and for improving
the stability of the fit in extracting the nonrelativistic limit of
our calculations �the FNC correction is the only part of the
CI values that is linear in ��.

There is no need to specify explicitly to which electronic
states the results for the nuclear corrections in Table IV cor-
respond, because the relative values of the corrections are
listed. Our numerical calculations show that, with a good
accuracy, the relative values of the nuclear corrections do not
depend on the particular state. �Of course, for the P states,
the relative value should be evaluated with respect to the
contact part of the correction.�

The Zemach correction induced by the magnetization dis-
tribution �the BW effect� can be written in a form valid for
an arbitrary state as


GM1
BW�Z� = − 2Z���r
em − �r
e�GM1,c�Z� . �73�

The Zemach radius is usually not tabulated and should be
derived from data available for the charge and magnetization
rms radii according to Eq. �70�, with an additional input of
the distribution models. For the Gaussian model

��r� = �0 exp�− �r2� �74�

employed for the charge and magnetization distributions, the
Zemach radius is readily obtained analytically,

�r
em =� 8

3�
��r2
e + �r2
m�1/2. �75�

For more sophisticated distribution models, one has to evalu-
ate radial integrations in Eq. �70� numerically. In order to test
the model dependence of the Zemach radius �with fixed val-
ues of the charge and magnetization rms radii�, we per-
formed its numerical evaluation with the two-parameter
Fermi model. The same results as for the Gaussian model are
obtained, which leads us to conclude that the model depen-
dence is negligible.

The values listed in Table IV for the magnetic rms radius
are the average of data tabulated in Ref. �60� and the errors
are their mean-square deviation. Under the entry “Zemach,”
we tabulate the numerical results for the BW correction ob-
tained by Eq. �73�; the error ascribed to them originates from
the uncertainties of the magnetization and charge radii.

The second approach to the description of the BW effect
considered in the present work is based on the single-particle
�SP� model of the nuclear magnetic moment and will be
referred to as the SP approach in the following. Within the
SP model, the nuclear magnetic moment is assumed to be
induced by the odd nucleon �proton when Z and A are odd,
and neutron when Z is even and A is odd�. The odd nucleon
is assumed to have an effective g factor, which is fixed so
that it yields the experimental value of the nuclear magnetic
moment. The treatment of the magnetization distribution ef-
fect on hfs within the SP model was originally developed in
Refs. �61,62� and later in Ref. �30�. The spin-orbit interaction
of the odd nucleon was introduced into this approach in Ref.
�31�. Our present treatment closely follows the procedure
described in Refs. �31,63�.

TABLE IV. Nuclear parameters �in fm� and the relative values of the nuclear corrections �in ppm� to the magnetic dipole hfs. The
abbreviations are as follows: “FNS” denotes the nuclear charge distribution correction, “Zemach” labels the BW correction obtained with the
Zemach formula, “SP” labels the BW correction evaluated within the SP approach, and “const” indicates that the odd-nucleon wave function
is taken to be a constant within the nucleus.

Isotope
�r2
e

1/2

�fm�
�r2
m

1/2

�fm�
�r
em− �r
e

�fm� FNS

Bohr-Weisskopf effect
Total nuclear

correctionZemach SP SP�const� Total

6Li 2.54�3� 3.12�22� 1.38�19� −268�3� −160�20� −50 −89 −100�60� −368�60�
7Li 2.43�3� 2.80�8� 1.19�8� −257�3� −135�9� −112 −99 −112�23� −369�23�
9Be 2.52�1� 2.67�6� 1.06�5� −356�4� −160�8� −158 −161 −158�16� −514�16�
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The wave function of the odd nucleon is assumed to sat-
isfy the Schrödinger equation with the central potential of the
Woods-Saxon form and the spin-orbital term included �see,
e.g., Ref. �64��,

