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A long-standing open problem in fault-tolerant quantum computation has been to find a universal set of
transversal gates. As shown by Zeng et al. �e-print arXiv:0706.1382�, such a set does not exist for binary
stabilizer codes. Here we generalize our work to show that for subsystem stabilizer codes in d-dimensional
Hilbert space, such a universal set of transversal gates cannot exist for even one encoded qudit, for any
dimension d, prime or nonprime. This result strongly supports the idea that other primitives, such as quantum
teleportation, are necessary for universal fault-tolerant quantum computation, and may be an important factor
for fault-tolerance noise thresholds.
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I. INTRODUCTION

All quantum systems are vulnerable to noise, which can
arise from various sources such as uncontrolled interactions
of the system with the environment, or from imperfections in
the implementation of quantum logical operations. More-
over, noise can propagate through a quantum circuit, affect-
ing qudits throughout the computational system. Thus, if
quantum computation is to be implemented on a large scale,
it is essential to explore methods for protecting quantum in-
formation against noise, and for preventing the spread of
errors through a quantum system.

The theory of quantum error-correcting codes, coupled
with fault-tolerant quantum computation, offers the hope of
resolving both of these problems, and has therefore greatly
improved the long-term prospects for quantum computing
technology �1,2�. Quantum error-correcting codes encode
quantum information in a form that is more resistant to noise.
In principle, fault-tolerant quantum computation then makes
it possible to carry out arbitrarily long quantum computa-
tions reliably, provided that the average probability of error
per gate is less than a certain critical value known as the
accuracy threshold �3�.

The precise implementation of fault-tolerant quantum
computation depends on the quantum error-correcting code
�QECC� used. Once a QECC has been chosen, each qubit in
the original circuit is replaced with an encoded block of qu-
bits. Protocols are then specified for performing fault-
tolerant operations on the code, i.e., protocols for each type
of logic gate. A fault-tolerant protocol is designed so that if
only one component of a procedure fails, then the failure
causes at most a correctable number of errors in each en-
coded block of qudits output from the procedure.

Many studies concentrate only on the case of binary
QECCs in a �d=2�-dimensional Hilbert space, as generaliza-
tions of proofs are often nontrivial when d�2 is nonprime.
However, as both qubit and qudit systems occur in the natu-
ral world, there is no reason to assume that a theoretical
result should hold solely for two-dimensional systems. If an
important negative result were to hold only in the case when

d=2, then this would suggest that a lot of effort should be
directed toward building qudit systems, as the case when
d�2 would be fundamentally different from the case d=2
�for instance, quantum error-correcting codes of certain pa-
rameters exist only in the case of d�2 �4��. Therefore, it is
important to consider the case of higher-dimensional sys-
tems, and in our work we consider the case of QECCs for
arbitrary d, both prime and nonprime.

One way of implementing fault-tolerant quantum opera-
tions is to use transversal gates �3�. A transversal gate has a
particularly simple form: it is a tensor product of unitaries
that each act on only one qudit per encoded block �5�. Thus,
transversal gates are naturally designed to limit the propaga-
tion of noise, as an error occuring on the kth qudit in a block
can only ever propagate to the kth qudit of other blocks of
the code, no matter what other sequences of gates we per-
form before retrieving the encoded information.

As transversal gates offer significant advantages in con-
structing fault-tolerant quantum circuits, it is highly desirable
to know exactly which gates can be performed transversally
on a given QECC. In the case of certain codes, such as the
seven-qudit Steane code for d=2, a number of different gates
can be performed transversally: in particular, any gate from
the Clifford group can be implemented as a transversal gate.
It would be wonderful to find a QECC such that universal
quantum computation can be achieved entirely through trans-
versal operations on the code. Unfortunately, it is widely
believed in the quantum information science community that
no such code exists �3�.

A proof of this belief is of fundamental importance in the
fault-tolerant design of quantum circuits and the estimation
of the accuracy threshold, as such a proof would provide
valuable information about the fundamental resources
needed for quantum computation. If there is no QECC such
that a universal set of gates can be performed transversally
on the code, then transversal gates are not the ultimate primi-
tives for fault-tolerant universal quantum computation: they
must be supplemented with more complicated techniques,
such as quantum teleportation �6,7� or state distillation �8�.

Several difficulties must be overcome in order to prove
that transversality is insufficient for universality. Even
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though the gates that can be implemented transversally on a
given QECC depend on the code itself, the result must hold
for all error-correcting codes. Furthermore, the logical opera-
tion of the gate on the encoded information must be deter-
mined from the physical operation of a transversal gate on
the qudits of a quantum system. Finally, the important step of
generalizing this result for qudits in a Hilbert space of arbi-
trary dimension d is not necessarily straightforward, particu-
larly if d is nonprime.

In this paper, we approach the problem of proving that
stabilizer codes cannot have a universal set of transversal
gates. Recently, three of us proved in �9� that a universal set
of transversal gates does not exist for binary stabilizer codes.
Here we generalize our earlier result by showing the follow-
ing main theorem.

Main Theorem. For subsystem stabilizer codes in
d-dimensional Hilbert space, a universal set of transversal
gates cannot exist for even one encoded qudit, for any di-
mension d, prime or nonprime.

Given that stabilizer codes form the most important and
well-developed class of quantum error-correcting codes, the
situation considered in our proof is very general. We also
provide an alternative insight into the problem by introduc-
ing a different proof technique from the one given in �9�,
which uses an idea in a recent work by Gross and van den
Nest �10�. This technique is more transparent and accessible
than the approach taken in �9�, and provides more intuition
for the final result.

Our proof has two main stages. First, given a transversal
gate U= � j=1

n Uj, we show that there must be some restric-
tions on the physical operations Uj for every j. We derive
these restrictions by studying the subcodes of a stabilizer
code. This idea dates back to work carried out by Rains �11�,
who showed that any transversal gate on a given stabilizer
code must keep some subcodes invariant. This fact allows us
to place strong conditions on the structure of the transversal
gate. After describing these restrictions on the operations Uj,
we then show that there must be corresponding restrictions
on the logical operation U that prevent universality.

Our paper is organized as follows. We begin by presenting
some background information on the generalized Pauli
group, stabilizer codes, and transversal gates in Sec. II. We
then identify the restrictions on the structure of transversal
gates in Sec. III �the binary case d=2� and Sec. IV �the
nonbinary case d�2�. In Sec. V we analyze the effect of the
restrictions on the transversal operations on the logical gate.
We conclude in Sec. VI with a discussion of open problems,
in particular the effect of coordinate permutation on the pos-
sibility of achieving universality using transversal gates.

II. PRELIMINARIES

A. The generalized Pauli group

In this section we review the mathematics for the gener-
alized Pauli group Pd, which will be the main mathematical
tool for describing the qudit stabilizer codes. The generalized
Pauli group is generated by two elements X ,Z with the com-
mutation relation �12–18�

ZX = qXZ , �1�

where q is a complex number. Mathematically, we can prove
that the associated group generated by Z, X possesses a
d-dimensional irreducible representation only for qd=1 �12�.
In this article, we take q�qd�ei

2�
d . This special case was

first introduced by Weyl �19�, and its completeness was first
proved by Schwinger �20�. Obviously, when d=q=1, the
generators X and Z can be regarded as the ordinary coordi-
nates of R2 plane. When d=2, q=−1, the generators X and Z
can be identified with the Pauli matrices �x and �z, and the
generalized Pauli group P2 is the familiar one-qubit Pauli
group, also denoted by P.

Choosing a basis �k�k=0
d−1, we have

Z�k� = qd
k�k� , �2�

where �k�=X†k�0�. This also implies

X�k� = �k + 1� . �3�

In the Z-diagonal representation, the matrices of X and Z are

Z = �
1 0 0 ¯ 0 0

0 qd 0 ¯ 0 0

] ] ] � ] ]

0 0 0 ¯ qd
d−2 0

0 0 0 ¯ 0 qd
d−1
	 , �4�

X = �
0 0 0 ¯ 0 1

1 0 0 ¯ 0 0

0 1 0 ¯ 0 0

] ] ] � ] ]

0 0 0 ¯ 1 0
	 . �5�

All the elements of the generalized Pauli group are given by


qd
i ZjXk�i, j,k � Zd� . �6�

Define a basis set Bd of Pd by

Bd = 
ZjXk�j,k � Zd� , �7�

and call the elements in Bd the basis elements of Pd, then the
general commutation relations for any two basis elements are

ZjXk = qd
jkXkZj . �8�

In addition, we can replace the generators Z and X with two
other elements in the basis. First, let �m ,n� denote the great-
est common factor of integers m and n. Then if �m1 ,n1�=1
for m1 ,n1�Zd, we can define

X̄ = qd
−��d−1�/2�m1n1Zm1Xn1, �9�

where the factor before ZmXn is chosen so that X̄ has the
same eigenvalues as X. To maintain Eq. �1�, we define

Z̄ = qd
−��d−1�/2�m2n2Zm2Xn2, �10�

where �m2 ,n2�=1 for m2 ,n2�Zd, and m1n2−m2n1=1. From

another viewpoint, X̄ and Z̄ define a unitary transformation U
such that
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X̄ = UXU†, Z̄ = UZU†. �11�

By the above definition, it is easy to check that the set of all
such unitary transformations U forms a group, which is
known as the Clifford group.

