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Angular differential cross sections are calculated for antiprotons elastically and inelastically scattered by the
helium atom. The elastic cross sections are calculated quantum mechanically using both the adiabatic potential
and a phenomenological optical potential. The absorptive effects, taken into account by the optical potential,
are found to significantly suppress large-angle elastic scattering. Inelastic scattering �excitation and ionization�
is treated by the quasiclassical fermion molecular dynamics method. The inelastic scattering is largely in the
backward direction at laboratory collision energies within �30 eV of threshold, but moves to smaller angles as
the energy increases.
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I. INTRODUCTION

Now that antiprotons have been trapped �1–3�, experi-
ments to use them for scattering as well as antimatter forma-
tion are planned �4,5�. In order to design relevant p̄ detectors,
prior estimates of the angular distributions are needed. In
particular, some of the proposed experiments will be with the
atomic helium target �6�, in which the p̄ may be captured as
well as be elastically or inelastically scattered. In the present
work, the angular differential cross sections for elastic scat-
tering are calculated quantum mechanically and the angular
differential cross sections for inelastic collisions are calcu-
lated using a quasiclassical method previously used for p̄
capture �7�.

Unlike the atomic H target, for which a critical distance
exists inside which an adiabatic potential curve is undefined,
an adiabatic potential curve is defined for all p̄−He dis-
tances. The usual procedure for calculating an elastic scatter-
ing cross section at low energies is by solution of the single-
channel Schrödinger equation using this potential curve.
However, it is known that the capture and ionization cross
sections for p̄−He collisions are large at low energies in spite
of the absence of a critical distance �8�. Thus the usual ap-
proach may not be adequate. In the present work, p̄−He
elastic scattering is treated as usual, as well as by solving the
complex Schrödinger equation with an optical potential, and
the results are compared.

II. DIFFERENTIAL ELASTIC SCATTERING

A. Calculation with adiabatic potential

The Born-Oppenheimer potential curves Va�R� for p̄
+He, calculated by Todd and Armour �9� and by Gibbs �10�,
are shown in Fig. 1. For the present work the former curve is
adopted, slightly modified at R�10a0 to make it agree with
the accurate polarization potential, Va�R��−� /2R4 where
�=1.383 174 �11�.1

The scattering is treated quantum mechanically by solving
the time-independent Schrödinger equation in the center-of-
mass system,

�−
1

2�
�2 + Va�R� − Ec.m.�F�R� = 0, �1�

where � is the reduced mass of p̄+He and F�R� is the wave
function describing the relative motion for energy Ec.m.. A
partial-wave expansion of F�R�,

F�R� = R−1�
l=0

�

ul�R�Pl�cos �c.m.� , �2�

results in the radial equations

� d2

R2 −
l�l + 1�

R2 + 2��Ec.m. − Va�R���ul�R� = 0. �3�

The asymptotic form
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FIG. 1. Accurate adiabatic potential of Todd and Armour �9� and
smaller calculation of Gibbs �10�.
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ul�R� � sin�kR −
1

2
l� + 	l� , �4�

where k= �2�Ec.m.�1/2, defines the partial-wave phase shift 	l,
in terms of which the differential angular cross section is
given by

� d


d�
�

c.m.
=

1

4k2	�
l=0

�

�2l + 1��e2i	l − 1�Pl�cos �c.m.�	2

�5�

and the integrated cross section by


 =
4�

k2 �
l=0

�

�2l + 1�sin2 	l. �6�

The differential cross section in the laboratory system de-
pends on the projectile-to-target mass ratio �=mp /mHe. It is
assumed that the initial motion of the helium atom can be
neglected. The laboratory differential cross section, at angle

�lab = tan−1� sin �c.m.

� + cos �c.m.
� , �7�

is related to the cross section in the c.m. system by �12�

� d


d�
�

lab
=

��2 + 2� cos �c.m. + 1�3/2

� cos �c.m. + 1
� d


d�
�

c.m.
. �8�

Of course, the integrated cross section must be the same in
the laboratory and center-of-mass systems.