V�r� = − V0F�r� +
1

mp
�so�r�l · � + VC�r� , �76�

where

�so�r� =
Vso

4mpr

dF�r�
dr

, �77�

F�r� = �1 + exp� r − R

a
	�−1

, �78�

and VC is the Coulomb part of the interaction �absent for
neutron�, with the uniform distribution of the charge �Z−1�
over the nuclear sphere. The parameters V0, Vso, R, and a
were taken from Ref. �64�, where they were obtained by
fitting electron scattering data. The fitting was not evaluated
for 9Be, so we use the parameters for its closest odd-neutron
neighbor, 12C. For 6Li, the nuclear spin is integer �I=1�, and
so one needs to make an additional assumption about the
value of the orbital angular momentum of the nucleus. We
used the value L=0 �65� in our calculations.

The nuclear magnetic moment can be evaluated within the
SP model to yield �31�

�

�N
= �

1

2
gS + �I −

1

2
+

2I + 1

4�I + 1�
��sor

2
�gL for I = L +
1

2
,

−
I

2�I + 1�
gS + � I�2I + 3�

2�I + 1�
−

2I + 1

4�I + 1�
��sor

2
�gL for I = L −
1

2
,

�79�

where I and L are the total and the orbital angular momen-
tum of the nucleus, respectively, gL is the g factor associated
with the orbital motion of the nucleon �gL=1 for proton and
gL=0 for neutron�, and gS is the effective nucleon g factor,
determined by the condition that Eq. �79� yields the experi-
mental value of the magnetic moment.

It was demonstrated in Ref. �31� that, within the SP
model, the BW effect can be accounted for by adding a mul-
tiplicative magnetization-distribution function F�r� to the
standard point-dipole hfs interaction �15�. The distribution
function is given by �63�

F�r� =
�N

�



0

r

dr�r�2�u�r���2�1

2
gS + �I −

1

2

+
2I + 1

4�I + 1�
r2�so�r�	gL� +

�N

�



r

�

dr�r�2�u�r���2
r3

r�3

��−
2I − 1

8�I + 1�
gS + �I −

1

2
+

2I + 1

4�I + 1�
r2�so�r�	gL�

�80�

for I=L+1 /2 and

F�r� =
�N

�



0

r

dr�r�2�u�r���2�−
I

2�I + 1�
gS + � I�2I + 3�

2�I + 1�

−
2I + 1

4�I + 1�
r2�so�r�	gL� +

�N

�



r

�

dr�r�2�u�r���2
r3

r�3

�� 2I + 3

8�I + 1�
gS + � I�2I + 3�

2�I + 1�
−

2I + 1

4�I + 1�
r2�so�r�	gL�

�81�

for I=L−1 /2. In the above formulas, u�r� is the wave func-
tion of the odd nucleon. It can easily be seen that F�r�=1
outside the nucleus.

In the present work, we evaluated the BW correction
within the SP approach as described above. In addition, we
considered a simplified version of this approach obtained by
assuming the wave function of the odd nucleon to be just a
constant within the nucleus. By comparing the two corre-
sponding results, we can conservatively estimate the depen-
dence of the SP values on the parameters employed in the
Woods-Saxon potential. Calculational results for the BW cor-
rection obtained within the SP approach are listed in Table
IV under the labels “SP” �the full SP approach� and “SP-
�const�” �the SP approach with the constant wave function of
the odd nucleon�.

The total results for the BW correction listed in the table
were obtained as follows. For 7Li and 9Be, we employ the
results of the SP model as the final values. The uncertainty
for 7Li was taken to be the largest deviation from the final
result. For 9Be, all three values fall very close to each other,
so we assign the 10% uncertainty to the final result. The
nucleus 6Li has an odd neutron and an odd proton; one thus
can hardly expect it to be described well by the SP model. In
this case, we use the plain average of the three values; the
error was chosen so that it covers all three results.

We would like to stress that there are nontrivial nuclear
structure effects, which are ignored both within the SP model
and within the Zemach approach. Since these effects cannot
be reasonably estimated at present, our uncertainties of the
BW correction yield the order of the expected error only.

