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We study the evolution of a system of two qubits, each of which interacts locally with a spin chain with
nontrivial internal Hamiltonian. We present an exact solution to this problem and analyze the dependence of
decoherence on the distance between the interaction sites. In the strong coupling regime we find that decoher-
ence increases with increasing distance. In the weak coupling regime the dependence of decoherence with
distance is not generic �i.e., it varies according to the initial state�. Decoherence becomes independent of
distance when the latter is over a saturation length l. Numerical results for the Ising chain suggest that the
saturation scale is related to the correlation length �. For strong coupling we display evidence of the existence
of non-Markovian effects �such as environment-induced interactions between the qubits�. As a consequence the
system can undergo a quasiperiodic sequence of “sudden deaths and revivals” of entanglement, with a time
scale related to the distance between qubits.
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I. INTRODUCTION

Understanding the process of decoherence �1–3� is not
only important from a fundamental point of view but also
essential to design good error correction strategies to prevent
the collapse of quantum computers �4�. When a composite
system interacts with an environment, decoherence typically
generates loss of entanglement between fragments. This pro-
cess may depend on many details such as the nature of the
system-environment interaction, the existence of nontrivial
spatial correlations in the environment, the internal environ-
mental dynamics, etc. In this paper we make a step toward
understanding decoherence when different subsystems are
locally coupled to a common environment with nontrivial
internal dynamics and spatial correlations.

In a previous presentation �5� we analyzed the decoher-
ence induced on a single qubit by the interaction with an
environment formed by a spin chain with an XY Hamiltonian
�see �5� for references on decoherence by spin environ-
ments�. Here, we consider a system of two qubits, each of
which interacts with a different site of an XY spin chain. We
solve this model generalizing previous results and obtain ex-
act expressions for the evolution of the reduced density ma-
trix of the two qubits for a large family of initial states �that
includes any of the four, maximally entangled, Bell states�.
Our work goes beyond previous studies extending the usual
“central qubit” model, where each qubit is homogeneously
coupled to all the sites of the chain �6�. In fact, our results
enable us to analyze the way in which decoherence and dis-
entanglement depend on the distance between the interaction
sites. In this context we will study two limiting cases: When
both qubits interact with the same site in the chain, and when
the interaction sites are widely separated. More interestingly,
we will investigate intermediate situations and examine the
nature of the transition between the two limits. We will show
that the environment correlation length plays a crucial role in
setting the typical length for which decoherence stops de-
pending on distance. We will also analyze the way in which
the evolution of the system depends on the strength of the
coupling between the system and the environment. As we

will see, weak and strong coupling regimes are drastically
different. For strong coupling we will show that the chain
provides a medium through which the qubits can coherently
interact. In such a case, the entanglement between them may
exhibit quasiperiodic events of “sudden deaths” and “sudden
revivals” �7� with a time scale that depends on the distance
between qubits.

The paper is organized as follows: In Sec. II we introduce
the model, defining the Hamiltonians for the system, the en-
vironment, and the coupling between them. We also present
the main formulas we will use to determine the decay of
quantum coherence. In Secs. III and IV we study the loss of
entanglement between the qubits as a consequence of their
interactions with the environment, in the cases of weak and
strong coupling with the chain, respectively. Finally, in
Sec. V we summarize our results.

II. MODEL AND ANALYTIC SOLUTION

We study the decoherence induced on a system of two
spin-1/2 particles �the qubits� by the coupling to an environ-
ment formed by a chain of N spin-1/2 particles �Fig. 1�. We
neglect the self-Hamiltonian of the system. The total Hamil-
tonian is H=HC+Hint, where HC is the Hamiltonian of an XY
spin chain,
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FIG. 1. A system of two noninteracting qubits �A and B�, suf-
fering decoherence from the local interaction with distant sites of an
environment chain.
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HC = − �
j
�1 + �

2
XjXj+1 +

1 − �

2
Y jY j+1 + �Zj� . �1�

Here Xj ,Y j ,Zj denote the three Pauli operators acting on the
jth site of the chain, and we assume periodic boundary con-
ditions. The parameter � determines the anisotropy in the x-y
plane and � gives a magnetic field in the z direction ��=1
corresponds to the Ising chain with transverse field�. This
model is critical for �=0 with ����1, and for �= �1.

