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It is proven that in Levy’s constrained search or Lieb’s ensemble constrained search, if the minimum is
achieved by wave functions that satisfy the steadiness condition for the current density kernel and have
continuous second derivatives, the minimizing wave functions are eigenstates of some external potential. If the
excited states of this potential can only achieve stationarity and cannot achieve a minimum in the constrained
search, the minimizing wave functions are ground states and the corresponding electron density is
v-representable or ensemble v-representable. This is also true for the ensemble system with a varying electron
number. In time-dependent density-functional theory, if the stationarity of the action integral is achieved in the
constrained search by a wave function that satisfies the continuity equation for the current density kernel and
has a continuous first derivative with respect to the time coordinate and continuous second derivatives with
respect to the space coordinates, the stationary wave function satisfies the time-dependent Schrödinger equa-
tion of some time-dependent external potential and the corresponding electron density is time-dependent
v-representable.
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I. INTRODUCTION

The wave function, electron density, and external poten-
tial are three essential quantities involved in density-
functional theory �DFT� �1,2�. Their interrelation is the core
of DFT. Because the ground-state electron density uniquely
determines the external potential, emphasis was placed on
the electron density instead of the wave function �1�. Be-
cause the ground-state electron density minimizes the energy
functional, a Kohn-Sham �KS� scheme was established to
obtain this density �2�. The DFT energy functional is defined
in terms of constrained search �3–6�. By its definition, con-
strained search does not explicitly include any external po-
tential, and the minimizing wave function is completely de-
termined by the corresponding electron density. Further
investigation of the interrelation between the electron den-
sity, the minimizing wave function, and a possible external
potential is still an interesting and open problem. For in-
stance, is it true that the minimizing wave function is a
ground state of some external potential? What are the condi-
tions for this proposition? How could we prove it? What
could we conclude for the stationary wave function as well?
What is the conclusion in the time-dependent �TD� case?

Answers to these questions are of significance in quantum
mechanics, because they relate the wave function to a pos-
sible external potential and thus provide useful clues for
finding the target electron density and the corresponding
wave function. In DFT, they may also provide at least indi-
rect conditions for v-representability. The v-representability
problem is closely related to the differentiability of DFT
functionals �6�, and there still lacks complete understanding
�6–8�. Thus solution of a recent debate about whether the
kinetic functional derivative is a local function, for instance,
relies on v-representability �9–17�. The relationship between
the highest occupied KS orbital energy and the ionization

energy in ensemble extension is also related to
v-representability, since it helps to eliminate the doubt about
the differentiability of the ensemble functional and the exis-
tence of a KS potential �18–22�. In time-dependent DFT
�TDDFT�, the v-representability problem is even more im-
portant because most TDDFT action functionals are defined
only for TD v-representable densities �23,24�. Conditions for
v-representability are unknown �6,25� and the progress is
scarce �26�.

In this work, the following conclusions are directly
proven: If the minimum in the constrained search of Levy
�3,4� is achieved by a wave function that satisfies the steadi-
ness condition for the current density kernel and has continu-
ous second derivatives with respect to the space coordinates,
the minimizing wave function is an eigenstate of some ex-
ternal potential. Similarly, if the minimum in the ensemble
constrained search of Lieb �5,6� is achieved by a set of wave
functions each of which satisfies the steadiness condition for
the current density kernel and has continuous second deriva-
tives with respect to the space coordinates, every wave func-
tion in this set is an eigenstate of some external potential. If
the excited states of the related external potential can only
achieve stationarity and cannot achieve a minimum in the
constrained search, the minimizing wave functions are
ground states and the corresponding electron density is
v-representable in Levy’s case or ensemble v-representable
in Lieb’s case. The conclusion also applies to the ensemble
system with a varying electron number introduced by Per-
dew et al. �18,20�. Generally, if the stationarity in the con-
strained search is achieved by wave functions that satisfy the
steadiness condition for the current density kernel and have
continuous second derivatives with respect to the space co-
ordinates, the stationary wave functions are eigenstates of
some external potential. In TDDFT, if the stationarity of the
action integral �23,27� is achieved in the constrained search
by a TD wave function that satisfies the continuity equation
for the current density kernel and has a continuous first de-
rivative with respect to the time coordinate and continuous
second derivatives with respect to the space coordinates, the*jluo@fudan.edu.cn
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stationary wave function satisfies the TD Schrödinger equa-
tion of some TD external potential and the corresponding
electron density is TD v-representable. The proof of these
conclusions demonstrates the importance of the fact that the
first-order variation of the functional integrals in the con-
strained search vanishes at the minimizing or stationary
wave functions.