The resulting differential cross sections are shown by the
red �or gray� curves in Fig. 2 for several collision energies
between 10 and 300 eV in the laboratory frame. As usual,
they are strongly peaked in the forward direction and, at the
lower energies, also peak in the backward direction. To aid in
interpretation of the backward peak, the absolute phase shifts
were also calculated in the WKBJ approximation �solution of
the Schrödinger equation gives the phase shifts only modulo
��, in terms of which the classical deflection angle  is given
by

�l +
1

2
� = 2

�	l

�l
. �9�

In the range of energies calculated, the classical deflection
angle is found to have an extremum between l=18 and 20.
For Elab�40 eV the magnitudes of these extrema exceed �
radians, thus yielding a distinct peak in the backward direc-
tion �“glory” scattering� �13�. At higher energies, the classi-
cal deflection angle does not exceed � and the backward
peak vanishes. In addition, rapid oscillations can be seen due
to interference between the two trajectories on opposite sides
of the extrema where  is the same for two different values
of l, whether or not the phase shifts exceed �. The effects of
interference are more prominent at low energies where the
wavelengths are longer.

B. Calculation with an optical potential

In the optical-potential description, the adiabatic potential
Va�R� is replaced by the complex potential

W�R� = Va�R� + �V�R� −
1

2
i��R� , �10�

where �V�R� is a shift and ��R� is a width. Formally, the
formulations of the scattering equation and phase shift are
the same as in the adiabatic description in Sec. II A, except
all quantities are complex. However, it is generally more
convenient to separate the real and imaginary parts in route
to defining the elastic and nonelastic cross sections, and this
approach will be taken here. The resulting phase shift is
complex and can be written

	l = 	l
�r� + i	l

�i�, �11�

where 	l
�r� and 	l

�i� are real. The same formulas given in Sec.
II A for the elastic cross sections still apply, although it is
now more transparent to write the integrated elastic cross
section as


el =
2�

k2 �
l=0

�

�2l + 1��cosh�2	l
�i�� − cos�2	l

�r���e−2	l
�i�

.

�12�

The nonelastic cross section includes capture as well as
scattering with ionization or excitation, but its components
are not separated. The total nonelastic cross section is given
by


ne =
�

k2�
l=0

�

�2l + 1��1 − e−4	l
�i�

� . �13�

Of course, no particle is scattered in the case of capture, so
this procedure is not generally suitable for calculating an
inelastic differential cross section.

The imaginary component of the phenomenological opti-
cal potential is determined such that the resulting nonelastic
cross sections approximately match the energy-dependent
nonelastic cross sections determined by the fermion molecu-
lar dynamics �FMD� method �14� �see Sec. III�. The FMD
cross section is consistent with capture ratios determined ex-
perimentally in helium mixtures �15�. It was found adequate
to take this imaginary potential, which is half the autoioniz-
ation width, as independent of energy. The width is deter-
mined by the magnitude and the impact-parameter �partial
wave in the quantum-mechanical formulation� dependence
of the nonelastic cross sections �see the Appendix for de-
tails�. The simple Gaussian form

� = ce−�R/b0�2
, �14�

with b0=0.40a0 and c=0.92 a.u., shown in Fig. 3, was found
to be adequate at the considered energies.

This phenomenological width is significantly smaller than
a diabatic width previously determined �16� using a frozen-
orbital description of the p̄+He interaction, shown for com-
parison in Fig. 3, thus demonstrating that relaxation effects
are important. It should be noted that the optical-potential
description, at least with the assumption of energy indepen-
dence, is not valid for higher-energy �Ec.m.�100 eV� colli-
sions where the effects of dynamical couplings become
important.
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The real part of the potential is taken to be the same as the
adiabatic potential used in Sec. II A. Really this real part is
subject to an energy shift, which can be expected to be of the
same order of magnitude as the width. The neglect of this
shift can thus be retroactively justified since the width is

found to be small compared with the real potential, as can be
seen by comparing Figs. 1 and 3. This relationship is espe-
cially true since the width becomes very small at R�0.5a0
while the magnitude of the real potential increases as R−1 at
smaller R.
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FIG. 2. �Color online� Angular differential elastic cross sections for p̄+He, calculated by solution of the Schrödinger equation using the
adiabatic potential �red �gray�� and optical potential �black�. The optical-potential calculation should be more realistic.
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The differential elastic cross sections calculated with the
optical potential are shown in Fig. 2 as black curves. The
scattering is little affected by the imaginary part at small
angles, which generally come from large impact parameters
where the interaction is weak. However, large-angle scatter-
ing is significantly suppressed, especially at collision ener-
gies above the target ionization potential. The interference
oscillations persist at the higher energies, but their ampli-
tudes are reduced.