Each of the two qubits in the system interacts locally with
a certain spin of the chain: Qubit A interacts with spin 0, and
qubit B with spin d. The interaction Hamiltonian is

Hint = − g��1	
1�AZ0 + �1	
1�BZd� �2�

with �0	 and �1	 the two eigenstates of the Z Pauli operator.
This has a simple interpretation: The coupling to the qubits
induces a change in the effective magnetic field at sites 0 and
d. Thus, if the system is in state �ab	 �a ,b� �0,1�� the envi-
ronment evolves with an effective Hamiltonian Hab given by

Hab = HC − g�aZ0 + bZd� . �3�

We also assume that the initial state of the “universe”
formed by system and environment is of the form

�SE�0� = �0 � �E0	
E0� , �4�

where the initial state of the environment �E0	 is the ground
state of the effective Hamiltonian H00 �8�.

Our goal is to study the evolution of �, the reduced den-
sity matrix of the two-qubit system �obtained from the state
of the universe by tracing out the environment�. Because of
the special form of the Hamiltonian, the temporal depen-
dence of � can be formally obtained as follows. In the basis
of eigenstates of ZA and ZB, � can be written as

��t� = �
abcd=0,1

�ab,cd�t��ab	
cd� . �5�

The evolution of the matrix elements of � is given by

�ab,cd�t� = �ab,cd�0�
E0�eiHcdte−iHabt�E0	 �6�

�we take �=1�. As states in the basis commute with the total
Hamiltonian, the diagonal terms �ab,ab remain constant. On
the other hand, each off-diagonal term in the reduced density
matrix is modified by a factor of absolute value between 0
and 1. This factor corresponds to the overlap between two
different evolutions of the spin chain. Following �9,10�, we
denote the square modulus of this factor as the Loschmidt
echo:

Lab,cd�t� = �
E0�eiHcdte−iHabt�E0	�2, �7�

which obviously satisfies Lab,cd=Lcd,ab.

Below, we will show how to compute the echoes L00,ab
and L01,10. These two echoes are enough to obtain the reduc-
tion of the off-diagonal elements in the reduced density ma-
trix when the initial state is one of the four Bell states �or any
state satisfying �11,01=�11,10=0�. The computation of each of
these two echoes is slightly different. In fact, to obtain L00,ab
we first note that one of the evolution operators in �7� acts
trivially. Therefore, the echo is equal to the survival prob-
ability of the initial state after being evolved with the Hamil-
tonian Hab, i.e.,

L00,ab�t� = �
E0�e−iHabt�E0	�2. �8�

In turn, the echo L01,10 can be calculated noticing that the
corresponding effective Hamiltonians are related by a trans-
lation,

H01 = TdH10T
−d, �9�

where T is the one-site translation operator in the chain. As
the ground state of the Hamiltonian H00 is an eigenstate of
this operator, the echo can be written as

L01,10�t� = �
E0�eiH10tTde−iH10t�E0	�2. �10�

To obtain the echoes we will make use of the fact that the
full quantum evolution for each Hamiltonian Hab can be ex-
actly solved. This can be done by mapping the Hamiltonians
Hab of the chain onto a fermion system by means of the
Jordan-Wigner transformation �11�,

Xj = exp�i��
k=1

j−1

ck
†ck��cj + cj

†� , �11�

Y j = i exp�i��
k=1

j−1

ck
†ck��cj − cj

†� , �12�

Zj = 2cj
†cj − 1. �13�

Using this, up to a correction term associated to boundary
effects, the Hamiltonians can be written as