II. DERIVATION

A. Basic case

Suppose in atomic units, T̂=�i=1
N �−1 /2��i

2 and Û
=�1�i�j�N1 / �r� j −r�i� are the kinetic and electron-electron re-
pelling operators of the N-electron system, respectively. The
DFT universal functional is defined by Levy’s constrained
search �3,4�,

F��� = min
�⇒�

���T̂ + Û��� , �1�

where the normalized antisymmetric trial wave functions
generate the electron density ��r��. It has been proven that the
minimum can always be achieved by a wave function �5,6�.
However, for bound states the kinetic energy is calculated by

���T̂���= �1 /2��i=1
N 	�i�

� ·�i�dr�1¯dr�N. Hence trial func-
tions in Eq. �1� belong to a Sobolev space H1�R3N�, meaning
that they are only required to have integrable first derivatives
�6�. More importantly, a true static wave function must sat-
isfy the steadiness condition,

�
k=1

N

�k · j�k�r�1, . . . ,r�N� = 0, �2�

where j�k�r�1 , . . . ,r�N�= �−i /2�����k�−��k�
�� is the current

density kernel and k=1, . . . ,N. Because the static
Schrödinger equation requires second derivatives of wave
functions and Eq. �2� should be satisfied, generally the mini-
mizing wave function may not be an eigenstate of some ex-
ternal potential. Now suppose that for a density ��r��, the

minimum of ���T̂+ Û��� is achieved by a wave function �
that satisfies Eq. �2� and has continuous second derivatives.
One can define a function � as

��r�1, . . . ,r�N� =
�T̂ + Û���r�1, . . . ,r�N�

��r�1, . . . ,r�N�
�3�

for ��r�1 , . . . ,r�N��0. If necessary, � can be defined by a limit

process for �=0. Because Eq. �2� means ��T̂�−�T̂��=0

and thus T̂�� /��= T̂� /�, � is a real function. � is also sym-
metric and continuous if ��0. We prove that the vanishing

first-order variation of ���T̂+ Û���, the normalization of
wave functions, and the condition that trial wave functions
generate the same density jointly dictate that � must have the
form

��r�1, . . . ,r�N� = �
i=1

N

u�r�i� , �4�

where u�r�� is a real function of the spatial position.

At the minimizing wave function ��r�1 , . . . ,r�N�, the first-

order variation of ���T̂+ Û��� must be zero; that is, ��
+���T̂+ Û��+���− ���T̂+ Û��� must be a higher-order in-
finitesimal of 	����dr�1¯dr�N for �+�� that generates ��r��.
According to the definition of �, this means that
for ������= ���+������+���−���, the integral
	�������dr�1¯dr�N is also a higher-order infinitesimal, or
lim