The final values of the BW correction and their uncertain-
ties are listed in Table I under the entry “BW.” Our results
for 7Li and 9Be are reasonably close to the Zemach-formula
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values of Ref. �5�. The result of Ref. �11� for 9Be is larger
than ours by a factor of 4. This is because the authors of Ref.
�11� used �r
m instead of �r
em− �r
e in Eq. �73�. In Ref. �6�,
the BW correction was evaluated within the SP approach
with the constant odd-nucleon wave function. The corre-
sponding results for 6,7Li nearly coincide with our values
obtained within the same approach. In Refs. �12,66�, the BW
correction was calculated by using the Fermi �12� or the
uniform �66� distribution of the magnetization density over
the nucleus. Their results fall between our values obtained
with different models. In most of the other previous studies,
the BW effect was not accounted for.

D. Negative continuum

The negative-continuum �NC� contribution might be of
some importance in calculations involving the operators that
mix the upper and the lower components of the Dirac wave
function. The magnetic dipole hfs operator is of this kind, so
we have to obtain an estimation for this correction. In the
present investigation, we calculate the NC contribution by
employing perturbation theory to the first order.

For the electronic configuration with a single valence
electron beyond the closed core shell and to first order in the
electron-electron interaction, the NC correction can be writ-
ten as


GM1
NC = � �Z��3m2

n3J�J + 1��2L + 1��−1

�2 �
n

�n�0 ��
�c

��vc�VCB�nc
 − �cv�VCB�nc
��n�t0
�1��v


�v − �n

+ �
�c

��vc�VCB�vn
 − �cv�VCB�vn
��n�t0
�1��c


�c − �n

−
�v�U�n
�n�t0

�1��v

�v − �n

� , �82�

where v denotes the valence electron state with the angular
momentum projection �v= 1

2 , c is the core electron state with
the angular momentum projection �c, t0

�1� is the spherical
component of the magnetic dipole hfs operator t�1� defined by
Eq. �15�, VCB=VC+VB is the sum of the Coulomb and Breit
parts of the electron-electron interaction, and the summation
over n is performed over the negative-energy part of the
Dirac spectrum. The states v, c, and n are assumed to be
eigenvectors of a single-particle Dirac Hamiltonian h with
the screening potential U, h=� ·p+ ��−1�m+Vnuc�r�+U�r�.

We mention that the NC correction may depend strongly
on the choice of the Hamiltonian h. It is therefore important
to use the same single-particle Hamiltonian for the evalua-
tion of the NC correction as in the CI part of the calculation.
So, in the present investigation the screening potential U in
Eq. �82� was fixed as U=VDF

N−1.
It should be also noted that, evaluating Eq. �82�, one can-

not neglect the Breit part of the electron-electron interaction
as compared to the Coulomb one. For the negative-energy
part of the Dirac spectrum, both of these interactions induce
contributions of the same order of magnitude.

Formula �82� for the NC correction ignores contributions
of the second and higher orders in the electron-electron in-
teraction. Their unambiguous description is possible within
QED only. For lithium and beryllium, the electron correla-
tion is strong and the perturbation expansion converges
slowly. We thus assign the uncertainty of 50% to the NC
contribution obtained by Eq. �82�.

V. DISCUSSION

The calculational results for the magnetic-dipole hfs split-
ting of the 2 2S, 3 2S, 2 2P1/2, and 2 2P3/2 states of 6,7Li and
9Be+ are listed in Table I, expressed in terms of the dimen-
sionless function GM1 defined by Eq. �23�. The values pre-
sented for the S states differ from those in our previous work
�21� in two ways. First, we now treat the normal mass shift
as a correction, rather than by including it into the definition
of the function GM1. �Of course, this difference has no effect
on the total theoretical prediction for the hfs or the hyperfine
constant AJ.� Second, we perform a more detailed analysis of
the BW effect, and so the uncertainty of this correction is
changed.