Finally, we define the n-qudit Pauli group. The familiar
n-qubit Pauli group Pn consists of all local operators of the
form R=�RR�1�

¯R�n�, where �R� 
�1, � i� is an overall
phase factor and R�i� is either the identity I or one of the Pauli
matrices �x, �y, or �z. We can define the analogous n-qudit
Pauli group Pn

d as the set of all local operators of the form
R=�RR�1�

¯R�n�, where �R=qd
k for some k�Zd is an overall

phase factor and R�i� is an element of the generalized Pauli
group Pd.

B. Stabilizer codes, transversal gates, and encoded universality

In this section we introduce definitions and notation for
studying stabilizer codes and transversal gates. Let Q denote
an ��n ,k ,��� binary stabilizer code with stabilizer S �4,21�.
The orthogonal projector onto Q is denoted by PQ and is
given by

PQ =
1

2n �
R�S

R . �12�

The code may or may not be a subsystem code �22�. If the
code is a subsystem code, there are k��0 additional logical
qubits, S is generated by n−k−k� independent generators,
and the corresponding subspace code is an ��n ,k+k� ,����
code with ����. The k� additional logical qubits are known
as the gauge qubits, and the original k logical qudits are
known as the protected qubits.

A qudit stabilizer code Qd is then the vector space stabi-
lized by a subgroup S of the generalized Pauli group, such
that qd

l I�S for l�0. An ��n ,k ,��� stabilizer code encodes k
logical qudits into n physical qudits and can correct up to
� �−1

2 � independent single-qudit errors.
Suppose there are initially r blocks of k qudits in a

d-dimensional Hilbert space and we encode each block of k
qudits into Q. In order to define a transversal gate acting on
these r blocks, we must first define the local unitary group.
For the single-block case, the local unitary group is G
=U�1�	SU�d�n. Each state PQ has a stabilizer subgroup
IQ�G consisting of elements g�G that leave PQ fixed un-
der the action gPQg−1 �23�. For the multiblock case with r
blocks, the local unitary group is Gr=U�1�	SU�dr�n. Each
state PQ

�r has a stabilizer subgroup IQ
r �Gr consisting of el-

ements g�Gr that leave PQ
�r fixed under the action gPQ

�rg−1.
The subgroup IQ

r is known as the local unitary group of PQ
�r.

A transversal gate acting on the r blocks is an nr qudit
unitary U that is an element of the local unitary group IQ

r of
PQ

�r. The gate factors into an n-fold tensor product
U= � j=1

n Uj of r qudit unitaries Uj. Each Uj acts on the jth
qudit of the r blocks. See Fig. 1 for an illustration of a
transversal gate applied to r encoded blocks of n qubits �the
case d=2� each.

C. Problem and strategy

We would like to know if the transversal gates are an
encoded quantum computationally universal set for at least
one of the encoded qudits. If so, then this means that it is
possible to approximate any single-qudit logical gate on one
of the k encoded qudits �we do not care which one� to any
accuracy using only transversal gates. Since the transversal
gates form a group, we can formally state this as follows:
Given any encoded single qudit unitary gate V on a fixed
encoded qudit and an accuracy 
�0, there is a transversal
r-block gate U
 such that U
PQ

�r−VPQ
�r  �
. We will as-

sume that this is true and derive a contradiction, which im-
plies that the transversal gates are not computationally uni-
versal.

Our general strategy is to show that the condition of trans-
versality places restrictions on the form of each Uj in the
tensor product expansion U= � j=1

n Uj of a transversal gate. In
Secs. III and IV we derive the exact forms of these restric-
tions for the cases when d=2 and d�2, respectively. In Sec.
V we use these results to show that the restrictions on the Uj
place enough constraints on the logical operation U to pre-
vent universality.

III. THE STRUCTURE OF STABILIZER SUBGROUPS
OF STABILIZER CODES: BINARY CASE

In this section we show that a transversal gate acting on r
blocks of n qubits encoded using a stabilizer code Q has a
severely restricted form. We first introduce some definitions
that allow us to formally state the restrictions on transversal
gates. An n-qubit unitary operation is said to be semi-Clifford
if it sends at least one maximal Abelian subgroup of the
n-qubit Pauli group Pn to another maximal Abelian subgroup
of Pn under conjugation. If T is a semi-Clifford operation,
then there exist Clifford operations L1 ,L2 such that L1TL2 is
diagonal �24�.

An n-qubit unitary operation is said to be generalized
semi-Clifford if it sends the span of one maximal Abelian
subgroup of Pn to the span of another maximal Abelian sub-

FIG. 1. �Color online� Illustration of a transversal gate on r
blocks of n qubits each. The blocks are represented by a collection
of circles �qubits�, grouped into boxes of n. The r blocks undergo a
transversal gate whose unitaries Uj act on qubits in the �blue� boxes
with rounded edges.
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group of Pn under conjugation. If T is a generalized semi-
Clifford operation, then there exist Clifford operations L1 ,L2,
and a classical permutation operator P such that PL1TL2 is
diagonal �24�.

Our main task in this section is to prove the following
theorem.

Theorem 1. Given an n-qubit stabilizer code Q free of
Bell pairs and trivially encoded qubits, let U= � j=1

n Uj be an
element of IQ

r . Let �n� denote the set of positive integers from
1 to n. Then for each j� �n�, Uj is an r-qubit generalized
semi-Clifford operation.

This theorem places severe restrictions on the physical
form of a transversal gate U. In Sec. V, we will show that
these restrictions place corresponding constraints on the logi-
cal gate U, thereby making it impossible to achieve univer-
sality using only transversal gates.

Proving this theorem is not trivial, as we must draw con-
clusions about each factor Uj of the transversal gate U, given
only information about the action of U on the entire
codespace. We will prove the theorem by studying codes that
are stabilized by subgroups of S. Such a code is known as a
stabilizer subcode. We can show that a transversal gate pre-
serves certain stabilizer subcodes. This requirement allows
us to place restrictions on the form of transversal gates by
studying subcodes of a special form. The following impor-
tant lemma will be useful in studying the action of transver-
sal gates on stabilizer subcodes.

Lemma 1. Let �� �n� be a nonempty subset of coordi-
nates, and let �̄ denote the set �n� \�. Given a transversal
gate U= � i=1

n Ui, we can then write

tr�̄�UPQ
�rU†� = �

�r, �13�

where � is defined as tr�̄PQ.
To prove the lemma, let U�� � i��Ui. Note that since a

transversal gate U is an encoded gate, we can write

tr�̄�UPQ
�rU†� = U�tr�̄�PQ

�r�U�
† = U��

�rU�
† = �

�r, �14�

which gives the necessary result.
This lemma tells us that an encoded gate also preserves

the subcodes �
�r for any �. This result is useful because we

can turn it around—if a gate does not preserve subcodes,
then it cannot be an encoded gate. Note that it is easy to
compute the projector � onto the subcode from the projector
PQ onto the original code. We define the support supp�R� of
an element R�S to be the set of all i� �n� such that the ith
coordinate R�i� differs from the identity. We say that an ele-
ment R�S has full support if supp�R�= �n�. We then have

� = tr�̄PQ � tr�̄��
R�S

R� = �
R�S

tr�̄R = �
R�S,supp�R���

R .

�15�

The set S�= 
R�S �supp�R���� is the stabilizer of the sub-
code, which is a subgroup of S. The partial trace removes the
unencoded qubits at coordinates in �̄ from the subcode.

We will prove Theorem 1 in two ways, by studying two
classes of stabilizer subcodes. In Sec. III A we use the so-
called minimal subcodes of S, and in Sec. III B we use sub-
codes associated with single qubits. For the rest of this sec-

tion we will work with an n-qubit stabilizer code Q with
corresponding stabilizer S that satisfies the conditions of
Theorem 1.

