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We describe various results related to the random-party distillation of multiparty entangled states—that is,
conversion of such states into entangled states shared between fewer parties, where those parties are not
predetermined. In previous work we showed that certain output states �namely Einstein-Podolsky-Rosen pairs�
could be reliably acquired from a prescribed initial multipartite state �namely the W state �W�= 1

�3
��100�

+ �010�+ �001��� via random-party distillation that could not be reliably created between predetermined parties.
Here we provide a more rigorous definition of what constitutes “advantageous” random-party distillation. We
show that random-party distillation is always advantageous for W-class three-qubit states �but only sometimes
for Greenberger-Horne-Zeilinger class states�. We show that the general class of multiparty states known as
symmetric Dicke states can be readily converted to many other states in the class via random-party distillation.
Finally we show that random-party distillation is provably not advantageous in the limit of multiple copies of
pure states.
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I. INTRODUCTION

Entanglement in quantum information theory is often con-
sidered as a resource �1–3� which can be used by physically
separated parties to perform tasks such as quantum telepor-
tation �4� or superdense coding �5�, under the restriction of
the parties to local operations and classical communications
�LOCC�. Under LOCC the parties can perform local quan-
tum operations on their own portions of the entangled states
and exchange classical information with each other through
some classical communication channels, but not perform
joint quantum operations or �equivalently� exchange quan-
tum information. It is known that parties cannot increase
their shared entanglement under LOCC, which motivates the
view of entanglement as a resource.

Determining what may be accomplished with some par-
ticular entangled state under LOCC provides an operational
description of that state, which can in some cases be used as
an entanglement measure—for example, the well-known re-
sult �6� that the maximum ratio at which maximally en-
tangled Einstein-Podolsky-Rosen �EPR� pairs

��� =
1
�2

��00� + �11��AB �1�

can be obtained through LOCC is the entanglement entropy
ES��AB�=S��A�, where

S��� = − tr � log2 � , �2�

�A = − trB���AB���AB�� . �3�

In general, the properties of multiparty entangled states
�those shared between more than two parties� are much less-
well understood than those of two-party states. For example,

there is no single well-defined maximally entangled state in
the multiparty case. It appears that multiparty states can be
divided into distinct classes �7,8�, and even in the three-party
case it is not known whether or not all entangled states can
be reversibly obtained through LOCC from a finite selection
of other states—the “minimal reversible entanglement gen-
erating set” �MREGS� �9�.

A topic of interest in the description of multiparty en-
tangled states is the conversion of these states into, generally,
states shared between fewer parties, and specifically two-
party states. Since there are many results on the operational
properties of two-party states, considering such a conversion
provides useful information in the multiparty case.

Several results, e.g., �10–15� exist regarding the conver-
sion of multiparty to two-party entangled states shared be-
tween predetermined parties. In �1� we demonstrated that
some two-party entangled states which could not be reliably
obtained �i.e., probability �1� between predetermined par-
ties could be reliably obtained �probability →1 in the limit of
many “rounds” of distillation� between parties which were
randomly determined in the course of a LOCC protocol—a
process we refer to as “random-party distillation” �“random
distillation” in our earlier paper�. Specifically we showed
that one can reliably distill one EPR pair from a single W
between random parties versus doing so with a probability at
most 2/3 between predetermined parties. The random-party
distillation rate exceeds even the asymptotic rate of
H2�1 /3�	0.92 EPR pairs per W between predetermined par-
ties in the many-copy limit, where H2 is the binary entropy
function

H2�x� = − x log2�x� − �1 − x�log2�1 − x� . �4�

In this paper, we address a number of questions in
random-party distillation. First, our criterion in �1� for what
made such distillation “advantageous” was somewhat prob-
lematic, in particular when considering multiple copies of
states. Here we provide a new criterion for advantageous
random-party distillation applicable to any pure-state case,
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including that of collective operations on multiple copies of a
state. We also ask whether random-party distillation gives an
advantage in the many-copy limit, and demonstrate that it
does not.

Second, in our previous paper we considered only a small
number of specific states. Here we consider the random-party
distillation properties of general classes of states—
specifically, distilling the general classes of three-qubit pure-
state entanglement, the Greenberger-Horne-Zeilinger �GHZ�
and W classes. We show that all W-class states can undergo
advantageous random-party distillation, but the GHZ class
contains examples both of states which can and cannot.