Hab = − �
j

��cj
†cj+1 + cj+1

† cj� + ��cj
†cj+1

† + cj+1cj�

+ � j
�ab��2cj

†cj − 1�� �14�

with � j
�ab�=�+g�a	 j,0+b	 j,d� �the extension to qubits inter-

acting with more than one site is trivial�.
The Hamiltonians Hab depend quadratically on the anni-

hilation and creation operators. Therefore, they can be diago-
nalized by linear �Bogoliubov� transformations defining new
creation and annihilation operators which we will denote as

�ab� ,
†�ab�. Furthermore, as all of these transformations are
linear, the operators corresponding to different values of the
labels �ab� can also be connected by Bogoliubov transforma-
tions.

The echoes we want to compute can be written in terms of
the matrices involved in these Bogoliubov transformations.
For example, in Appendix A it is shown that
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L00,ab�t� = �det�g + hei�t��2. �15�

Here � is a diagonal N�N matrix containing the energies of
the normal modes of the Hamiltonian Hab. g and h corre-
spond to the transformation connecting the particles that di-
agonalize the unperturbed Hamiltonian H00 and the effective
Hamiltonian Hab,


 j
�00� = �

k

g jk
k
�ab� + h jk
k

†�ab�. �16�

This equation is useful since it expresses the echo as the
determinant of an N�N matrix, which can be efficiently
computed �the number of operations is polynomial in N�.
This formula is a new version of the one used in �9�, where
the Loschmidt echo was written in terms of the two-point
correlators of the environment chain �i.e., as the determinant
of a 2N�2N matrix�.

The way to compute the echo L01,10 is shown in Appendix
B, using the fact that the translation operator T is Gaussian in
the fermion operators. The result is, once again, the determi-
nant of an N�N matrix, though somewhat more compli-
cated:

L01,10�t� = �det�g�−dg�† + h�dh�†�� . �17�

Here g�, h� are time-dependent complex matrices related to
Bogoliubov transformations between different sets of particle
operators, and  is the diagonal matrix expression of the
translation operator T.

Decoherence for initial states of the form ��	=��00	
+��11	 or ��	=��01	+��10	 is described by L00,11 and L01,10,
respectively. In any case, the relevant echo L�t� for the Bell-
like state ��	 will determine not only the process of purity
decay but also the way in which the two qubits become
disentangled. In fact, if one considers an initial mixture of
the form �0= p��	
��+ �1− p�I /4, the purity of the state is the
following function of the echo L�t�:

Tr��2�t�� =
1 − p2

2
+ p2�1 − 2����2�1 − L�� �18�

�here, L is either L01,10 or L00,11 depending on ��	�. The en-
tanglement between the two qubits can be measured by the
negativity N obtained from the sum of the negative eigen-
values of the partial transpose of � �N�0 is an indicator of
non-separability of the two-qubit state� �12�. For the mixed
initial state proposed,

N�t� = max0,p�����L�t� −
1 − p

4
� . �19�

For pure initial states �p=1�, the state is entangled whenever
L�0; in general, the state becomes disentangled when the
echo is below a threshold which depends on p. In this way
the phenomenon of entanglement sudden death �ESD� may
take place �7�.

We will analyze the dependence of the echo on the dis-
tance between the interaction sites. Two simple limits exist.
First, if both qubits couple to the same site �d=0� then the
echo L01,10 becomes trivially 1 as the two effective Hamilto-
nians are identical. On the other hand, L00,11 is simply the
echo of a single qubit interacting with one site with 2 times
the interaction strength �a case studied in �9��. The long dis-
tance limit is also easy to understand: If the chain is suffi-
ciently large we expect its effect to be equal to the one ob-
tained when each qubit interacts with an independent
environment. Then, both L00,11 and L01,10 approach L0,1

2

�where L0,1 is the single-qubit echo�. This long distance re-
gime exists only if the back-action of the qubits on the en-
vironment is small. For strong back-action, one expects the
environment to induce effective interactions between the qu-
bits. As we will see, the long distance limit will be identifi-
able easily in the weak coupling case, whereas the strong
coupling regime will be plagued with effects associated to
environment-induced interactions.