A. Minimal subcodes and beyond

1. Minimal subcodes

In order to define minimal subcodes, we must first intro-
duce the concept of minimal supports. A support � is a mini-
mal support of S if there is a nonidentity element of S with
support �, and there are no elements with support strictly
contained in �. An element in S with minimal support is
called a minimal element �11�. The concept of a minimal
support of a stabilizer state has been extremely useful in the
study of local unitary versus local Clifford equivalence of
stabilizer and graph states �25,26�. Minimal supports have
also arisen in classical coding theory in the context of secret-
sharing schemes �27�,

Given a minimal support �, then all the nonidentity ele-
ments in S� have support �. The following lemma of van
den Nest et al. �25� allows us to characterize S� for a mini-
mal �.

Lemma 2. Let A� denote the number of nonidentity ele-
ments in S� with minimal support �. Then A�=1 or 3.

The proof is fairly straightforward. By definition, there
must be some element of S with support �, so if there are no
more, A�=1. If there are two elements M ,N with support �,
then their product MN must have support � too, as otherwise
� is not minimal. So A� cannot be 2, but it can be 3. Suppose
there is a fourth element M� with support �. There are only
three nonidentity Pauli operators, so one of them must ap-
pear twice at some coordinate in �. But then we can form
another product whose support is strictly contained in �,
meaning that � is not a minimal support, so A� cannot be
greater than 3. Notice that when A�=3, ��� must be even,
otherwise the operators will not commute.

We can use this result to describe the subcode stabilized
by S�. By Lemma 2, S� has either two or four elements. We
denote the coordinates in � by j� 
1,2 , . . . , �� � �, though we
will understand that this notation just indexes �—the actual
coordinate is the jth element of �. Computing the projector
� onto the subcode stabilized by S�, we find that either

�� � I � ¯ � I

���times

+ M1 � M2 � ¯ � M ��� = I��� + M�

�16�

or

� � I��� + M� + N� + �MN��, �17�

where M� and N� are Pauli operators in S restricted to �,
whose product also has support on �. It is helpful to realize
that these operators are projectors onto ���� � , �� �−1,1�� and
���� � , �� �−2,2�� stabilizer codes, respectively. We can also
see that there is some Clifford operation that we can apply at
each coordinate in � to transform the stabilizers of these
subcodes into �Z�� and �X� ,Z��, respectively. These codes
are the minimal subcodes associated with the minimal sup-
port �.

The extent to which a stabilizer code can be described by
its minimal subcodes depends on the particular stabilizer
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code. For example, the GF�4�-linear codes are one family of
stabilizer codes that can be described completely by their
minimal subcodes �11,25�.

2. Transversal gates on minimal subcodes

In this section, we place restrictions on the operators Uj of
a transversal gate U= � j=1

n Uj when j is contained in some
minimal support of S. Suppose we can find minimal elements
whose supports cover a subset of coordinates m� �n�. What
can we learn about the form of a transversal gate on the
coordinates in m by studying its action on minimal sub-
codes? The following discussion is a generalization of Rains’
approach �11�. First, recall that Clifford gates are not univer-
sal, and if we have a transversal gate constructed from Clif-
ford gates, then that transversal gate must be some kind of
logical Clifford gate as well. The challenging behavior
comes from non-Clifford gates. Therefore, we will find it
convenient to more or less ignore Clifford gates altogether.
We will move to locally Clifford equivalent stabilizer codes
freely when studying particular minimal subcodes. Keeping
this in mind, we can write the r block projectors when
A�=1 and A�=3. If A�=1, then

�
�r � �I� + Z���r = �

i�
0,1�r

�Z��i1 � ¯ � �Z��ir

= �
i�
0,1�r

Z�i�� ���, �18�

where ij denotes the jth bit of i, in the second expression, and
Z�i�= � j=1

r Zij in the third expression. The Z�i� are the Pauli Z
operators, and form a maximal Abelian subgroup of the r
qubit Pauli group. We can define the Pauli X and Pauli Y
operators analogously.

It may be helpful to consult Fig. 2 for an illustration of
one of the summands in Eq. �18� as it would look overlayed
on Fig. 1. The third expression may be somewhat confusing
because the tensor product “� ���” is over the columns of

Fig. 2. We do this because the transversal gate, which we
will apply shortly, factors into a tensor product over columns
too. Similarly, if A�=3, then

�
�r � �I� + X� + Z� + �− 1����/2Y���r

= �
�a�b��
0,1�2r

��− 1����/2�wt�ab�R��a1,b1� � ¯ � R��ar,br�

= �
�a�b��
0,1�2r

��− 1����/2�wt�ab�R�a,b�� ���, �19�

where R�0,0�= I, R�0,1�=Z, R�1,0�=X, and R�1,1�=Y �i.e.,
R�aj ,bj�= iaj·bjXajZbj�, and also R�a ,b�= � j=1

r R�aj ,bj�. Again,
the tensor product in the third expression is over columns
rather than rows.

One or both of the projectors we have written are left
unchanged by transversal gates when the gates are restricted
to a minimal support �, i.e., U��U�

† =�. Since U�IU�
† = I,

we can subtract the identity from each side of the preceding
equation. Rains has shown that it is convenient to view the
projectors as vectors in Euclidean space acted on by rota-
tions. This association will let us show that rotations fixing
these vectors have a special form. The r-qubit gate Uj acts by
conjugation on a nonidentity r-qubit Pauli matrix Rs �s in-
dexes the 4r−1 nonidentity Pauli matrices� as

UjRsUj
† = �

Rt�Pr−
I�
�tsRt. �20�

Here Pr denotes the r-qubit Pauli group. The identity matrix
does not appear on the right-hand side because Uj is unitary
and Rs is traceless, so the image must be traceless. The co-
efficients �ts must be real because Rs is Hermitian. Further-
more, �Rt�Pr−
I��ts1

�ts2
=�s1s2

because Rs is unitary. So, we
can represent Uj by a matrix Oj in SO�4r−1� whose real
entries are �ts, s , t� �4r−1�, and whose columns are ortho-
normal. The inverse unitary Uj

† is represented by the trans-
pose Oj

T and its columns are orthonormal, so both the rows
and columns are orthonormal. We can represent the noniden-
tity r-qubit Pauli matrices by the canonical basis vectors

�1� , �2� , . . . , �4r−1�� of R4r−1. For concreteness, we can asso-
ciate the label i of �i� to the binary representation
�a �b�� 
0,1�2r or to the Pauli representation iwt�ab�X�a�Z�b�.
Continuing, we can now write the subcode projectors as vec-
tors in �R4r−1�� ���, using “�” to denote this mapping. For
A�=1,

��
�r − I � �

i=1

2r−1

�ii ¯ i�
���times

¬ w ,

�21�

and for A�=3,

��
�r − I � �

i=1

4r−1

�i �ii ¯ i�
���times

¬ v ,

�22�

where � j � 
�1�. We can now compute

FIG. 2. �Color online� Illustration of a single term in the expan-
sion of �

�r for the case A�=1. Each box is associated with a qubit
in Fig. 1, and the value of the bit i to the left of the jth row
determines whether that row is Z��� or I���. Therefore, the Pauli Z
operator along each column is the same operator Z�i�, and it is
determined by the bit string i. A factor Uj of a transversal gate acts
on a column �the �blue� box with rounded edges, for example�.
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wwT = �
i,j=1

2r−1

�ii ¯ i��j j ¯ j� , �23�

vvT = �
i,j=1

4r−1

�i� j�ii ¯ i��j j ¯ j� . �24�

Following Rains, consider the following operators when
����3 �we will come back to ���=2 later�:

�1�1tr
3,. . .,����wwT�1�1 = �1��1�2, �25�

�1�1tr
3,. . .,����vvT�1�1 � �1��1�2. �26�

The transversal gate, represented by a rotation O, fixes at
least one of v or w �Ov=v or Ow=w�, so

�1��1�2 = �1�1tr
3,. . .,����OwwTOT�1�1

= O2�1�1 �
i=1

2r−1

�O1 � I��ii�ii��O1
T

� I��1�1O2
T

= O2��
i=1

2r−1

�O1�1,i
2 �i��i�2�O2

T �27�

or

�1��1�2 � �1�1tr
3,. . .,����OvvTOT�1�1

= O2�1�1 �
i=1

4r−1

��i�2�O1 � I��ii�ii��O1
T

� I��1�1O2
T

= O2��
i=1

4r−1

�O1�1,i
2 �i��i�2�O2

T. �28�

In the case where O acts on v, “case v,” we can conclude
that the entire first row of O1 has one nonzero entry, and the
square of this real entry must be 1. Considering analogous
operators, and understanding that Oj is nonsingular, we con-
clude that Oj is a monomial matrix for case v, so the corre-
sponding unitary must normalize the Pauli group, i.e., it must
be Clifford.