��→0

�	�������dr�1¯dr�N /	����dr�1¯dr�N�=0. Normaliza-

tion of � and �+�� requires


 ������dr�1 ¯ dr�N = 0. �5�

Furthermore, both � and �+�� generate the same density
��r��. Hence

���r�� = N
 ������dr�2 ¯ dr�N = 0 �6�

for any r�. To prove Eq. �4�, we choose 2N different fixed
points r�1 ,r�2 , . . . ,r�N and r�1� ,r�2� , . . . ,r�N� . We then take 2N small
nonoverlapping regions V1 ,V2 , . . . ,VN and V1� ,V2� , . . . ,VN�
that, respectively, surround these points. We suppose that all
four values ��r�1 ,r�2 , . . . ,r�N�, ��r�1 ,r�2� , . . . ,r�N� �,
��r�1� ,r�2 , . . . ,r�N�, and ��r�1� ,r�2� , . . . ,r�N� � are nonzero. Hence �
is continuous at �r�1 ,r�2 , . . . ,r�N�, �r�1 ,r�2� , . . . ,r�N� �,
�r�1� ,r�2 , . . . ,r�N�, and �r�1� ,r�2� , . . . ,r�N� �. One can always choose
�� such that ������ is nonzero only in the following four
sets of 3N-dimensional regions: V1�V2� ¯ �VN and its
permutations, V1�V2�� ¯ �VN� and its permutations, V1�
�V2� ¯ �VN and its permutations, and finally V1��V2�
� ¯ �VN� and its permutations. Permutations are considered
because ������ is symmetric. Specifically, we choose ��
such that ������	0 in the first and fourth sets of regions
and �������0 in the second and third sets of regions. We
require that ��→0 as Vi shrinks to r�i and V1� shrinks to r�i�,
that is, Vi→r�i and Vi�→r�i�, i=1,2 , . . . ,N. For Eq. �6� to be
satisfied, we further require

���r�� = N ! 

V2�¯�VN

������dr�2 ¯ dr�N

+ N ! 

V2��¯�VN�

������dr�2 ¯ dr�N = 0 �7�

for r��V1 or r��V1�,

���r�� = N ! 

V1�¯�Vi−1�Vi+1�¯�VN

������dr�2 ¯ dr�N

+ N ! 

V1��V2�¯�Vi−1�Vi+1�¯�VN

������dr�2 ¯ dr�N

= 0 �8�

for r��Vi, i=2,3 , . . . ,N, and
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���r�� = N ! 

V1�V2��¯�Vi−1� �Vi+1� �¯�VN�

������dr�2 ¯ dr�N

+ N ! 

V1��¯�Vi−1� �Vi+1� �¯�VN�

������dr�2 ¯ dr�N = 0

�9�

for r��Vi�, i=2,3 , . . . ,N. To satisfy Eqs. �7�–�9�, we may
simply let all the small regions be a spheroid centered at
different fixed points, and let ������ be a product of the
same spatial function centered at different fixed points in
every above-mentioned 3N-dimensional region. Zero values
of these equations are guaranteed by appending different
signs to the products for different 3N-dimensional regions.
We define

I1 = 

V1�V2�¯�VN

������dr�1 ¯ dr�N,

I2 = 

V1�V2��¯�VN�

������dr�1 ¯ dr�N,

I3 = 

V1��V2�¯�VN

������dr�1 ¯ dr�N,

and

I4 = 

V1��V2��¯�VN�

������dr�1 ¯ dr�N.

Equations �7�–�9� lead to

I1 = − I2 = − I3 = I4 =
1

4 � N!

 ��������dr�1 ¯ dr�N.

�10�

Equation �10� guarantees Eq. �5� since
	������dr�1¯dr�N=N ! �I1+ I2+ I3+ I4�=0. Because � is con-
tinuous and ������ maintains its sign in every
3N-dimensional region, one can apply the intermediate-value
theorem of integrals �28� and obtain, for instance,



V1�V2�¯�VN

�������dr�1 ¯ dr�N

= ��r�1�,r�2�, . . . ,r�N� �

V1�V2�¯�VN

������dr�1 ¯ dr�N

= ��r�1�,r�2�, . . . ,r�N� �I1,

where r�i� is a point in Vi, i=1,2 , . . . ,N. In general, r�i��r�i.
However, it is obvious that r�i�→r�i as Vi→r�i, i=1,2 , . . . ,N.
Now we define 
1=��r�1� ,r�2� , . . . ,r�N� �−��r�1 ,r�2 , . . . ,r�N� and
use the expression ��r�1� ,r�2� , . . . ,r�N� �I1= ���r�1 ,r�2 , . . . ,r�N�
+
1�I1. Because � is continuous, one concludes
��r�1� ,r�2� , . . . ,r�N� �→��r�1 ,r�2 , . . . ,r�N� and thus 
1→0 as Vi
→r�i, i=1,2 , . . . ,N. Hence according to the intermediate-
value theorem of integrals and Eq. �10�, one obtains