III. RESULTS: WEAK COUPLING

In this section we study the case when the coupling g is
small compared to the interaction strength between chain
sites, showing results for the reference value g=0.1. Figure 2
shows the echo L00,11 as a function of time for the Ising chain
��=1� and for several values of the transverse field � and the
distance d. For ��1, the echo has small amplitude oscilla-
tions �with frequency of order 1� about a value which is
roughly independent of distance. For ��1 decoherence is an
order of magnitude smaller, oscillations decay rapidly and
the echo approaches a constant that grows with distance. In
both cases the dependence on distance rapidly saturates: The
long distance regime is reached at d�4. To the contrary,
near the critical point ��=1� the echo decreases logarithmi-
cally with time �after a short transient�, and saturation with
distance is not attained, which is a signal of long range cor-
relations in the environment.

The strongest decoherence is typically obtained at short
distances. A simple argument shows that this is reasonable
for weak coupling: At short times one expects an approxi-
mately Gaussian decay of the echo of the form exp�−�2t2�,
with ��g. For d=0 we have �2��2g�2 while in the case of
independent environments �2�2g2. As a consequence, faster
decay of L00,11 is expected for d=0 in the weak coupling
regime. For the echo L01,10 the dependence on distance is
opposite to the previous case, as shown in Fig. 3. This is
expected since the Hamiltonians H01 and H10 become more
different as d grows. On the other hand, the saturation with
distance approaching the limit of independent environments
is similar to that of L00,11�g , t�.

We analyzed the saturation scale in the following way: We
calculated the echo L00,11 for � between 0.1 and 2, distances
d between 1 and 15, and times tj in the interval �0,10�. The
squared norm of the vector obtained subtracting the values of
the echo at times tj for distance d and for independent envi-
ronments was taken as a measure of the difference between
these echoes. A saturation length l was obtained from the
exponential fit of the decay of these norms as d approaches
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the long distance limit. The behavior of l as a function of the
external field � is shown in Fig. 4. The saturation length was
found to be related to the correlation length
�= �ln����−1 �13,14�. Our numerical results indicate that
l�1.1+0.21�0.17+�−1�−2.2. Indeed, l is clearly increased
near the critical point, though it does not diverge like �. The
analysis of the echo L01,10 leads to analogous results.

The echoes obtained for the case �=0.1 are qualitatively
similar to the ones shown in Figs. 2 and 3 for the Ising chain.
There are nevertheless some noticeable differences. These
concern mainly the dependence on distance, which is rather

irregular for ��1. Besides, the connection between the satu-
ration distance l and the correlation length � is not evident,
even though the saturation length clearly increases in the
proximity of the critical point. There are also differences in
the shape of the decay close to criticality �almost linear for
times up to t�10�, and in the strength of the decoherence
process �for ��1 decoherence is stronger than in the case
�=1, while for ��1 it is weaker�.