In the case where O acts on w, “case w,” the operator only
has rank 1 if one of �O1�1,i is nonzero and the rest are zero
for i� �2r−1�. However, the equation is satisfied only if the
nonzero entry is �1 since O2 is an orthogonal matrix. There-
fore, considering analogous operators, Oj has a monomial
subblock for case w, where j�� and � is a minimal support,
and the lower and rightmost subblocks are zero, i.e.,

O1 = �M 0

0 M�
� , �29�

where M is a monomial matrix whose nonzero entries are
�1 and M� is in SO�4r−2r�. Therefore, the corresponding
unitary matrix must normalize the Pauli Z operators that cor-
respond to the rows and columns of the M matrix.

Therefore, we have the following results. If � is a mini-
mal support, ����4, and A�=3, then Uj is an r-qubit Clif-
ford gate for j��. If A�=1, and ����3, on the other hand,

then up to local Clifford gates Uj is an r-qubit unitary that
normalizes Pauli Z operators but acts arbitrarily on Pauli X
operators. In both cases, Uj is a semi-Clifford operation.

The case A�=3 and ���=2 is a special case. In this case,
the minimal subcode is a ��2, 0, 2��, which we know to be a
Bell pair. The Bell pair is preserved by a continuum of local
rotations U � U*, so it is an edge case that we must discard.
Since the possible Pauli operators are exhaused on �, the
stabilizer code must be of the form S=S� � ��2,0,2��. There-
fore, the Bell pair is actually appended to the code and does
not improve its ability to detect errors on any encoded qubit.
If a binary stabilizer code cannot be decomposed as
Q=Q� � ��2,0 ,2��, then the code is free of Bell pairs.

The cases A�=1 and ���=1 or 2 are special cases as well.
In the first case, the qubit at the coordinate j�� is in a
product state with the rest of the code. We can discard this
case by insisting that Q�Q� � ��1,0 ,1�� is free of single-
qubit states, but this is not necessary because it is covered by
the statements of Theorem 1. In the second case, we do not
have enough qubits to “lock the state to the diagonal” by
projecting onto the first qubit. Therefore, we can only say
that

O1��
i=1

2r−1

�i��i��O1
T = tr2Ow = tr2w = �

i=1

2r−1

�i��i� , �30�

i.e., that Uj maps linear combinations of Pauli Z operators to
linear combinations of Pauli Z operators. Therefore, in this
case, Uj is a generalized semi-Clifford operation.

3. Coordinates not covered by minimal subcodes

In general, however, a stabilizer code need not be com-
pletely described by its minimal elements, i.e., we cannot
always find a minimal support containing a coordinate
j� �n�. In this section, we place restrictions on the operators
Uj in a transversal gate U= � j=1

n Uj when j is not contained in
a minimal support.

Suppose we cannot find a minimal support containing co-
ordinate j. Take the set Sjª 
R �R�S�Q� , j�supp�R��
of stabilizer elements with support on j. Since we
assume that the code does not have trivially encoded
qubits, Sj is nonempty. Of those elements in Sj, we can
single out the set of restricted minimal elements
Mjª 
R�Sj � ∄R��Sj , supp�R���supp�R��. Now we can
show that if two elements in Mj have different Pauli opera-
tors at coordinate j, then they have different supports. In-
deed, suppose there are two elements Ra ,Rb�Mj that differ
in the jth coordinate and satisfy �ªsupp�Ra�=supp�Rb�.
Then RaRb�Mj and RaRb, Ra, and Rb exhaust the Pauli op-
erators on the jth coordinate. So, up to local Clifford opera-
tions Ra=X� ��� and Rb=Z� ���. Since there was no minimal
support containing j, there exists some R�S \Sj such that
supp�R���. Furthermore, RaR ,RbR ,RaRbR�Sj because
R�Sj. However, one of these three elements has support
strictly contained in �, contradicting the definition of Mj.

Indeed, suppose the coordinate j is not in any minimal
support. Take any R�Mj and let �=supp�R�. Without
loss of generality, suppose R�j�=Z. By our previous
argument, � contains elements from Mj that only have
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Pauli Z at coordinate j and are supported entirely on �. It
also contains elements from S that have support strictly con-
tained in � but have identity at coordinate j. In notation,
�=�iZj � Ri+�kIj � Rk. Now, we can apply a similar argu-
ment to the case we encountered earlier for A�=1 and
���=2. The form of the subcode projector is too weak for us
to take a trace over other coordinates, but, like before, we
observe that Uj must keep the span of Pauli Z operators
invariant, i.e., Uj is a generalized semi-Clifford operation.
We have therefore proved Theorem 1 using minimal sub-
codes.

B. Subcodes associated with single qubits

In this section we introduce the single-qubit subcodes,
and use these subcodes to prove Theorem 1. This approach
provides a more intuitive, accessible proof, as the single-
qubit subcodes are easier to visualize and understand than
the minimal subcodes introduced in Sec. III A.

1. Single-qubit subgroups and subcodes

The single-qubit subcode associated with a coordinate
i� �n� is the subcode with projector �=tr�̄PQ, where
�= 
i�. We denote the projector for this subcode by i. The
single-qubit subgroup S�i� associated with i is the set

R�S �R�i�= I�. We define the support of a subgroup S�i� to
be the set �R�S�i�supp�R�. The single-qubit subcodes and
subgroups have been used by Gross and van den Nest to
study the local unitary and local Clifford equivalence of sta-
bilizer and graph states �10�. We will generalize some of
their methods to prove Theorem 1.

We begin by reviewing two lemmas by Gross and van den
Nest �10�. For every subgroup G of S, we let �S :G� denote
the index of G in S.

Lemma 3. Let S be a stabilizer on n qubits, and let S�i�
denote the single qubit subgroup associated with i� �n�.
Then �S :S�i��=1,2, or 4 for every i� �n�.

Lemma 4. Let � be the smallest subgroup of S containing
all the single qubit subgroups S�i�. We then obtain one of
three cases. Either S=�, or �S :��=2, or �S :��=4. If � has
index 4 in S, then the stabilizer code associated with S must
be a �2m ,2m−2,2� code. Note that we can write � as the set

R1R2¯Rn �Ri�S�i�, i� �n��.

2. Transversal gates on single-qubit subcodes

Following a similar approach to Sec. III A 2, we show
that, if a coordinate j� �n� is contained in the support of
some single-qubit subgroup S�i�, then the corresponding op-
erator Uj in a transversal gate U= � j=1

n Uj is generalized
semi-Clifford. We prove the result by induction. If n=2, then
up to local Clifford equivalence plus permutations of the two
qubits the only stabilizer code Q satisfying the requirements
of Theorem 1 has the projector

PQ =
1

2
�I � I + Z � Z� . �31�

It is straightforward to verify that the result holds for this
code. �See p. 9 in �9�. The relevant case is ���=2 and
A�=1.�

In the induction step of the proof, let n�3 and suppose
that the result has been verified for all n��n. Let Q be a
stabilizer code on n qubits satisfying the requirements of
Theorem 1 and let U= � j=1

n Uj be a transversal gate on Q. For
every i� �n�, define the set �i= �n� \ 
i�. Using Lemma 1, we
find that

U�i
�i

�rU�i

† = �i

�r, �32�

where U�i
is the restriction of U to �i and �i

is defined as
tr�̄i

. Since �i
is the projector for a stabilizer code on n−1

qubits, and satisfies the requirements of Theorem 1, we can
apply the induction hypothesis to the code corresponding to
�i

for every i� �n�. This proves that Uj is generalized semi-
Clifford for every j� �n� that is contained in the support of
some S�i�.

3. Coordinates not covered by single-qubit subcodes

It could be the case that there is a coordinate j� �n� that is
not contained in the support of any S�i�. However, it is still
possible to show that the corresponding operator Uj in a
transversal gate U= � j=1

n Uj is generalized semi-Clifford.
Suppose that the coordinate j is not contained in the sup-

port of any S�i�. From the form of � defined in Sec. III B 1,
we can see that j�supp���. It follows that � is strictly
contained in S. By Lemma 4, � therefore has index 2 or 4 in
S. If �S :��=4, then we know that the code Q associated with
S is a �2m ,2m−2,2� code. By Lemma 3 in �10�, we find that
the transversal gate U on such a code is a local Clifford
operation. Thus Uj is a Clifford operation, and therefore gen-
eralized semi-Clifford.

If �S :��=2, then the stabilizer S can be partitioned into
two cosets of � as S=��h�, where h�S \�. We can see
from the definition of � that h has full support. Together
with our assumption that j�supp���, this implies that for
every R�S, we must have R�j�� 
I ,h�j��. It follows that
�S :S�j��=2. We can then partition S into two cosets of S�j�
as S=S�j��gS�j�, where g�S \S�j�.