Finally, we previously considered primarily distillation to
two-party EPR pairs. Here we consider a class of final states
shared between larger numbers of parties. For the multiparty
entangled states known as symmetric Dicke states, we briefly
demonstrate a class of output states which may be reliably
obtained through LOCC only by random-party distillation.

II. DEFINITIONS

For conversion of an M-party pure state ��� to EPR pairs
��� through LOCC

���A1¯AM

�N →
LOCC

�
ij

���AiAj

�NAiAj,
�5�

we define

EaIJ

� ��� 
 sup
N→�

NAIAJ

N
, �6�

Es
���� 
 max

ij
sup
N→�

NAIAJ

N
, �7�

Et
���� 
 sup

N→�

�
ij

NAiAj

N
. �8�

That is, EaIJ

� represents the maximum rate of EPR distillation
between parties I and J �with the help of all other parties�, Es

�

represents the highest distillation rate of EPR pairs between
any given pair of parties, and Et

� represents the highest total
EPR distillation rate, irrespective of which parties share
them.

In this asymptotic case �though not generally� EaIJ

� is equal
to the entanglement of assistance �10�, with �13� showing
that

EaIJ

� = min
T

�S��AIT
�,S��AJT̄� , �9�

where the minimization is over the division of parties other

than AI and AJ into two groups T and T̄ �i.e., over bipartite
“cuts” separating all parties into two groups, one containing
AI and one containing AJ� and

�AIT
= trAj��I,T

�������� , �10�

the reduced state of ������, traced over all Aj��I,T.

For the single-copy analogs of these quantities, for the
distillation

���A1¯AM
→

LOCC

�
ij

���AiAj

�NAiAj,
�11�

we define

EaIJ
��� 
 sup�NAIAJ

� , �12�

Es��� 
 max
ij

�sup�NAIAJ
�� , �13�

Et��� 
 sup��
ij

NAiAj� , �14�

where the expectation values are over the different possible
outcomes for nondeterministic LOCC protocols.

We noted in �1� that for the three-party W state

�W� =
1
�3

��100� + �010� + �001��ABC �15�

it is possible to obtain an EPR through LOCC between ran-
dom parties but not specified parties. Hence, even though
�from �13�� Es

��W�=H2�1 /3�	0.92, we find Et
��W��1.

However �1� further noted that the condition Et�Es could
also be trivially satisfied, for example, by the state ���AB
� ���BC, for which Et=2�Es=1.

We would therefore like to find a condition that more
generally captures when true “random-party” distillation is
advantageous—that is, one obtains a greater entanglement
yield due to the nondeterministic nature �in terms of which
parties receive the final state� of the distillation, rather than
there simply being somewhat independent entanglements be-
tween different pairs of parties. We would further like to
define such a condition in terms of general pure-state bipar-
tite entanglement measures, rather than solely in terms of the
distillable EPR pairs.

We thus consider the LOCC conversion �via a protocol P�
of an initial pure state � to final pure multipartite states � f
with probabilities pf,

� →P

LOCC

�� f,pf�
�16�

and the LOCC conversion �via a protocol Q� of multiparty
states � f to pure two-party states �gIJ

with probabilities pg,

� f →Q
LOCC

��gIJ
� �g,pg�

�17�

�note that in the above, I and J are not necessarily the same
for every g�.

We define, for some bipartite pure-state entanglement
measure E,

AIJ�� f� 
 sup
P,Q

�
g

pgE��gIJ
� , �18�

Esp�� f� 
 max
IJ

AIJ�� f� , �19�
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Ernd��� 
 sup
P,Q

�
f

pfEsp�� f� , �20�

Ernd
� ��� 


Ernd���N�
N

, N → � , �21�

Esp
� ��� 


Esp���N�
N

, N → � , �22�

where the suprema in the above expressions are over all pos-
sible LOCC protocols P and Q.

Hence, Ernd represents the supremum of the expected en-
tanglement �as measured by E� obtained by whichever pair
of parties has the highest entanglement once the protocol has
been performed, while Esp is the corresponding quantity for
parties chosen before performing the protocol. Thus Ernd
�Esp in general, and, if Ernd����Esp���, this represents
genuine advantageous random-party distillation as discussed
above.