 �������dr�1 ¯ dr�N

= N ! �

V1�V2�¯�VN

�������dr�1 ¯ dr�N

+ 

V1�V2��¯�VN�

�������dr�1 ¯ dr�N

+ 

V1��V2�¯�VN

�������dr�1 ¯ dr�N

+ 

V1��V2��¯�VN�

�������dr�1 ¯ dr�N�
= N ! 
���r�1,r�2, . . . ,r�N� + 
1�I1

+ ���r�1,r�2�, . . . ,r�N� � + 
2�I2

+ ���r�1�,r�2, . . . ,r�N� + 
3�I3

+ ���r�1�,r�2�, . . . ,r�N� � + 
4�I4�

=
1

4

���r�1,r�2, . . . ,r�N� − ��r�1,r�2�, . . . ,r�N� ��

− ���r�1�,r�2, . . . ,r�N� − ��r�1�,r�2�, . . . ,r�N� �� + 
5�

�
 ��������dr�1 ¯ dr�N, �11�

where 
5=
1−
2−
3+
4 and 
i→0, i=1,2 ,3 ,4 ,5, as Vi
→r�i and Vi�→r�i�, i=1,2 , . . . ,N. We note that
	��������dr�1¯dr�N has a part that is first order in
	����dr�1¯dr�N. However, 	�������dr�1¯dr�N must not have
a first-order part since it is a higher-order infinitesimal of
	����dr�1¯dr�N following the fact that � is the minimi-
zing wave function. Hence from Eq. �11� one concludes
that the constant D= ���r�1 ,r�2 , . . . ,r�N�−��r�1 ,r�2� , . . . ,r�N� ��
− ���r�1� ,r�2 , . . . ,r�N�−��r�1� ,r�2� , . . . ,r�N� �� must be zero, or
equivalently,

��r�1,r�2, . . . ,r�N� − ��r�1,r�1�, . . . ,r�N� �

= ��r�1�,r�2, . . . ,r�N� − ��r�1�,r�2�, . . . ,r�N� � . �12�

This means that ��r�1 ,r�2 , . . . ,r�N�−��r�1 ,r�2� , . . . ,r�N� � is inde-
pendent of r�1. Now we regard r�1 ,r�2 , . . . ,r�N as arbitrary
points and let r�1� ,r�2� , . . . ,r�N� remain fixed. For the moment we
retain the assumption that all four values ��r�1 ,r�2 , . . . ,r�N�,
��r�1 ,r�2� , . . . ,r�N� �, ��r�1� ,r�2 , . . . ,r�N�, and ��r�1� ,r�2� , . . . ,r�N� �
are nonzero. Equation �12� then indicates that the function
� is ��r�1 ,r�2 , . . . ,r�N�=��r�1 ,r�2� , . . . ,r�N� �+��r�1� ,r�2 , . . . ,r�N�
−��r�1� ,r�2� , . . . ,r�N� �. Since r�1� ,r�2� , . . . ,r�N� are fixed,
��r�1 ,r�2� , . . . ,r�N� � is a function of r�1 only; ��r�1� ,r�2 , . . . ,r�N� is a
function of r�2 , . . . ,r�N only; and ��r�1� ,r�2� , . . . ,r�N� � is a constant.
This means that � has the form ��r�1 ,r�2 , . . . ,r�3�=u�r�1�
+ f1�r�2 , . . . ,r�N�, where u is a function of the spatial position
and f1 is a function of N−1 spatial positions. Because
� is symmetric, by exchanging r�1 and r�2 one ob-
tains u�r�1�+ f1�r�2 ,r�3 , . . . ,r�N�=u�r�2�+ f1�r�1 ,r�3 , . . . ,r�N�, or
f1�r�2 ,r�3 , . . . ,r�N�−u�r�2�= f1�r�1 ,r�3 , . . . ,r�N�−u�r�1�. The last
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equation indicates that the function f2�r�3 , . . . ,r�N�
� f1�r�1 ,r�3 , . . . ,r�N�−u�r�1� is independent of both r�1 and r�2,
and thus f1 has the form

f1�r�2,r�3, . . . ,r�N� = u�r�2� + �f1�r�1,r�3, . . . ,r�N� − u�r�1��

= u�r�2� + f2�r�3, . . . ,r�N� .