Defining �j�� 1
2n �R�S�j�R, it follows from the definition

of Q that

PQ = �I � ¯ � I
n times

+ g���j� .
�33�

We now compute the projector  j for the single-qubit sub-
code associated with j. We find that

 j = �
R�S,supp�R��
j�

R = I + g�j�, �34�

where the second equality follows from the form of PQ given
in Eq. �33�. We can see that g�j�� 
X ,Y ,Z�. As we have
Uj j

�rUj
†= j

�r by Lemma 1, it follows that Uj maps linear
combinations of Pauli g�j� operators to linear combinations of
Pauli g�j� operators. Therefore Uj is a generalized semi-
Clifford operation. We have thus proved Theorem 1 using
single-qubit subcodes.
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IV. THE STRUCTURE OF STABILIZER SUBGROUPS OF
STABILIZER CODES: NONBINARY CASE

In many quantum computational problems, the dimension
of the computational unit plays an important role. Here, we
would like to understand its effect on the set of possible
transversal gates. That is, we want to find out, in the qudit
settings, whether transversal gates can form a universal set of
gates for one of the encoded logical qudits and if not, what
operations can be transversal. We will follow a line similar to
that in the qubit case but with emphasis on parts that are
different and need special notice. First, we study the physical
restrictions on transversal gates by analyzing the transforma-
tion of stabilizer subcodes under such transversal operations.

Our main task in this section is to prove the following
theorem.

Theorem 2. Given a d-dimensional n-qudit stabilizer code
Q free of Bell pairs and trivially encoded qudits, let U� IQ

r .
Then for each j� �n� either �1� Uj is an r qudit Clifford gate,
or �2� Uj keeps a subgroup of the r-qudit Pauli group invari-
ant under conjugation, or �3� Uj keeps the span of a subgroup
of the r-qudit Pauli group invariant under conjugation. Here
by “Bell pairs” we mean the two-qudit maximally entangled
states, which are states locally equivalent to the state
1
�d

�i=0
d−1�ii�.

For the rest of this section we will work with a
d-dimensional n-qudit stabilizer code Q with corresponding
stabilizer S that satisfies the conditions of Theorem 2.

A. Minimal subcodes and beyond

1. Minimal subcodes

In this section we again make use of the technique of
minimal subcodes in order to place restrictions on the form
of a transversal gate. The generalization of the binary case is
mostly straightforward. We continue to use Rains’ technique
of viewing the projectors onto the code space as vectors, and
the transversal gates as rotations acting on these vectors.
However, when d�2 the nonzero entries of the rotation ma-
trices are not necessarily �1, but can be any complex num-
ber of modulus 1. As a result, the restrictions placed on the
form of a transversal gate U= � j=1

n Uj in Theorem 2 differ
slightly from those of Theorem 1, stating that Uj preserves
the span of a subgroup of the generalized Pauli group under
conjugation, rather than a maximal Abelian subgroup of the
Pauli group.

As in the binary case, we begin by trying to determine the
structure of the projector onto a minimal subcode. Given a
minimal support �, we again use S� to denote the subgroup
of S generated by the elements of S with support �. The
minimal subcode corresponding to � is the code stabilized
by S�. We can list the elements of S� as I ,R1 , . . . ,Rm, where

R1 = R1
�1�R1

�2�
¯ R1

�����

R2 = R2
�1�R2

�2�
¯ R2

�����

]

Rm = Rm
�1�Rm

�2�
¯ Rm

�����. �35�

For any Pauli operator g, define its order p to be the
minimal positive integer that satisfies gp= I. It is easy to see
that for each Ri�S�, the operators Ri

�j� must be of the same
order. Otherwise there would exist a certain power m of Ri
such that Ri

m had a support strictly contained in �, contra-
dicting the assumption that � is minimal. It can be checked
that each Pauli subgroup 
I ,R1

�j� , . . . ,Rm
�j�� at a particular co-

ordinate j has the same structure, i.e., they have the same
multiplication table. This set of subgroups have the same
order and their elements correspond. Therefore, up to local
Clifford operations, Ri= �Ri

�1��� ���. Each minimal subcode is
then represented by a single-qudit Pauli subgroup

I ,R1

�1� , . . . ,Rm
�1��.

We can further simplify the form of the minimal subcode.
Note that while the operators Ri must commute, the same
does not hold for the Ri

�1�. However, no matter what the
commutation factors are for the single-qudit operators, the
subcode weight ��� is such that they vanish for the Ri. Thus
we need not concern ourselves with the commutation rela-
tions of the Pauli operators Ri

�1� and simply treat them as
commutative. In this way, we are dealing with the quotient
group P1

d� =P1
d /CP, where P1

d is the one-qudit Pauli group
and CP= 
I ,qdI , . . . ,qd

d−1I� is the center of P1
d. The group P1

d�
is then a finite Abelian group formed by the direct product of
two cyclic-d groups that are generated by X and Z, respec-
tively. Its subgroups are of the form �Zm� or �Xm1 ,Zm2�,
where m, m1, and m2 are factors of d. The minimal subcodes
are the codes stabilized by these subgroups.

We can now explicitly write out the projectors for mini-
mal subcodes. Denote the number of generators for a sub-
code by Ng. When Ng=1, the r-block projector can be written
as

�
�r � �I��� + �Zm���� + ¯ + �Z�p−1�m������r

= �
i�
0 . . . p − 1�r

���Zm���i1 � ¯ � ��Zm����ir

= �
i�
0 . . . p − 1�r

Z�i�� ���. �36�

This differs from the qubit expression only in that each com-
ponent of i can take p different values, rather than two �p not
necessarily prime�. Similarly, the projector �

�r when Ng=2
is given by

�
�r � � �

c�
0,. . .,p1−1�
d�
0,. . .,p2−1�

��Zm1�c�Xm2�d���r

= �
a�
0, . . . ,p1 − 1�r

b�
0, . . . ,p2 − 1�r

R��a1,b1� � . . . � R��ar,br�

= �
a�
0, . . . ,p1 − 1�r

b�
0, . . . ,p2 − 1�r

R�a,b�� ���, �37�

where R�ai ,bi�= �Zm1�ai�Xm2�bi and R�a ,b�= � j=1
r R�aj ,bj�.
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2. Transversal gates on minimal subcodes

We can now use the techniques of Sec. III A 2 to place
restrictions on the operators Uj of a transversal gate
U= � j=1

n Uj such that j is contained in some minimal support
�. The Pauli group forms a basis for any operator on the
d-dimensional Hilbert space. Therefore, conjugation of a
Pauli operator by tranversal gates can be seen as a unitary
transform in the operator space given by

UjRsUj
† = �

Rt�Br
d−
I�

�tsRt, �38�

where Br
d denotes the basis set �defined in Eq. �7�� of the

r-qudit Pauli group. The unitarity of the transformation can
be easily proved as in the qubit case. However, unlike the
qubit case, �ts is in general a complex number as the Pauli
operators Rt are not necessarily Hermitian. Thus we
can represent each transversal gate Uj on the code space by a
matrix Vj �SU�d2r−1�. We associate the basis elements

XaZb �a ,b=0, . . . ,d−1� of the generalized Pauli group with
the basis vectors 
�i� � i=0, . . . ,d2r−1�. Then the subcode pro-
jectors can again be mapped into vectors in �Cd2r−1�� ���.

When Ng=1, we find that

��
�r − I � �

i

�ii ¯ i�
��� times

¬ w .

�39�

The summation is over all vectors �i� that correspond to Pauli
matrices �Zm�i1 � . . . � �Zm�ir in Eq. �36�.

When Ng=2, the mapping takes the same form except that
the summation is over all vectors that correspond to Pauli
matrices R�a ,b�= � i=1

r �Zm1�ai�Xm2�bi in Eq. �37�. Rains’ tech-
nique still works here to ensure that when ����3, the matrix
Vj is either monomial itself or has a monomial subblock as in
Eq. �29�. As mentioned at the beginning of this section, the
only difference is that the nonzero entries in the monomial
subblock are not necessarily �1, but can be any complex
number with modulus 1. Therefore we find that the transver-
sal gate Uj is either Clifford or normalizes a subgroup of the
Pauli group.

Now we deal with the case when ����2. As the operators
X� ��� and Z� ��� do not commute for any d�3 when ����2,
we are concerned only with the case when the Pauli opera-
tors at coordinate j are a proper subgroup of all the Pauli
operators. When ���=2, we can prove as before that a trans-
versal gate Uj preserves the span of a certain subgroup of the
Pauli group under conjugation. When ���=1, if we require
that the physical qudit and logical qudit must have the same
dimension, we are left only with a trivially encoded qudit—a
case that can be discarded.