While, as mentioned, any bipartite pure-state measure E
may in principle be used, for the remainder of this paper and
our results �with the exception of Sec. IV� we shall adopt as
our measure the entanglement entropy ES, i.e., the von Neu-
mann entropy S of the reduced state as noted above. We thus
define

E��AB� 
 ES��AB� . �23�

III. W- AND GHZ-CLASS STATES

In �1� we demonstrated advantageous random-party distil-
lation for the three-party W and similar states, and that
random-party distillation was not advantageous for certain
GHZ-like states. However, no general result was obtained for
the general GHZ and W classes noted in �7�, into one of
which any three-qubit pure state with genuine tripartite en-
tanglement may be classed. Here we find the following.

Theorem 1. For any W-class pure entangled three-qubit
state �W,

Ernd��W� � Es��W� . �24�

Proof. We make use of the following simple lemma.
Lemma 1. For a general normalized two-qubit pure state,

� = �c00�00� + c01�01� + c10�10� + c11�11��AB, �25�

the entanglement measure S��A� increases monotonically
with the concurrence �16�

q��� = 2�c01c10 − c00c11� �26�

and S��A� is a convex function of q��� in the range 0�q
�1, corresponding to 0�S�1.

Proof. Explicit calculation shows

S��A� = f�q� = H2�1 − �1 − q���2

2
� �27�

and that

d2f

dq2 � 0, 0 � S � 1. �28�

�
We define qsp, qrnd, etc., as analogous quantities to Esp,

Ernd, etc., with q as the entanglement measure. The quantity
q is a useful measure in this case since it is second order in
the state’s coefficients. Thus, for repeated rounds of unitaries
and measurements, probabilities and normalization factors
cancel out when calculating �q�, as shown below. Since the
Ex �i.e., Ernd, Esp, etc.� are expectation values for S, it follows
from the convexity result that

Ex��� � f„qx���… . �29�

Note then that by this definition qx���� f−1(Ex���), in gen-
eral.

A. W protocol

We first consider the protocol of �1� �which we will refer
to as the W protocol� for obtaining an EPR pair from a W
state. This consists of all three parties repeatedly applying
the unitary

�0� → �1 − 	2�0� + 	�2�, �1� → �1� �30�

followed by all performing the projection

F = �0��0� + �1��1�, G = �2��2� . �31�

If all three parties get outcome F, the protocol is repeated. If
exactly one party gets outcome G, the other two parties have
an EPR pair, the expectation value of their eventual entangle-
ment tending to unity in the limit of many repetitions and
small 	. �The probability of the protocol aborting due to fail-
ure, where two or more parties get G, is negligible in this
limit.�

�We also show in �1� that random-party distillation is ad-
vantageous for a finite number of rounds, with a protocol for
which the probability of obtaining a randomly shared EPR
pair from a W within R rounds is R

R+1 . This exceeds the
single-copy limit �for predetermined parties� of 2/3 for R
�3 and the asymptotic limit of 0.92 for R�12.�

Note that the W state enjoys a special property that makes
our previous analysis of random-party distillation of an EPR
from a W state simple—a failed round �that is, where all
parties obtain outcome F� returns the state to a W. Therefore
in the limit of many rounds and small 	 �where success and
failure of this kind are the only outcomes with non-negligible
probability� the protocol is “reset” after each failure and ev-
ery round can be analyzed in the same way. In contrast, this
is not the case for a general three-qubit pure state. Indeed,
whenever a round of random-party distillation fails a general
three-qubit state becomes a new state. For this reason, the
analysis of multiround random-party distillation for the gen-
eral three-qubit state is not entirely trivial. In the following,
we will use the properties of the concurrence discussed
above to perform such an analysis. Before doing so, let us
first demonstrate the evolution of a general three-qubit state
under the W protocol.