In order to convert the function GM1 into the hyperfine
constant AJ, an additional experimental input in the form of
the magnetic moment of the nucleus is needed. This issue
might contain some ambiguities since the tabulated values of
the nuclear magnetic moments �37� are often inconsistent. In
the case of 6Li and 7Li, we assume the values originally
obtained by Beckmann et al. �1� to be the most reliable ones.
For 9Be, the choice is less obvious, and we present the the-
oretical results for the hyperfine constant AJ for two different
experimental values of the magnetic moment.

For 7Li, we observe good agreement of our theoretical
predictions with all the experimental results listed, except the
recent measurement of the 2 2P1/2 state by Das and Natarajan
�41�, which claims to be accurate to better than 0.01%. The
theoretical prediction is away from this measurement by
about 18� and we presently see no way to explain this de-
viation theoretically.

Our theoretical prediction for the ground-state hfs split-
ting of 6Li is in slight disagreement with the high-precision
experimental result. For the ground state of beryllium, the
deviation is larger and amounts to 3 or 4�, depending on the
value of the nuclear magnetic moment used. There are two
possible explanations of these discrepancies: underestimated
systematic effects in the experimental values of the nuclear
magnetic moments and nontrivial nuclear-structure effects in
the theoretical predictions. On the basis of the experimental
data available, we cannot unambiguously distinguish be-
tween these two explanations. It would have been possible if
the hfs splitting of two different states were accurately mea-
sured for the same isotope. The existing measurements of the
hfs of excited states, however, are not yet sensitive to the
inconsistencies in values of the nuclear magnetic moment.

The comparison presented for the hfs of excited states of
lithium and beryllium indicates that our theoretical predic-
tions are more accurate than the experimental results. The
general agreement with the experimental data for the excited
states is good, the only exception being the results of Ref.
�41�.
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Our calculational results for the electric quadrupole hfs
splitting of the 2 2P3/2 state in 6,7Li and 9Be+ are listed in
Table II, expressed in terms of the dimensionless function
GE2 defined by Eq. �49�. It is remarkable that all theoretical
contributions to the electric quadrupole splitting seem to be
well under control, so that the resulting theoretical predic-
tions for the function GE2 are obtained with very good accu-
racy. If accurate experimental investigations of the quadru-
pole splitting were possible for Li-like ions, they would lead
to a high-precision determination of the nuclear quadrupole
moments, which are difficult to measure directly. In the ab-
sence of such investigations, the theoretical predictions for
the hyperfine constant BJ are obtained by using the tabulated
values of the nuclear quadrupole moments �37�. Our results
are in agreement with the scarce experimental data available.
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APPENDIX: CORRECTIONS TO THE HYPERFINE
SPLITTING DUE TO THE SCALAR COMPONENT OF THE

NUCLEAR CURRENT

Let us first consider the simplest case of the electron and
the nucleus being the spin-1

2 Dirac particles. The electron-
nucleus interaction is then given by the standard scattering
amplitude �67�

M = − e2ZD���q�je
�jnuc

� , �A1�

where D�� is the photon propagator and je and jnuc are the
electromagnetic current of the electron and the nucleus, re-
spectively,

j� = ū�p����u�p� =
1

2m
ū�p����p� + p�� + i���q��u�p� .

�A2�

Here, u is the free Dirac spinor, m is the mass of the particle,
q= p�− p, and ���= �i /2���� ,���. Expressing the time com-
ponent of the nuclear current in terms of the free spinors w in
the rest frame, one arrives at �67�

jnuc
0 = w*�1 −

q2

8M2 +
i� · q � p

4M2 	w , �A3�

where M is the nuclear mass. The first term in the brackets in
the above expression corresponds to the standard Coulomb
interaction between electron and the nucleus. The third term
represents the spin-orbital coupling and induces a recoil cor-
rection to the hfs we are interested in here.