3. Coordinates not covered by minimal subcodes

Now that we have dealt with the coordinates that are con-
tained in some minimal support, we can go back to see what
happens when a jth coordinate of the stabilizer code is not
covered by any minimal support. As in the qubit case,
we remove all the restricted minimal elements
Mjª 
R�Sj � ∄R��Sj , supp�R���supp�R�� from the set Sj

of stabilizer elements covering the coordinate j. We can
again prove, as in the qubit case, that for a fixed support
�containing j� the Pauli operators at j in the minimal ele-
ments form a proper subgroup of the one-qudit Pauli group.
In this way, we can deduce that Uj must keep the span of a
subgroup of Pauli operators invariant under conjugation. We
have therefore proved Theorem 2 using minimal subcodes.

B. Subcodes associated with single qudits

In this section we introduce the single-qudit subcodes,
and use these subcodes to prove Theorem 2. The definitions
and results are similar to those of Sec. III B, but have been
adapted for the case when d�2. The generalization is mostly
straightforward, but requires a few adjustments when d is
nonprime. The most significant difference lies in the qudit
versions of Lemmas 3 and 4, which no longer give specific
values for the indices of S�i� and � in S, but give bounds
instead. This slight relaxation still allows us to prove the
necessary result.

1. Single-qudit subgroups and subcodes

The single-qudit subcode associated with a coordinate
i� �n� is the subcode with projector �=tr�̄PQ, where
�= 
i�. We denote the projector for this subcode by i. The
single-qudit subgroup S�i� associated with i is the set

R�S �R�i�= I�. As in the case d=2, we define the support of
a subgroup S�i� to be the set �R�S�i�supp�R�.

We will now generalize the two lemmas of Gross and van
den Nest �10� that we introduced in Sec. III B 1.

Lemma 5: Let S be a stabilizer on n qudits, and S�i�
the single-qudit subcode associated with i� �n�. Then
�S :S�i���d2 for every i� �n�.

To prove this, note that since S�i� is a subgroup of S, we
can partition S into N cosets of S�i� where N= �S :S�i��. We
can therefore write

S = S�i� � g1S�i� � . . . � gN−1S�i� �40�

for N−1 elements g1 , . . . ,gN−1�S. Two elements ga ,gb�S
belong to different cosets of S�i� if and only if their jth
coordinates ga

�j� and gb
�j� differ. Thus, there can be at most d2

cosets of S�i�, as any basis element g of the generalized
Pauli group can be written in the form Zk1Xk2 for
k1 ,k2� 
0,1 , . . . ,d−1�. It follows that �S :S�i���d2, and the
lemma is proved.

Lemma 6: Let � be the smallest subgroup of S containing
all the single-qudit subgroups S�i�. Then �S :���d2. Let
�X�n ,Z�n� be the group generated by X�n and Z�n. If
�S :��=d2, then the stabilizer S can be written up to local
Clifford operations as �X�n ,Z�n�, where X and Z are the
generators of the generalized r-qudit Pauli group.

To prove the first part of the lemma, we use the fact that
�S�= �G��S :G� for any subgroup G of S. As every single-qudit
subgroup S�i� is contained in �, it follows that �S�i��� ���
for every i� �n�. Thus, we find that �S :��� �S :S�i���d2.

To prove the second part of the lemma, assume that
�S :��=d2. As in the case d=2, we can write � as the set

R1R2¯Rn �Ri�S�i� , i� �n��. We can partition S into d2

cosets of �:
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S = � � g1� � . . . � gd2−1� , �41�

for d2−1 elements g1 , . . . ,gd2−1�S. It follows from the defi-
nition of � that every gk must have full support. The gk must
also differ pairwise on every qudit. To see this, assume that
gk1

�m�=gk2

�m� for some pair k1 ,k2, and let g�m�
ªgk1

�m�. Let p de-
note the order of g�m�. Then since I�n= �g�m��p, it follows that
gk1

p−1gk2
��. The element gk1

gk1

p−1gk2
belongs to the coset

gk1
�. But the element gk1

gk1

p−1gk2
also belongs to the coset

gk2
�. Thus we have gk1

�=gk2
�, and therefore k1=k2. It fol-

lows that the gk differ pairwise on every qudit.
We now show that the only element in � is I�n, which

immediately implies that S= 
I�n ,g1 , . . . ,gd2−1�. Assume that
there is an element f �� such that f �m�� I for some
m� �n�. Then f �m�=gk

�m� for some k� 
1, . . . ,d2−1�. Let f �m�

have order p. Then we find that fp−1gk��. Let f have order
p�. Then fp�−�p−1��fp−1gk�=gk��. But this is a contradiction,
as gk is an element of gk�, which is a coset of � disjoint
from �. It follows that f = I�n, and therefore �= 
I�n� and
S= 
I�n ,g1 , . . . ,gd2−1�. As the elements gk have full support
and differ pairwise on every qudit, we find that S can be
written up to local Clifford operations as �X�n ,Z�n�, where X
and Z are the generators of the generalized r-qudit Pauli
group. The lemma is proved.

2. Transversal gates on single qudit subcodes

In this section we show that if a coordinate j� �n� is
contained in the support of some single qudit subgroup S�i�,
then the corresponding operator Uj in a transversal gate
U= � j=1

n Uj preserves the span of a subgroup of the general-
ized r-qudit Pauli group under conjugation.

We prove the result by induction. If n=2, let S be the
stabilizer of a code Q satisfying the conditions of Theorem 2.
Every element R�S must be of the form R=R�1� � R�2�,
where R�1� and R�2� have the same order. If they were not of
the same order, then S would contain an element of weight 1,
contradicting the assumptions on Q. As Q is free of Bell
pairs, the set 
R�1� �R�S� does not form the entire Pauli
group. We can then follow the proof for weight-2 subcodes
in Sec. IV A to conclude that Uj preserves the span of a
subgroup of the generalized Pauli group for j=1,2. Thus the
theorem holds in the case n=2.

The induction step of the proof is identical to the case
when d=2. Therefore, if a coordinate j� �n� is contained in
the support of some S�i�, then the corresponding operator Uj
of a transversal gate U= � j=1

n Uj preserves the span of a sub-
group of the generalized Pauli group under conjugation.

3. Coordinates not covered by single-qudit subcodes

Following the approach of Sec. III B 3, we consider the
case when a coordinate j� �n� is not contained in the support
of any S�i�, and show that the corresponding operator Uj in a
transversal gate U= � j=1

n Uj preserves the span of a subgroup
of the generalized r-qudit Pauli group under conjugation.

Suppose that the coordinate j is not contained in the sup-
port of any S�i�. From the form of �, we can see that
j�supp���. It follows that � is strictly contained in S, so by

Lemma 6 we know that 2� �S :���d2. If �S :��=d2, then
we know from Sec. IV B 1 that S= �X�n ,Z�n� up to local
Clifford operations. This corresponds to one of the cases out-
lined in Sec. IV A �the case Ng=2�. We can therefore use the
methods in this section to show that Uj keeps the span of a
subgroup of the generalized Pauli group invariant under con-
jugation.

If �S :���d2, then S can be partitioned into N= �S :��
cosets of � as shown below:

S = � � h1� � . . . � hN−1� . �42�

All the elements hk�S \�. We can see from the definition of
� that every hk has full support. Together with our
assumption that j�supp���, this implies that for every
R�S, we must have R�j�� 
I ,h1

�j� , . . . ,hN−1
�j� �. It follows that

�S :S�j��=N for some 2�N�d2−1.
We can then partition S into N cosets of S�j� as

S = S�j� � g1S�j� � . . . � gN−1S�j� , �43�

where each element gk�S \S�j�.
Defining �j�� 1

2nd �R�S�j�R, it follows from the definition
of Q that

PQ = �I�n + g1 + . . . + gN−1��j� . �44�

We now compute the projector  j for the single-qubit sub-
code associated with j. We find that

 j = �
R�S,sup p�R��
j�

R = I�n + g1
�j� + . . . + gN−1

�j� , �45�

where the second equality follows from the form of PQ given
in Eq. �44�. As we have Uj j

�rUj
†= j

�r by Lemma 1, it fol-
lows that Uj preserves the span of a subgroup of the gener-
alized Pauli group under conjugation. The subgroup in ques-
tion is generated by the set 
g1

�j��i� , . . . ,gN−1
�j� �i� � i� 
0,1�r�,

where as before, we use g�i� to denote a Pauli g operator. We
have therefore proved Theorem 2 using single-qudit sub-
codes.