The corresponding integrated elastic cross sections are
shown in Fig. 4. The integrated cross sections calculated by
the adiabatic- and optical-potential descriptions are roughly
parallel, with the optical-potential result always slightly
smaller.

To explicitly demonstrate that the effect of the undeter-
mined shift can be expected to be small, some calculations

were repeated with the real potential shifted up and down
within the width. The effects on the differential cross section
at 100 eV are shown in Fig. 5. The resulting changes at small
scattering angles are negligible, and the changes at large
angles are still reasonably small. Thus the expectation that
the adiabatic potential suffices as the real part is verified.

III. DIFFERENTIAL INELASTIC SCATTERING

A variety of methods have been used to calculate the cross
sections for capture of an antiproton �or similarly behaving
negative muon�, though complete quantum-mechanical cal-
culations have not yet succeeded. Perturbative methods fail,
but the various nonperturbative methods are in fairly good
agreement �8�. Capture by atoms is due almost entirely to
ionization—of a single electron in the case of helium. Thus
the capture cross section decreases sharply at energies ex-
ceeding the first ionization potential of the target helium
atom, though the sum of the ionization and capture cross
sections displays smooth behavior at this point. The quasi-
classical FMD method is used here. The FMD method has
been successful in calculating the p̄ capture cross sections for
helium as well as for heavier multielectron atoms, in which
multiple ionization can be important, though angular differ-
ential cross sections have not previously been reported. Of
importance for this purpose, linear and angular momenta as
well as energy are accurately conserved in the FMD treat-
ment.

The FMD method �14� utilizes the Kirschbaum-Wilets an-
satz for atomic structure �17�. In this model, pseudopoten-
tials VH and VP constrain the quasiclassical dynamics to sat-
isfy the Heisenberg uncertainty and Pauli exclusion
principles, respectively. The resulting multielectron atoms,
which do not exist classically, are stable and possess shell
structures, though the shells obtained are not entirely faithful
to the real atoms �18�. Similar terms are included for the
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FIG. 3. �Color online� Imaginary part of the energy-dependent
optical potential. The present value calculated by fitting the non-
elastic FMD cross sections is shown by the solid curve ; the result
previously calculated using a frozen-orbital diabatic description
�16� is shown by the dashed curve.
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FIG. 4. Integrated elastic cross sections for p̄+He, calculated by
solution of the Schrödinger equation using the adiabatic potential
�dashed curve� and the optical potential �solid curve�. The optical-
potential calculation should be more realistic.
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FIG. 5. �Color online� Possible effect of undetermined shift on
the elastic p̄+He cross section at collision energy 100 eV. The
long- and short-dashed curves show the modifications of the cross
sections due to an increase and decrease, respectively, of the adia-
batic potential by half the width.
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exotic atom structure, but have little effect since it is formed
in highly excited states which behave nearly classically ac-
cording to the correspondence principle.

The FMD effective Hamiltonian for the system is written

HFMD = H0 + VH + VP, �15�

where H0 is the usual Hamiltonian of the system containing
the kinetic energies of all particles and the Coulomb poten-
tials between all pairs of particles. The extra terms are of the
form

VH = �
i=1

Ne �2

�nirni
2 f�rnipni;�H,�H� +

�2

�np̄rnp̄
2 f�rnp̄pnp̄;�H,�H�

�16�

and

VP = �
i=1

Ne

�
j=i+1

Ne �2

�ijrij
2 f�rijpij;�P,�P��si,sj

, �17�

where the sums are over the Ne electrons, rni �pni� is the
relative distance �momentum� of electron i with respect to
the nucleus n, rnp̄ �pnp̄� is the relative distance �momentum�
of the p̄ with respect to the nucleus n, rij �pij� is the relative
distance �momentum� of electron j with respect to electron i,
� designates the reduced mass of the subscripted particles,
and si �sj� is the spin of electron i �j�. Hamilton’s classical
equations of motion are solved with the Hamiltonian HFMD.

The constraining potentials are implemented by the form
�17�

f�rp;�,�� 

�2

4�
exp���1 − � rp

��
�4� , �18�

where the dimensionless parameter � reflects the size of the
core and � its hardness. The values �H=0.9343 and �H
=2.0 are used for helium �7�; the Pauli term vanishes for the
ground-state helium target since its two electrons have oppo-
site spins.