The generalization of the expression �A2� for the case of
the nucleus with an arbitrary spin was obtained in Ref. �53�.
The time component of the current reads

jnuc
0 =

1

2M
	̄�p���Fe�E + E�� + Gm�0� · q�	�p� , �A4�

where Fe and Gm are the electric and magnetic form factors
of the nucleus, respectively,

� = � 0 �

− � 0
	 , �A5�

and the vector � is constructed from components �i, which
are generalizations of the Pauli matrices. After expressing the
current in terms of the spinors �0 in the rest frame, one gets
the generalization of Eq. �A3� to the case of an arbitrary-spin
nucleus �53�,

jnuc
0 = �0

�*�Fe − �2Gm − Fe�
�� · q�2

8M2

+ �2Gm − Fe�i
I · �q � p�

2M2 ��0, �A6�

where I is the operator of the spin of the nucleus. The form
factors are identified as �53� Fe�0�=1 and Gm�0�=g /2, where
g is the g factor of the nucleus.

The third term in the brackets of Eq. �A6� induces a first-
order �in the electron-nucleus mass ratio� recoil correction to
the magnetic dipole hfs splitting. Taking into account that, in
the center-of-mass system, the total momentum of the atom
is zero and transforming this term into the coordinate space
�see Ref. �67��, we obtain the interaction of the form

HSO =
Z�

2M2 �g − 1�I · �
i
� ri � pi

ri
3 + �

j�i

ri � p j

ri
3 	 , �A7�

where indices i and j numerate the electrons in the atom. For
the hydrogen atom, I= �1 /2��, Eq. �A7� reproduces the well-
known result of Ref. �51�. A similar recoil correction to the
Zeeman splitting of multielectron atoms was reported in Ref.
�68�.

The second term in the brackets of Eq. �A6� can be split
into the contact and the quadrupole part, which induce cor-
rections to the Lamb shift and to the quadrupole hfs splitting,
respectively. Both of these corrections were evaluated in Ref.
�53�. The result for the quadrupole interaction due to the
second term in Eq. �A6� is �with the additional factor of 2,
corrected in Ref. �69��


HE2 =
Z��g − 1�

2M2 ��i� j
1

r
�IiIj −

1

3

ijI

2	 , �A8�

where

� = �1/�2I − 1� , I is integer,

1/�2I� , I is half-integer.
� �A9�

Using the standard angular-momentum algebra, we trans-
form Eq. �A8� into the form analogous to Eq. �37�,


HE2 = �T�2� · 
Q�2�, �A10�

where 
Q�2� is the correction to the operator of the quadru-
pole moment,
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Q�2� = −
Z�g − 1��

2M2
�6�I � I��2�. �A11�

Taking into account Eq. �46�, the correction to the nuclear
quadrupole moment is identified, which is


Qind = �−
Z�g − 1�I

M2 , I is integer,

−
Z�g − 1��I − 1/2�

M2 , I is half-integer.�
�A12�

The numerical values of the induced quadrupole moment
for the isotopes considered in this work are 
Qind�

7Li�
=−0.39 mb, 
Qind�

6Li�=−0.15 mb, and 
Qind�
9Be�

=−0.18 mb, to be compared with the total values of the
nuclear quadrupole moments �37�: Q�7Li�=−40.55�80� mb,
Q�6Li�=−0.82�2� mb, and Q�9Be�=52.88�38� mb.

It should be mentioned that the correction �A12� does not
have immediate experimental consequences. It vanishes for
the nuclear spin I=0 and 1

2 . Nuclei with the spin I�
1
2 have a

quadrupole moment, and so the correction �A12� appears
only together with the “pure” nuclear quadrupole moment. If
the values of the nuclear quadrupole moments are derived
from experimental observations, the induced correction is in-
cluded in them and thus does not have to be accounted for in
theoretical descriptions of the quadrupole splitting. It should
be included, however, when the nuclear quadrupole moments
are calculated basing on microscopic nuclear models, as,
e.g., in Ref. �70�.
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