V. TRANSVERSAL GATES ON r ENCODED BLOCKS

In this section we prove that the transversal gates on a
stabilizer code Q cannot form an encoded quantum compu-
tationally universal set for even one of the encoded qudits.
Our proof proceeds by contradiction: we begin by assuming
that universality can be achieved on a particular encoded
qudit. In particular, we assume that the Hadamard and phase
gates can be implemented transversally. Next, we use these
gates to construct logical Pauli operations on the encoded
qudit, and show that these operations have minimal support
�. The restrictions on the form of transversal gates given by
Theorems 1 and 2 ensure that we can use these logical Pauli
operators and the Hadamard or phase gate to construct an-
other logical Pauli operator with support strictly contained in
�. This contradicts the fact that � is a minimal support. As
the only assumption we have made is that the set of trans-
versal gates is universal for a particular encoded qudit, we
conclude that this assumption is false and no such set of
transversal gates exists.

CHEN et al. PHYSICAL REVIEW A 78, 012353 �2008�

012353-10



A. Binary case

We first consider the case when d=2. Recall what we
found in Sec. III: Let U be an element of IQ

r free of Bell pairs
and trivially encoded qubits. Then for each j� �n�, Uj is an
r-qubit generalized semi-Clifford operation. To be more pre-
cise, there are three possibilities: �i� Uj is a Clifford opera-
tion if all three Pauli operations 
Xj ,Y j ,Zj� appear in some
minimal subcodes containing the coordinate j; �ii� Uj is a
semi-Clifford operation if only one of the three Pauli opera-
tions 
Xj ,Y j ,Zj� appears in all the minimal subcodes contain-
ing the coordinate j, and all those minimal subcodes are of
weights greater than 2; �iii� Uj is a generalized semi-Clifford
operation if �a� only one of the three Pauli operations

Xj ,Y j ,Zj� appears in all the minimal codes containing the
coordinate j, and all those minimal subcodes are weight 2, or
�b� the jth qubit is not covered by any minimal subcodes.

With such a restriction on the possible form of Uj, we
need to understand how this restriction is related to the re-
strictions of the allowable transversal logical operations on
the code Q. We have not yet introduced a basis for the logi-
cal operators of Q, so the discussion to this point applies to
both subsystem and subspace codes. However, as we pro-
ceed, we should take care when working with logical opera-
tors so that our arguments continue to hold for subsystem
codes.

We have observed that many transversal gates are Clifford
gates, so these gates map logical operators in the Pauli group
back into the Pauli group. However, it is possible that some
transversal gates do not map Paulis to Paulis. At first this
may seem surprising because we are so familiar with doubly-
even dual-containing Calderbank-Shor-Steane �CSS� codes
such as the ��7,1,3�� Steane code �28� and the �23,1,7� Golay

code �29�. Codes such as these have transversal phase P̄ and

Hadamard H̄ gates implemented bitwise �i.e., by applying
said gate or its conjugate to each bit of the code�. Therefore,
all of their minimal subcodes have A�=3, and all of their
transversal gates are Clifford �they are a subset of the GF�4�-
linear codes�. These codes were designed this way—they
have transversal encoded controlled-NOT, H, and P gates, so
we can do any logical Clifford operation transversally. How-
ever, there are many examples where codes exhibit non-
Clifford transversal gates. The ��9,1,3�� Shor code �30� has a
basis

�0/1� � ��000� + �111���3 � ��000� − �111���3, �46�

so any gate of the form ei�Z1e−i�Z2 preserves the code space
and acts as the encoded identity gate. In other words, this
gate is in the generalized stabilizer, which is the set of all
unitary gates that fix the code space �31�. Furthermore, the
gate is an element of IQ

r , the stabilizer subgroup defined in
Sec. II B, the set of all transversal gates fixing the code
space. The ��15, 1, 3�� CSS code constructed from the punc-
tured Reed-Muller code RM*�1,4� and its even subcode has
a transversal � /8 gate T �7�. This gate is implemented by
bitwise application of T† and maps the logical Pauli X

operator X̄=X�15 to � X+Y
�2

��15. The image differs from

�X̄− Ȳ� /�2 by an element of the local identity.

In our proof, we will apply transversal gates that may not
take Pauli operators to Pauli operators, even if the transversal
gate �approximates� a logical Clifford gate. These gates may
take us outside of the stabilizer formalism and force us to
deal with rather foreign objects such as the stabilizer sub-
group IQ. Fortunately, we will see that it is possible to remain
within the powerful stabilizer formalism.

Partition the logical Pauli operations into two sets, the set
of operations on protected qubits and the set of operations on
gauge qubits, as defined in Sec. II B. We wish to compute on
the protected qubits up to operators on the gauge qubits. We
therefore assume that any single-qudit logical gate on a pro-
tected logical qubit p can be approximated to any accuracy
using only transversal gates.

Let � be a minimum-weight element of the union of cosets

X̄p
�1�S� Z̄p

�1�S� ȲpS, where “�1�” denotes the first block. Let

��supp���. The notation X̄p
�1�S indicates the set of represen-

tatives of X̄p
�1� in the Pauli group. We are also free to apply

any operator to the gauge qubits in the first block when
choosing our representation �, but we know that in doing so,
we cannot construct a logical operator on a protected qubit
that has weight less than ���, so this freedom can be safely
ignored. Likewise, it does not matter how we represent the
identity on blocks, since we must transform all representa-
tions correctly. We choose to represent it by tensor products
of identity operators.

By our assumption, H̄p
�1� is transversal. On the other

blocks, we would like to apply a logical identity gate on the
protected logical qubits, but again we are free to apply any
logical operation to the gauge qubits. Applying this gate to

� � I, we get ��� H̄p�� � I�H̄p
†. The operator �� must repre-

sent Z̄p
�1� up to elements of the transversal identity and gauge

operators. Expanding �� in the basis of Pauli operators gives

�� = �
R�Pn

�r

�RR = �
R�C�S��r

�RR + �
R�Pn

�r−C�S��r

�RR .

�47�

Here C�S� is the centralizer of S. The operators not in the
C�S��r map the code space to an orthogonal subspace, so
there must be terms in the expansion that are in C�S��r. Let
��� PQ��PQ. All the terms of the operator �� are in C�S��r.
Considering how �� acts on a basis of Q�r, we can neglect
terms in S�r because they act as the identity. Therefore, there

must be an element of C�S��r that represents Z̄p
�1� and enacts

an arbitrary logical Pauli operation on the gauge qubits. The
transversal gate cannot cause �� to have support on the first
block that strictly contains �, nor can it have support strictly
contained in �, since ��� is minimal. Furthermore, I�C�S�
so we can ignore blocks other than the first by finding an

operator � that represents Z̄p
�1� and enacts an arbitrary logical

Pauli operation on the gauge qubits in the first block. We also
have �=supp���=supp���. Since there must be some over-

lap between the operator H̄p
�1� and the centralizer C�S�, this

line of reasoning holds even if H̄p
�1� is 
-close to a transversal

gate but is not exactly implemented by a transversal gate.

Repeating the argument for P̄p
�1�, we obtain an operator �
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with support � that represents Ȳp
�1� up to logical Paulis on the

gauge qubits.
Now we can derive the contradiction. Since we have

assumed that the transversal gates are a universal set for
some protected qubit p, there must be some coordinate
j�� such that Uj is not Clifford in the tensor product de-

composition of H̄p
�1� or P̄p

�1�. Otherwise, we could not apply
any non-Clifford logical gates to the encoded qubit p. By the
restrictions we derived in Sec. III, Uj must be semi-Clifford
or generalized semi-Clifford. If Uj is semi-Clifford, it must
fix one of the Pauli operators at coordinate j in the first
block, or it must map one of the Pauli operators to the iden-
tity. For example, we could have UjZ1Uj

†= �Z1 or
UjZ1Uj = I1. Therefore, one of the images or a product of one

of the images of �, �, or � under H̄p
�1� and another logical

Pauli operator �, �, or � will have support strictly contained
in �, but will also represent a logical Pauli on the protected
qubit. This is impossible because �, �, and � already have
minimum weight. Thus Uj cannot be semi-Clifford.

Now we can complete our proof by showing that the uni-
versality of transversal gates is contradictory to the last pos-
sibility, i.e., Uj is generalized semi-Clifford. We can assume
without loss of generality that Uj keeps the span of Pauli Z
operators invariant. As shown above, there exist three Pauli
operators � ,� ,��C�S� which have the same minimum sup-

port � and are representatives of X̄p
�1� , Ȳp

�1� , Z̄p
�1�, respectively.

Because they are of the same minimum support, it can be
shown that � ,� ,� are locally Clifford equivalent to
X� ��� ,Y � ��� ,Z� ���. Without loss of generality, assume that
��Z� ���. By our assumption on the universality of transver-

sal gates, both H̄p
�1� and P̄p

�1� are transversal and preserve the
span of Pauli Z operators. Thus we have �� and �� repre-
senting X� ��� and Y � ��� and of the diagonal form on the jth
coordinate. Following our previous reasoning we can show
that PQ��PQ, PQ��PQ, and PQ�PQ also represent

X̄p
�1� , Ȳp

�1� , Z̄p
�1�, and that one of them must have support

strictly contained in �. This contradicts the minimality of �.
The only assumption we have made is that the set of trans-
versal gates is universal for the arbitrarily chosen protected
qubit p, so this assumption must be false.