The previous results refer to times shorter than the ones
where the finite size of the environment starts to play a role.
For long times finite size effects become important, as shown
by the coherence revivals and sharp decays of Fig. 5. These
imply that the qubits are not independent due to
environment-induced interactions. By decreasing d below
N /4 the first peak or decay tends to disappear, so that the
qubits evolve almost independently even for long times �pro-
vided d is over the saturation scale�. This will not be the case
in the strong coupling regime, which will be treated in the
next section.
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FIG. 2. �Color online� Echo L00,11 as a function of time for an
Ising chain ��=1� of N=100 sites weakly coupled to a two-qubit
system �g=0.1�. From top to bottom the transverse field is �=0.5,
0.99, and 1.5. The distance between qubits is d=0 �full black�, 1
�dashed green�, 2 �dotted violet�, and 3 �dashed-dotted magenta�. In
the almost critical case �=0.99 we include also d=4 �· ·–, red�, and
10 �– –·, orange�; these curves are not shown in the other plots
because they are intertwined with the others. For comparison we
display in full gray the limit of two independent environments.
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FIG. 3. �Color online� Echo L01,10 as a function of time; all
parameters are the same as in Fig. 2 �for d=0 this echo is always
equal to 1�.
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FIG. 4. �Color online� Saturation length as a function of the
external field � �dots�, for the Ising chain ��=1�. The continuous
red line shows the fit as a function of the correlation length � of the
chain �l�1.1+0.21�0.17+�−1�−2.2�. These results correspond to a
chain of 500 spins, and the echoes have been smoothed to avoid
spurious effects due to oscillations. Besides, the fact that g�0 is
accounted for by a shift in the correlation length, given by
�eff=���+5.7�10−3�.
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FIG. 5. �Color online� The echo for two qubits weakly interact-
ing with a spin chain of N=100 sites has revivals or sharp decays
due to finite-size effects. For a distance d=N /2 we show L00,11 �full
black� and L01,10 �dashed red�. When d decreases the first peak and
decay tends to disappear �the dotted blue line corresponds to L00,11

for d=30�. The result for two qubits coupled to independent envi-
ronments is shown for comparison �full gray�. The parameters are
�=0.99, �=1, g=0.1.
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IV. RESULTS: STRONG COUPLING

For strong system-environment coupling, the results are
quite different from the ones above. As observed for a single
spin system in �5,15�, the strong coupling regime is charac-
terized by an echo with a fast oscillation and a slow envelope
which for large enough g is independent of g. Following the
same steps as in �5� we can explain the behavior of the echo
L00,11 as follows: Consider the evolution with Hamiltonian
H11=H00−g�Z0+Zd�. As all the frequencies associated with
the interaction Hamiltonian are of order g �much larger than
typical frequencies of the chain�, we may approximate

e−iH11t�E0	 � eigt�Z0+Zd�e−itH��E0	 . �20�

Here H� is the Hamiltonian H00 reduced to a block diagonal
form, with blocks associated with the different eigenvalues
of the interaction term. The evolution operator thus factors in
two parts: A fast periodic evolution with frequency of order
g, and a slow evolution that determines the envelope of the
echo and is governed by an effective chain Hamiltonian H�
�which does not depend on g�. This same argument can be
adapted to L01,10. We note, however, that this behavior is a
consequence of the form of the interaction between system
and environment and is not generic for strong couplings. For
instance, if each qubit interacts with a region of the chain
with a coupling that decreases with distance, the typical re-
sult is a sudden decay of coherence without oscillations.

For strong coupling we expect decoherence to increase
with distance �until saturation� for both echoes. Indeed, for
d=0 we have L00,11�g , t�=L0,1�2g , t�, with L0,1 the single qu-
bit echo. This must be of the same order as L0,1�g , t� because
for large enough g the envelope is independent of g. On the
other hand, in the long distance limit L00,11�g , t��L0,1

2 �g , t�,
which is smaller than L0,1�g , t�. The comparison between
d�1 and d=0, illustrated in Fig. 6 for �=1, �=0.99, thus
leads to a result which is quite the opposite of the one ob-
tained for weak coupling. The distance dependence of the
echo L01,10 follows a similar pattern, i.e., decoherence in-
creases with distance, as shown in Fig. 7.

Environment-induced interactions between qubits are
manifest in Fig. 6. Indeed, for d�0 apart from the fast os-
cillation with a decaying envelope the echo L00,11 exhibits a
beating �or revival� at a time that depends on d. This effect is
not important for weak coupling and can be interpreted as
due to the interaction between the qubits through the modes
of the perturbed chain. On the contrary, no revivals are seen
for L01,10.