Consider then applying this protocol to a general three-
qubit pure state shared between Alice, Bob, and Charlie,
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��1�ABC = �0�A�k000
�00� + k010

�01� + k100
�10� + k110

�11��BC

+ �1�A�¯� , �32�

where the �¯� represent some additional terms whose am-
plitudes we are not concerned with. We define K000


�k000
�2,

etc.
After every party has performed the unitary �30� the state

becomes

��1�ABC = �1 − 	2�1/2�0�A��1 − 	2�k000
�00� + �1 − 	2�1/2�k010

�01�

+ k100
�10�� + k110

�11��BC + 	�2�A��1 − 	2�k000
�00�

+ �1 − 	2�1/2�k010
�01� + k100

�10�� + k110
�11��BC

+ �¯� . �33�

If all the parties then perform the projection �31� and all get
outcome F the resultant state will differ from the initial state.
Likewise if these unitaries and projections repeat until Alice,
say, eventually gets outcome G the state then shared by Bob-
Charlie will depend on the number of rounds performed up
to that point.

In general after R rounds of unitaries and projections in
which all parties get F, the shared state will be

��R�ABC = �0�A�k00R
�00� + k01R

�01� + k10R
�10� + k11R

�11��BC

+ �1�A�¯�BC, �34�

where

k00R
=

�1 − 	2�3R/2k000

�PFR
¯ PF1

, �35�

k01R
=

�1 − 	2�Rk010

�PFR
¯ PF1

, �36�

k10R
=

�1 − 	2�Rk100

�PFR
¯ PF1

, �37�

k11R
=

�1 − 	2�R/2k110

�PFR
¯ PF1

, �38�

and PFN
is the probability of all parties getting F in the Nth

round of the protocol after having done so in all previous
rounds, i.e.,

PFN
= �1 − 	2���1 − 	2�2K00N−1

+ �1 − 	2��K01N−1
+ K10N−1

�

+ K11N−1
� . �39�

If the parties perform one further round of unitaries, the state
will be

��R+1�ABC = �1 − 	2�1/2�0�A��1 − 	2�k00R
�00�

+ �1 − 	2�1/2�k01R
�01� + k10R

�10�� + k11R
�11��BC

+ 	�2�A��1 − 	2�k00R
�00� + �1 − 	2�1/2�k01R

�01�

+ k10R
�10�� + k11R

�11��BC + �¯� . �40�

If the parties then project and Alice alone gets outcome G,
with probability

PGR+1
= 	2��1 − 	2�2K00R

+ �1 − 	2��K01R
+ K10R

� + K11R
�

�41�

the resultant state will be

1

�PGR+1

	�2�A��1 − 	2�k00R
�00� + �1 − 	2�1/2�k01R

�01�

+ k10R
�10�� + k11R

�11��BC �42�

and Bob and Charlie will share a state with entanglement
�measured by the concurrence q �26��

qR+1
BC =

1

PGR+1

	2�1 − 	2�2�k01R
k10R

− k00R
k11R

� �43�

=
2

PGR+1
PFR

¯ PF1

	2�1 − 	2�2R+1�k010
k100

− k000
k110

� .

�44�

Thus, if we consider applying the W protocol to an arbitrary
three-qubit state we have that for the final expected concur-
rence �qf

BC� �26�,

�qf
BC� � lim

	→0
�
R=0

�

qR+1
BC PGR+1�

N=1

R

PFN
�45�

=2�k010
k100

− k000
k110

�lim
	→0

�
R=0

�

	2�1 − 	2�2R+1 �46�

=2�k010
k100

− k000
k110

�lim
	→0

	2�1 − 	2�
1 − �1 − 	2�2 �47�

= �k010
k100

− k000
k110

� . �48�

The above bound concerns only the Bob-Charlie entangle-
ment as a result of Alice eventually getting outcome G �and
the others F�. However, other possible outcomes are where
instead Bob or Charlie gets G resulting in zero Bob-Charlie
entanglement, but some entanglement between Alice-Bob or
Alice-Charlie. How much entanglement depends on the form
of the original state, but since the W protocol is symmetric
�i.e., invariant with respect to permutation of parties�, we see
that in the special case of a symmetric state �ABC

symm, the ex-
pected entanglement due to such outcomes must also be
�k010

k100
−k000

k110
�= �k010

2 −k000
k110

� �since k010
=k100

for sym-
metric �ABC�, for each of Alice-Bob and Alice-Charlie.
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Thus, considering only these outcomes where two parties
share some entanglement and are unentangled with the third
party, it follows that

Ernd��ABC
symm� � 3�k010

2 − k000
k110

� . �49�

Reference �7� shows that a general W-class state can be
expressed as

��W� = �
�100� + ��010� + ��001� + �000��ABC, �50�

where �
 ,� ,� ,�R and 
 ,� ,��0, �0. We will without
loss of generality take ����
.