By repeating the process, one eventually obtains Eq. �4�. The
function u�r�� is unique and the proof is as follows: If another
set of functions u� and f1� also satisfies ��r�1 ,r�2 , . . . ,r�3�
=u��r�1�+ f1��r�2 , . . . ,r�N�, we have u�r�1�−u��r�1�= f1��r�2 , . . . ,r�N�
− f1�r�2 , . . . ,r�N�. This means that u�r�1�−u��r�1� is independent
of r�1. Hence u and u� can differ only by a constant C, that is,
u��r��=u�r��+C. Substituting this equation into Eq. �4�, one
has �i=1

N C=0 and thus C=0. With the uniqueness of u�r��, we
can complete the derivation by considering the case in which
� may be zero. If one of the values ��r�1 ,r�2� , . . . ,r�N� �,
��r�1� ,r�2 , . . . ,r�N�, and ��r�1� ,r�2� , . . . ,r�N� � is zero, we may choose
another set of fixed points r�1� ,r�2� , . . . ,r�N� such that all three
values are nonzero, and one gets the same u�r�� from Eq.
�12�. If ��r�1 ,r�2 , . . . ,r�N� is zero, ��r�1 ,r�2 , . . . ,r�N� may be ob-
tained from the values of � in the neighborhood of
�r�1 ,r�2 , . . . ,r�N� by a limit process. The possible nonexistence
of the limit value means that function u�r�� itself has discon-
tinuity at one of r�1 ,r�2 , . . . ,r�N.

Equation �4� is thus proven. Expressing u�r�� as E /N
−v�r��, where limr→�v�r��=0 for instance, one obtains from
Eqs. �3� and �4� that

�T̂ + Û�� + ��
i=1

N

v�r�i� = E� . �13�

Equation �13� indicates that � is an eigenstate of the ex-
ternal potential v�r��. Generally, an eigenstate � of v�r��
satisfies ��+���T̂+ Û��+���− ���T̂+ Û���= ����T̂+ Û
+�i=1

N v�r�i�−E���� for �+�� that generates ��r��. Hence the

first-order variation of ���T̂+ Û��� vanishes and � achieves
stationarity in the constrained search. Furthermore, a ground

state � minimizes ���T̂+ Û��� among wave functions gener-
ating ��r��. However, apart from the ground state, whether a
general eigenstate can be a minimizing wave function in the
constrained search remains an interesting problem. For ex-
actness, we further introduce a restriction that for the ob-
tained external potential v�r��, its excited states can only
achieve stationarity and cannot achieve a minimum in the

constrained search of ���T̂+ Û���. Conditions for this propo-
sition are unknown. We can only conclude that with this
restriction, � is a ground state of v�r�� and ��r�� is
v-representable.

Derivations of Eq. �13� for the minimizing wave function
in Eq. �1� have already been given with certain restrictions
by Levy and Perdew �29� using the Lagrange-multiplier
method to fix the density, and also by Gál �30� for ��r�� at
which F��� is differentiable. As has been demonstrated for
the noninteracting KS case by Levy and Perdew �29�, and
later for the general case �for instance, see �31��, Eq. �13� can
be obtained by introducing a Lagrange multiplier E and a
multiplier function v�r�� and then solving the unconditional

extreme-value problem of the expression 	���T̂
+ Û��dr�1¯dr�N+�i=1

N 	v�r�i����dr�1¯dr�N−E	���dr�1¯dr�N
with respect to arbitrary �, because trial functions in Eq. �1�
satisfy the normalization condition and generate the fixed
density ��r��. However, the Lagrange-multiplier method is
only a formal approach. In this work, we present the direct
derivation of Eq. �13� starting from Eq. �1� and avoid the
question about the existence and determination of the
Lagrange multiplier and multiplier function. This is also con-
structive proof that there exists an external potential v�r�� of
which the well-behaved minimizing wave function in Eq. �1�
is an eigenstate if Eq. �2� holds.