The difference can be understood by analyzing the origin
of revivals in terms of the spectrum of the Hamiltonian and
the Bogoliubov coefficients, contained in the matrices �, g,
and h in �15�. Excitations of the unperturbed Hamiltonian
have energies lying between 2�1−�� and 2�1+��. When a
strong external field is applied in two sites, two eigenvalues
of order g appear; these excitations are associated to combi-
nations of the original fermion operators in the two sites. The
remaining excitations �with eigenvalues of the same order as
before� can be split in two groups, corresponding roughly to
excitations between and outside the interaction sites �this la-
beling only makes sense because we consider distances
d�N�. It turns out that the most populated levels correspond
to the lowest-energy excitation �occupying the outside re-
gion�, the excitations in the interaction sites, and those lying
in the inside region �16�. The high-energy excitations are
associated to the rapid echo oscillation, while the lowest-
energy excitation has a time scale growing with N. The beat-
ing in the echo is given by the lowest-energy mode in the
region between the qubits.

The situation for L01,10 is different, as seen in Fig. 7, be-
cause for each effective Hamiltonian there is a single site
perturbation of the chain. In this case the chain cannot be
split in two regions and the populations of the low-energy
levels decrease slowly with the energy, in such a way that
there is not a single frequency associated to them. Then, no
revivals occur up to times long enough for finite-size effects
to appear.

The revivals for the case L00,11 appear for ��1 but not
for ��1. This is a consequence of the change in the prop-
erties of the chain. Indeed, for ��1 the revival time is
shorter as � is increased because the lowest energy associ-
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FIG. 6. �Color online� Envelope of the echo L00,11 as a function
of time for two qubits strongly interacting with two different sites of
a chain with N=100, �=0.99, �=1, g=50. The plots correspond to
the cases of distance d=0 �full black�, 2 �dotted blue�, and long
distance limit �full gray�. For the case d=0 a part of the fast oscil-
lation is included. Here, in contrast to the weak coupling scenario,
decoherence is stronger in the long distance limit, as the envelope
for large d corresponds to the square of the one for d=0.

0 1 2 3 4
t

0

0.2

0.4

0.6

0.8

1

L

FIG. 7. �Color online� Envelope of the echo L01,10 as a function
of time for two qubits strongly interacting with two different sites of
a chain with N=100, �=0.99, �=1, g=50. The plots correspond to
the cases of distance d=1 �full black�, 2 �dotted blue�, and long
distance limit �full gray�. For the case d=0 there is no decoherence
in this case, while for d�1 decoherence turns out to be stronger as
distance is increased.
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ated to excitations between the qubits increases. For ��1,
the disappearance of the revivals may be related to the fact
that many low-energy excitations become populated, with
frequencies comparable to the one associated to the beating.

The first revival time, tr, and the amplitude of the peak,
Lr, can be analyzed as functions of the distance d. We con-
sider first a critical case where H00 and H11 belong to differ-
ent phases ��=0.99, �=1, N=100�. In each case, new
peaks appear at multiples of tr. For d�1, the revival time
grows linearly with distance �tr�2d�, while Lr decays as a
power law, Lr�d−1/4. For distances d�N /5 effects associ-
ated with the finite size of the chain appear altering the regu-
lar trend. Examining the echo for � far away from the phase
transition we found a slower decay of the revival peak with
d. Furthermore, in this case tr is not linear with d, but seems
to grow exponentially. Thus, tr appears to be related to trans-
port properties of the chain that are modified by varying the
external field. This should serve as a warning not to picture
revivals as the manifestation of a spin wave propagating with
constant velocity along the chain �the energies of the lowest
modes between the qubits do not generally scale as 1 /d�.

Changing the anisotropy parameter �, the envelopes dis-
play different shapes, heights, and revival times. The dis-
tance dependence of the revival time tr and amplitude Lr was
studied for �=0.99 and � between 0.1 and 1. We found that
tr generally grows as a power law. Besides, the height of the
revival peaks decreases with increasing �, and the depen-
dence of Lr with d maintains a power-law decay. We note,
however, that the peaks lose definition for large d and
small �.