B. Nonbinary case

The restrictions on the form of transversal gates that we
obtained in Sec. IV limit the range of possible logical opera-
tions that we can apply to any stabilizer code. We now prove
that, in the general qudit case, universal logical computation
is still not possible using only transversal gates on subspace
or subsystem stabilizer codes. In the binary case, we proved
our result by using the fact that the restricted form of the
group of transversal gates prevents them from approximating
some logical Clifford operations unless the transversal gates
are all contained in the Clifford group. This is no longer the
case when d is nonprime, so the generalization of our proof
to the qudit case is not trivial. But this does not affect our
final conclusion, as shown below.

The minimum weight element in C�S� \S representing

logical Pauli operations 
Ḡp� on a particular encoded qudit p

will help us again in the proof. Suppose that such an element
has support � and is of order q. �For subsystem codes, we can
apply any operation to the gauge qudits but this freedom
does not affect our choice of minimum weight element, as
shown in the qubit section.� We can easily see that on each
coordinate within � this element has a Pauli operator of order
q while all the operators on coordinates outside of � are the
identity. Up to a local Clifford operation we can write this
element as �Xm�� ���, where mq=d. Choose this element to
represent the logical gate X̄p

m.
We can show that the generating set 
X̄p , Z̄p� of the logical

Pauli group 
Ḡp� can also be represented on support �. Our
discussion here is up to the same local Clifford operation of
X̄p

m. First note that X� ��� is also in C�S� \S, as otherwise
�Xm�� ��� cannot be a logical operation. We can therefore as-
sign X� ��� to represent X̄p. Under our assumption, all logical
Clifford operations are transversal. Thus Z̄p is represented by
Z� ��� up to local Clifford operations. Now a whole set of
logical Pauli operators S�= �X� ��� ,Z� ���� can be generated on
support �. Each logical Pauli operation ḡ is represented by
g� ��� up to a local Clifford operation.

With such a basis, first we reason that non-Clifford trans-
versal gates are always needed to perform non-Clifford logi-
cal operations. Remember that the restrictions we have on
non-Clifford transversal gates are that �i� they preserve a
subgroup of the physical Pauli operators, or �ii� they preserve
the span of a subgroup of the physical Pauli operators. As
case �i� is included in case �ii�, it is sufficient to show that the
second restriction does not allow universal logical operations
on any encoded qudit.

In the qubit case, conditions �i� and �ii� imply that non-
Clifford transversal gates are either a semi-Clifford operation
or a generalized semi-Clifford operation as any Abelian sub-
group of the qubit Pauli group is maximal. As previously
stated, we proved the main result in the previous section
from the fact that �generalized� semi-Clifford operations can-
not perform Clifford operations. However, in cases when the
dimension d is not prime, Clifford operations might not be
excluded by conditions �i� or �ii�. For example, when d=4,
any Clifford operation preserves the subgroup generated by
X2 ,Z2. In these cases, our previous proof technique will not
work—we need to find a new contradiction that is indepen-
dent of the dimension.

Denote the subgroup whose span is preserved by transver-
sal gates on coordinate j by Ps. Choose a logical operation

Āp that maps operators within the span of P̄s�p� to the outside.

The operator Āp may contain any operation on the gauge
qudits. It is transversal according to our assumption and
takes the form A1¯A���. We can write

Āp�̄Āp
† = �̄ �48�

where �̄ is some element of P̄s�p� while �̄ lies outside the

span of P̄s�p�. Expanding �̄ in Pauli basis gives

�̄ = �̄1 + �̄2 + ¯ + �̄1� + �̄2� + ¯ , �49�

where the �̄i’s are in P̄s�p� and the �̄i� are not. With the es-
tablished correspondence between ḡp and g� ���, we can write
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�up to local Clifford operations and gauge operations�

�A1 ¯ A�������� ����A1
†
¯ A���

† �

= ��1�� ��� + ��2�� ��� + ¯ + ��1��
� ��� + ��2��

� ��� + ¯ .

�50�

On the jth coordinate accordingly we have

� = Aj�Aj
†. �51�

When expanded in the Pauli basis, � must have a component
outside of Ps, as otherwise there cannot be ��i��

� ���’s in the

expansion of �̄. However this contradicts the requirement
that Aj keeps the span of Ps invariant. Thus, the assumption
that transversal gates are universal must be false in the gen-
eral qudit case.

VI. CONCLUSION AND OPEN QUESTIONS

In this paper we generalize our work in �9� to show that
for subsystem stabilizer codes in d-dimensional Hilbert
space, a universal set of transversal gates cannot exist for
even one encoded qudit, for any dimension d, prime or non-
prime. The most natural and important route of investigation
at this point is determining to what extent we must continue
to strengthen “transversality” before we achieve universality.
For example, the case where we can permute the bits in
addition to carrying out transversal gates is still open. This
particular case is of great interest, as it could allow us to
simplify the architecture of fault-tolerant quantum comput-
ers. However, preliminary investigations suggest that these
conditions are still insufficient to achieve universality. Here,
we prove that this case does not give universality for a
single-block binary stabilizer code.

An r-block code automorphism is a gate of the form UP�

that commutes with PQ
�r, where U is a local unitary gate on

all nr qubits and � is a coordinate permutation of all nr
coordinates �11�. This is illustrated for r=1 in Fig. 3. Code
automorphisms form a group denoted by aut�Q�r�.

We will show that the code automorphisms on r encoded
blocks do not form a universal set for even one encoded

qubit. Since we can regard Q�r as just another code, it is
enough to demonstrate the result for the case of one encoded
block, when r=1. We will rely on the discussion in Sec. V.

As before, let � be a minimum weight element of C�S� \S

representing X̄p without loss of generality. Let ��supp���.
Consider the single-qubit gate A defined by

X �
1
�3

�X + Y + Z� ,

Z � Z�, �52�

where 
AXA† ,AZA†�=0.

As before, assume that Āp is implemented to accuracy 


by some gate UP��aut�Q�. Then �� Āp�Āp
† is an element

of 1
�3

�X̄+ Ȳ + Z̄�I, where I is the generalized stabilizer �not
the local identity, since the permutation is not local�. Ex-
panding PQ�PQ in the Pauli basis, we again see that there

must be representatives ��, ��, and �� of X̄p, Z̄p, and Ȳp in
the centralizer C�S� that all have support �� such that
����= ���. As in Sec. V, this is partly because � has minimum
weight. The new feature is that ��, ��, and �� must have the
same support even though we have applied a permutation.

Now, U must be a local equivalence between Q�� P�Q
and Q. Thus each Uj is, as before, either a single-qubit Clif-
ford gate or a gate of the form L1ei�ZL2, where L1 ,L2 are
single-qubit Cliffords. If every Uj is Clifford, then we are
done. Otherwise, one or more gates are of the second form.
In this case we can assume that j is in ��� P��� �otherwise

Āp is Clifford�. Let �� be another name for the Pauli operator
in 
�� ,�� ,��� whose jth coordinate does not change when

we apply Āp. Then ��� Āp��Āp
† yields three new Pauli op-

erators with support ��. At least two of these Pauli operators
must have the same Pauli at coordinate j, so their product’s
support is strictly contained in ��. This contradicts the mini-

mality of ��. Therefore the gate Āp cannot be implemented
arbitrarily well by a product of gates in aut�Q�. We conclude
that aut�Q� cannot be a universal set.

This result suggests that allowing permutations in addi-
tion to transversal gates will still be insufficient to achieve
universality. However, our proof cannot be directly general-
ized to the multiblock case and the qudit case. In the former
case, we might allow different permutations on different
blocks. In the latter case, it is not clear whether or not we
could find a gate similar to the gate A used in our proof that
maps

X �
1

�Nx
�
g�B

�gg ,

Z � Z�, �53�

where Nx is some normalization constant and �g�0 for all g
in the generalized Pauli group except the identity.

FIG. 3. �Color online� Illustration of a code automorphism on
one block of n qubits. The block is represented by a collection of
circles �qubits�, grouped into a box. The block undergoes a coordi-
nate permutation � followed by a local unitary gate U whose uni-
taries Uj act on qubits in the �blue� boxes with rounded edges.
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Several other generalizations could also be considered.
For example, we could allow different blocks to be encoded
using different codes. We may even be able to use different
codes for the input and output. It is clear that allowing the

use of measurement immediately gives universality by using
teleportation, so we should explore the possibility of using
protocols weaker than this to achieve universality on stabi-
lizer codes.
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