B. Ensemble case

Lieb’s ensemble universal functional is defined by �5,6�

F��� = min

�i,�i�⇒�

�
i=1

�

�i��i�T̂ + Û��i� , �14�

where 
�i� are a set of orthonormal wave functions and 
�i�
are a set of non-negative real numbers satisfying �i=1

� �i=1.
Besides, 
�i� and 
�i� must satisfy

�
i=1

�

�iN
 �i
��idr�2 ¯ dr�N = ��r�� . �15�

As in the case of Levy’s constrained search, the minimum
in Eq. �14� is always achieved �5,6�. However, the minimiz-
ing wave functions may not be the ground-state wave func-
tions of some external potential, since they may not satisfy
Eq. �2� and may have only integrable first derivatives. Sup-

pose a set of 
�i� and 
�i� minimizes �i=1
� �i��i�T̂+ Û��i�, and

every �i satisfies Eq. �2� and has continuous second deriva-
tives. In this case, one can define a function �i according to
Eq. �3� for every �i. We first suppose that without violating
Eq. �15� and orthonormality, only one single function �i
takes a variation ��i. One concludes that �i minimizes

��i�T̂+ Û��i� among wave functions generating density �i�r��
=N	�i

��idr�2¯dr�N. Hence according to the conclusion for
Levy’s functional, �i is an eigenstate of some external poten-
tial vi�r�� and the eigenenergy is Ei. To demonstrate that all
vi�r�� are the same for different i, we then suppose that only
two functions � j and �k have a variation and prove v j�r��
=vk�r��. For an N-electron system, we need two fixed points
r�,r�� and the corresponding small surrounding regions V,V�.
We choose �� j and ��k such that ��� j

�� j�	0 in V�V
� ¯ �V, ��� j

�� j��0 in V��V�� ¯ �V�, ���k
��k��0 in

V�V� ¯ �V, and ���k
��k�	0 in V��V�� ¯ �V�. At

other positions ��� j
�� j�=���k

��k�=0. To satisfy Eq. �15�, we
require

���r�� = N

V�¯�V

�� j��� j
�� j� + �k���k

��k��dr�2 ¯ dr�N = 0

�16�

for r��V, and
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���r�� = N

V��¯�V�

�� j��� j
�� j� + �k���k

��k��dr�2 ¯ dr�N = 0

�17�

for r��V�. We now define I1
j =	V�¯�V� j��� j

�� j�
�dr�1¯dr�N, I2

j =	V��¯�V�� j��� j
�� j�dr�1¯dr�N, I1

k

=	V�¯�V�k���k
��k�dr�1¯dr�N, and I2

k =	V��¯�V�
�k���k

��k�dr�1¯dr�N. Equations �16� and �17�, along with the
normalization condition lead to

I1
j = − I1

k = − I2
j = I2

k =
1

2N

 �� j���� j

�� j��

+ �k����k
��k���dr�1 ¯ dr�N. �18�

Since � j and �k already have the form of Eq. �4�, by
applying the intermediate-value theorem of integrals and
from Eq. �18�, one obtains

� j
 � j��� j
�� j�dr�1 ¯ dr�N + �k
 �k���k

��k�dr�1 ¯ dr�N

= �Nuj�r�� + 
1�I1
j + �Nuj�r��� + 
2�I2

j + �Nuk�r�� + 
3�I1
k

+ �Nuk�r��� + 
4�I2
k

=
1

2

�uj�r�� − uk�r��� − �uj�r��� − uk�r���� + 
5�
 �� j���� j

�� j��

+ �k����k
��k���dr�1 ¯ dr�N, �19�

where 
i→0, i=1,2 ,3 ,4 ,5, as V→r� and V�→r��. Because
the expression in Eq. �19� is a higher-order infinitesimal, one
concludes

uj�r�� − uk�r�� = uj�r��� − uk�r��� . �20�

Hence uj�r�� and uk�r�� can differ only by a constant. Since
ui�r��=Ei /N−vi�r��, one can take v j�r��=vk�r�� and incorporate
the constant into Ej or Ek. It follows that every �i is an
eigenstate of the same external potential v�r��. If we further
suppose that the excited states of v�r�� can only achieve sta-
tionarity and cannot achieve a minimum in the constrained

search of ���T̂+ Û���, all �i are ground states and all Ei are
the same. This means that density ��r�� is ensemble
v-representable.