V. CONCLUSIONS

We studied the evolution of a system of two qubits inter-
acting locally with an XY chain. Decoherence and disen-
tanglement are determined by a Loschmidt echo, which we
computed using previous results �9,17�. The formulas we ob-
tained for the echoes enabled us to study a family of initial
states including the four Bell states. We focused our analysis
on the dependence of the echo with the distance between the
interaction sites. The cases we studied show a rich variety of
results. For instance, for strong coupling, decoherence in-
creases with increasing distance for all Bell states. On the
contrary, for weak coupling, decoherence may increase or
decrease with distance according to the initial state chosen.

In the regime of weak system-environment coupling the
dependence of the echo with distance saturates very fast ex-
cept for the critical case. The saturation length l characteriz-
ing the approach to the long distance limit seems to depend
on the correlation length of the chain �. This result is inter-
esting as it relates an equilibrium quantity �the correlation
length �� with a dynamical quantity l. However, this relation
was only found for the Ising case, and will be further ana-
lyzed elsewhere.

The strong coupling regime is characterized by fast oscil-
lations with a slowly decaying envelope. For some initial
states, this envelope shows a beating which can be inter-
preted as an interaction of the qubits through the chain. Its
time scale is determined by the modes of the chain in the
region between the qubits, which depend on the distance

between them and on the values of the parameters in the
chain Hamiltonian �indeed, the beatings were found only for
��1�. We note that in this regime the fast oscillation of the
echo continually provokes decays and revivals of the en-
tanglement between qubits. This is just a dynamical transfer
of this entanglement back and forth from the system to its
immediate vicinity with a frequency given by the coupling
constant g. The true loss of entanglement is produced by the
decay of the oscillation. If the initial state is mixed, this
decay can lead to true sudden death of entanglement. When
the distance between qubits is short, the sudden death may be
followed by a sudden revival due to the beating in the echo.
For very long distances, entanglement loss becomes irrevers-
ible, unless we consider times which are long enough for the
finite size of the environment to become manifest.

Finally, it is worth pointing out that there are formal
analogies between the model we solved and other decoher-
ence models. In fact, decoherence for two qubits at distance
d in an initial state of the form ��00	+��11	 is identical to
that of a single qubit interacting nonlocally with sites 0 and d
�which was partially studied in �9��. On the other hand, for
the case of states of the form ��01	+��10	, the relevant echo
L01,10 can be mapped onto the one of another equivalent
problem: A spinless particle occupying discrete
positions along the chain �with position eigenstates
�xj	 , j=0, . . . ,N−1�. If this particle modifies the effective
magnetic field for the spin in the site it occupies, cat states of
the form ��xj	+ �xj+d	� /�2 will decohere as a consequence of
the interaction. The resulting reduction of the off-diagonal
terms will be precisely given by expression �17�.

Note added. Recently, we became aware of the work in
�20�, which shows how to calculate efficiently the remaining
elements of the density matrix ��01,11�.

APPENDIX A: DERIVATION OF THE FORMULA FOR
L00,11

In this section we show how the formula �15� for the echo
can be obtained. Taking into account the relation �16� be-
tween the operators that diagonalize the different effective
Hamiltonians,


 j
�0� = �

k

g jk
k
�1� + h jk
k

†�1�

the two vacuum states �E0	 �for the unperturbed Hamiltonian�
and �E0�	 �for the perturbed one� can be connected by �18�

�E0	 � exp1

2

� †�1�G
� †�1���E0�	 �A1�

with G=−g−1h �for the sake of simplicity, we shall first as-
sume that g is invertible, and sketch the most general case
afterwards�. The echo can then be calculated from

L�t� = �
E0�e−iH1t�E0	�2 � �
E0��e
−1/2
� G�
�e−it
� †�
�e1/2
� †G
� †

�E0�	�
2,

�A2�

where in the last expression � is a diagonal matrix contain-
ing the energies corresponding to the different particles,
and all superscript indices are omitted as all operators and
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matrices refer to the perturbed Hamiltonian H1. By introduc-
ing two identities in terms of fermionic coherent states be-
tween the exponentials and integrating two times �19�, we
obtain