The calculation of each trajectory proceeds in three steps:
�i� choose initial conditions �r0 and p0 for all particles�, �ii�
integrate Hamilton’s classical equations of motion, and �iii�
examine the asymptotic trajectory for the final state. These
steps are repeated a sufficient number of times to get good
statistics for the process “R” of interest. The corresponding
cross section is given by


R =
NR

Ntot
�bmax

2 , �19�

where the process R is found to occur NR times in Ntot total
trajectories, chosen with b statistically sampled in the range
�0,bmax� �in practice, this sampling is done in segments, so
bmax need not be known in advance�. The calculation of the
differential inelastic cross section is similar to that previously
done for p̄ capture �7� except much larger numbers of trajec-
tories ��100 000 at each energy� were employed in order to
obtain smooth converged cross sections. The angular distri-
butions are placed in histograms with bin sizes chosen such
that smooth fits are possible.

The results are shown in Fig. 6. The inelastic angular
distributions are strongly backward peaked at the lowest two
energies, where only the hardest collisions can ionize or ex-
cite the target. As the incident energy increases, the peaks in
the differential cross sections move to smaller angles. At a
collision energy of �65 eV the forward and backward hemi-
spheres are of about equal importance.

The component integrated cross sections are shown in
Fig. 7. The integrated cross section for p̄ inelastically scat-
tered is the sum of its ionization and excitation components,
although there is relatively little excitation in the energy
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range considered. It is the total of these nonelastic cross sec-
tions that goes into the determination of the width �see the
Appendix�. We also note that double ionization by scattered
p̄ in this energy range is found to be relatively rare ��1% of
all ionizations�. However, capture of the p̄ almost invariably
results in both electrons ultimately being ionized.

IV. CONCLUSIONS

Unlike scattering of protons by atoms and molecules,
scattering of antiprotons cannot be expected to be adiabatic
at low collision energies. Ionization of the target can gener-
ally occur even at energies just slightly above the threshold,
and capture to form an antiprotonic atom can generally occur
even in zero-energy collisions. Thus elastic scattering is af-
fected even at very low energies, and the usual adiabatic
treatment will never become accurate. The optical-potential
treatment is useful for such collisions, except at extremely
low collision energies �19�, and has been used in the present
work. Calculations were done at energies relevant to planned
experiments, 10–300 eV �6�. At large angles, decreasing as
the collision energy increases, inelastic scattering dominates.
The inelastic cross section does not include capture, which
dominates at collision energies below about 30 eV �near the
threshold collision energy required to ionize helium�, since
in this case no antiproton is scattered.
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APPENDIX: DETERMINATION OF THE WIDTH FOR
THE OPTICAL POTENTIAL

The width for the phenomenological optical potential, as-
suming the adiabatic potential for the real part, was obtained

by determining the values of b0 and c in Eq. �14� that best fit
the FMD total nonelastic cross sections and their impact-
parameter dependence in the energy range of interest. The
cross sections were calculated quantum mechanically with
the optical potential as described in Sec. II B. It was first
found that the total cross section could be fit reasonably well
with a large range of values of b0 as long as the correspond-
ing value c�0.034 exp��0.728 /b0�2� was used, as shown in
Fig. 8. The impact-parameter dependence then determines
the value of b0. The best fit was obtained with b0=0.40a0 and
c=0.92 a.u. The resulting impact-parameter �given by b= �l
+0.5� / �2�Ec.m.�1/2� dependence is shown in Fig. 9 for scat-
tering at 100 eV. For comparison, the results with two vari-
ant widths b0=0.25 and 0.55 �and the optimal associated
values of c� are also shown.

At the shown scattering energy of 100 eV, approximately
half of the nonelastic cross section comes from small impact
parameters where Pne is essentially unity and the other half
from larger impact parameters where Pne is smaller. At lower
energies an increasing fraction of the nonelastic cross section
comes from impact parameters where Pne�1, approaching a
step function at Elab�10 eV. At Elab�100 eV the tail of the
impact-parameter distribution becomes more significant, but
the neglect of the energy dependence of the width also be-
comes less valid.

Significant further improvement in the fit would probably
require inclusion of a �positive� shift in the real part of the
potential, but was considered unnecessary for the present
work considering the uncertainty in the FMD cross sections
and the expected relatively weak dependence of the elastic
cross sections on the shift as shown in Fig. 5.
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