The differentiability of F��� in Eqs. �1� and �14� at a
v-representable density ��r�� was established by Englisch and
Englisch �32� and by Lindgren and Salomonson �33�. Al-
though their proofs were recently questioned by Lammert
�34�, the result was not precluded and is still deemed correct.
The derivative is

�F���
���r��

= C − v�r�� , �21�

where C is a constant.
Perdew et al. extended the domain of DFT functionals by

considering the ensemble of mixed states for the electron
system with a varying electron number �18,20�. In the en-
semble extension, the universal functional is defined by

F��� = min
�N−1,�N⇒�

��1 − 
���N−1�T̂ + Û��N−1�

+ 
��N�T̂ + Û��N�� , �22�

where wave functions �N−1 and �N generate densities �N−1�r��
and �N�r�� of the �N−1�- and N-electron systems, respec-
tively, ��r��= �1−
��N−1�r��+
�N�r��, and 0�
�1. If the
minimum in Eq. �22� is achieved by a pair of wave functions
�N−1 and �N that satisfy Eq. �2� and have continuous second
derivatives, �N−1 and �N are eigenstates of an external po-

tential v�r��, since �N−1 minimizes ��N−1�T̂+ Û��N−1� among

wave functions generating �N−1�r�� and �N minimizes ��N�T̂
+ Û��N� among wave functions generating �N�r��. Further-
more, if the excited states of this v�r�� can only achieve sta-
tionarity and cannot achieve a minimum in the constrained
search, �N−1 and �N are ground states and density ��r�� is
ensemble v-representable. The proof is the same as that for
Lieb’s ensemble functional. It should be noted that �N−1 is a
function of r�1 , . . . ,r�N−1 and �N is a function of r�1 , . . . ,r�N.
Thus �N−1 and �N have different ground-state energies EN−1
and EN. Differentiability of F��� in Eq. �22� at this ��r�� can
be established as for Lieb’s ensemble functional. The result
is

�F���
���r��

= �EN − EN−1� − v�r�� . �23�

The main difference between the functional in Eq. �22�
and Lieb’s ensemble functional is that for the latter, although
�i varies, the electron number remains N, since 	���r�1�dr�1
=N�i=1

� ��i=0 according to Eq. �15�. In Eq. �22�, however,
the variation of 
 leads to the variation of the electron num-
ber by �
. Hence the electron number variation has been
taken into consideration and Eq. �23� gives the completely
determined derivative �F /�� without arbitrary constant in it
�20�.

C. Time-dependent case

In TDDFT, the universal functional was originally defined
by the action integral �23,24� and can be revised as �27�

B��� = stat
�⇒�



t0

t1

���i � /�t − T̂ − Û���dt . �24�

The stationarity is searched for TD wave functions having
the fixed initial state ��r�1 , . . . ,r�N , t0� and generating density
��r� , t�. However, a true TD wave function must satisfy the
continuity equation

������
�t

+ �
k=1

N

�k · j�k�r�1, . . . ,r�N,t� = 0, �25�

where j�k is the TD current density kernel. Suppose the sta-
tionarity is achieved by a TD wave function � that satisfies
Eq. �25� and has a continuous first derivative with respect to
the time coordinate and continuous second derivatives with
respect to the space coordinates. One can define
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��r�1, . . . ,r�N,t� =
�i � /�t − T̂ − Û���r�1, . . . ,r�N,t�

��r�1, . . . ,r�N,t�
. �26�

Because Eq. �25� means ������ /�t+ i���T̂�−�T̂���=0

and thus �−i��� /�t− T̂��� /��= �i�� /�t− T̂�� /�, � is a real
function. � is also symmetric with respect to the space co-
ordinates and continuous if ��0. For the N-electron system,
apart from the 2N fixed spatial points r�1 ,r�2 , . . . ,r�N,
r�1� ,r�2� , . . . ,r�N� and corresponding small regions V1 ,V2 , . . . ,VN,
V1� ,V2� , . . . ,VN� introduced in the static case, a fixed time t and
a small time interval �t , t+�t� are also chosen. In the TD
case, apart from the spatial restriction, �� is chosen such that
������ is nonzero only in �t , t+�t�. We retain Eqs. �7�–�9�
for every time in �t , t+�t� and define

I1 =

t

t+�t

dt

V1�V2�¯�VN

������dr�1 ¯ dr�N,

I2 =

t

t+�t

dt

V1�V2��¯�VN�

������dr�1 ¯ dr�N,

I3 =

t

t+�t

dt

V1��V2�¯�VN

������dr�1 ¯ dr�N,

and

I4 =

t

t+�t

dt

V1��V2��¯�VN�

������dr�1 ¯ dr�N.