L�t� � �� d�1 ¯ d�Nd�1 ¯ d�N�
�exp1

2
�� G��� + �� eit��� −

1

2
�� G����2� , �A3�

where �� ,�� are Grassman N-tuples. This is a Gaussian inte-
gral, that can be solved as

L�t� � �det�G� − eit�

eit� − G
�� . �A4�

Using properties of the determinant and the fact that � is
diagonal, and imposing that L�0�=1 the echo can be rewrit-
ten as

L01,10�t� = �det�geit�g† + he−it�h†�� . �A5�

The formula can be simplified further: Since g ,h are real we
have that g�h is orthogonal, and using this we obtain the
final expression �15�,

L�t� = �det�g + hei�t��2.

In case g is not invertible, the relation �A1� between the
vacuum states can be generalized by using intermediate sets
of operators �17�. By the singular value decomposition,
g=UDV with D diagonal, U ,V orthogonal. We define new

fermionic operators �� j
�0�=Ut
� �0�, ���1�=V
� �1�. The linear trans-

formation between the ��i�, �†�i� now has D instead of g, and
the vacuum states are the same because the transformation
does not mix creation and annihilation operators. We can
assume Dj =0 for j� j1, and the remaining eigenvalues to be
nonzero. By interchanging particles with holes �� j

�0�↔� j
†�0��

for every index such that Dj =0 we obtain a linear transfor-
mation with an invertible matrix. The calculation of the echo
follows the same steps as before, except that it is necessary
to treat indices j� j1 separately. After the Gaussian integra-
tion, we are left with an expression of the form �A4� in
which only indices j� j1 appear. The desired result can be
achieved by conveniently introducing some rows and col-
umns in the matrix, in such a way to include the parts of the
matrices with j� j1 without changing the value of the deter-
minant.

The present derivation cannot be easily extended to more
general cases, with two different evolution operators as in
�7�, for in that case there are three sets of operators that must
be related. The steps taken in the calculation above then lead

to a result that involves a sum over an exponential number of
terms, and so cannot be efficiently evaluated.

APPENDIX B: DERIVATION OF THE FORMULA FOR
L01,10

Here we sketch the derivation of the formula �17� for the
decay of the off-diagonal terms �01,10. We start from expres-
sion �10�, which involves two sets of particle operators: One
which we note as 
�1�, diagonalizing the effective Hamil-
tonian H10, and the set 
�0� for the unperturbed chain Hamil-
tonian H00. These two sets are connected by a real Bogoliu-
bov transformation.

The translation operator can then be written as �21�

T = e�2�i/N��k=1
N k
k

�0�†
k
�0�

, �B1�

so that the echo is given by

L01,10�t� = �
E0�e�2�i/N��k=1
N k�k

†�k�E0	�2 �B2�

with

�k = eiH10t
k
�0�e−iH10t. �B3�

This leads us to an echo of exactly the same form as that in
Appendix A, except that the energy matrix � is replaced by
a matrix with the eigenvalues of the translation operator, and
the set of particles 
k

�1� is replaced by the �k. The main dif-
ference here is given by the fact that the Bogoliubov trans-
formation between the �k and the 
k

�0� has time-dependent
complex coefficients


 j
�0� = �

k

g jk� �k + h jk� �k
† �B4�

with

g� = geit�gt + he−it�ht, �B5�

h� = geit�ht + he−it�gt. �B6�

Following steps similar to those in Appendix A, we finally
obtain for the echo the expression �17�,

L01,10�t� = �det�g�−dg�† + h�dh�†�� , �B7�

where the diagonal matrix  contains the eigenvalues of the
translation operator T; the structure is the same as in �A5�. In
this way the decay of the off-diagonal terms can once more
be written as the determinant of an N�N matrix. This ex-
pression is not as simple as the final one obtained in Appen-
dix A; the reason for this is that the matrices g�h were
orthogonal, while the matrices g��h� do not satisfy a similar
condition.
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