Like Eq. �11�, one obtains



t0

t1

dt
 �������dr�1 ¯ dr�N = N ! 
���r�1,r�2, . . . ,r�N,t� + 
1�I1

+ ���r�1,r�2�, . . . ,r�N� ,t� + 
2�I2

+ ���r�1�,r�2, . . . ,r�N,t� + 
3�I3

+ ���r�1�,r�2�, . . . ,r�N� ,t� + 
4�I4�

=
1

4

���r�1,r�2, . . . ,r�N,t�

− ��r�1,r�2�, . . . ,r�N� ,t��

− ���r�1�,r�2, . . . ,r�N,t�

− ��r�1�,r�2�, . . . ,r�N� ,t�� + 
5�

� 

t0

t1

dt
 ��������dr�1 ¯ dr�N,

�27�

where 
i→0, i=1,2 ,3 ,4 ,5, as �t→0, Vi→r�i, Vi�→r�i�, i
=1,2 , . . . ,N. The fact that 	t0

t1dt	�������dr�1¯dr�N is a
higher-order infinitesimal leads to ��r�1 ,r�2 , . . . ,r�N , t�
−��r�1 ,r�2� , . . . ,r�N� , t�=��r�1� ,r�2 , . . . ,r�N , t�−��r�1� ,r�2� , . . . ,r�N� , t�.
Hence ��r�1 , . . . ,r�N , t�=�i=1

N v�r�i , t� and Eq. �26� becomes

i
��

�t
= �T̂ + Û�� + ��

i=1

N

v�r�i,t� . �28�

This means that � satisfies the TD Schrödinger equation
of some TD external potential v�r� , t� and density ��r� , t� is TD
v-representable. The differentiability of B��� at the TD
v-representable ��r� , t� can be established as in the static case.
The result is

�B���
���r�,t�

= v�r�,t� . �29�

D. Generalized case

DFT that treats all eigenstates of the N-electron system on
the same footing depends on the generalization of Levy’s
minimum constrained search to a stationary constrained
search �35�, that is,

F��,�� = stat
�,�⇒�

���T̂ + Û��� , �30�

where � is an index used to distinguish different stationary

points and corresponding values of ���T̂+ Û��� for the same
density ��r��. The key point in our proof of Eq. �13� is that at
the considered wave function, the first-order variation of

���T̂+ Û��� vanishes. In general, this condition is satisfied by
wave functions that achieve stationarity but do not necessar-
ily achieve a minimum in the constrained search. Hence our
proof of Eq. �13� is also valid for the functional defined in
Eq. �30�. In fact, it is proven that if for a density the station-
arity of Eq. �30� is achieved by a wave function that satisfies
Eq. �2� and has continuous second derivatives, the stationary
wave function is an eigenstate of some external potential.
This provides a sufficient condition for Lemma II of Ref.
�35�. The lemma was proven in that paper on the premise
that F�� ,�� is differentiable.

III. CONCLUSION

It is examined whether the stationary wave function ob-
tained in DFT constrained search satisfies the Schrödinger
equation of some external potential. Sufficient conditions are
suggested and the proof is presented. In both usual DFT and
TDDFT, if the stationary wave function satisfies the continu-
ity equation for the current density kernel, and all its deriva-
tives that will appear in the Schrödinger equation are con-
tinuous, there will always exist an external potential that
yields the Schrödinger equation for the stationary wave func-
tion. In the usual DFT, the continuity equation reduces to the
steadiness condition and the stationary wave function is an
eigenstate of the external potential. Of special importance is
the case for the minimizing wave function obtained in the
constrained search. These conclusions also provide indirect
conditions for v-representability in both usual DFT and
TDDFT.
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