We find for the state �50� that

S��A� = H2��� , �51�

where

�2 − � + 
2��2 + �2� = 0 �52�

and �A is Alice’s reduced state of �W, likewise �B and �C for
Bob and Charlie. Using �27�, we find the corresponding con-
currences

q��A� = 2
��2 + �2, �53�

q��B� = 2��
2 + �2, �54�

q��C� = 2��
2 + �2. �55�

It is straightforward to see that q��C��q��B��q��A� and
thus

Esp
� ��W� = S��B� . �56�

B. Random-party distillation for W-class states

We will see that a higher entanglement than the above
may be obtained for a W-class state by first symmetrizing it
and then performing random-party distillation via the W pro-
tocol. Starting with the state �50� Alice applies the unitary

�0� →



�
�0� +�1 − �


�
�2

�2�, �1� → �1� �57�

producing the state

�
�100� +
�


�
�010� + 
�001� +




�
�000��

ABC

+�1 − �


�
�2

�2�A���10� + ��01� + �00��BC. �58�

Alice then projects using �31�. If she receives outcome G
�with probability 1− PAF� the protocol terminates, otherwise
Bob then applies the unitary

�0� →
�

�
�0� +�1 − ��

�
�2

�2�, �1� → �1� �59�

producing the state

1
�PAF

��
�

�
��100� + �010� + �001�� +


�

�2 �000��
ABC

+�1 − ��

�
�2

�2�B�
�10� + 
�01� +



�
�00��

AC
� .

�60�

Bob likewise then projects using �31�, the protocol terminat-
ing if he gets outcome G. If he gets outcome F �conditional
probability PBF�, the state obtained is

1
�PAFPBF


�

�
��100� + �010� + �001� +



�
�000��

ABC
�61�

which is a symmetric state on which the three parties per-
form the W protocol.

Thus, for the overall protocol

qrnd��W� � �1 − PAF�
2�1 − �


�
�2���

1 − PAF
+ PAF�1

− PBF�
2�1 − �


�
�2�
2

PAF�1 − PBF�
+ PAFPBF

3�
�

�
�2

PAFPBF

= 2�1 −

2

�2��� + 2
2 +

2�2

�2 . �62�

We use the following lemma.
Lemma 2. We have

qrnd��W� = 2�1 −

2

�2��� + 2
2 +

2�2

�2 � q��B�

= 2��
2 + �2. �63�

Proof. See the Appendix.
Hence from �29�,

Ernd��W� � f„qrnd��W�… � f„q��B�… = Esp��W� . �64�

�

C. GHZ-class states

As noted in �1�, the above inequality �Ernd����Esp���� is
not generally true for GHZ-class states, with the GHZ state
itself, and more generally states of the form 
�000�+��111�
�for which Esp=Ernd� providing a counterexample. One
might wonder whether random-party distillation gives no ad-
vantage for any state in the GHZ class. Here, we answer this
question in the negative. More specifically, we find an ex-
plicit example of a GHZ-class state for which random-party
distillation gives an advantage over distillation to predeter-
mined parties.

Our example state is
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��G� = 
��100� + �010� + �001�� + 	�111�, 	 = �1 − 3
2

�65�

for 0� �
 ,� ,� , ,	�R. The three-tangle �ABC �17� for this
state is equal to 16	
3, and being nonzero the state is thus �7�
GHZ class.

By symmetry of �G, we have Esp��G�=H2�
2+	2�, and

f−1
„Esp��G�… = �8
2�1 − 2
2� . �66�

From its symmetry and the analysis of Sec. III A, �G can be
distilled to random parties to obtain

qrnd = 3
2. �67�

It follows that qrnd��G�� f−1(Esp��G�) and hence Ernd��G�
�Esp��G� for 
2�8 /25. That is, there exist GHZ-class
states for which random-party distillation is advantageous
and �as shown in �1�� others for which it is not.

IV. SYMMETRIC DICKE STATES

While we do not have a general treatment of random-
party distillation applied to pure states shared between �3
parties, it is clear that there are such states from which final
states shared between fewer parties can be reliably obtained
if and only if those parties are not predetermined. In �1� we
gave the example of the M-party W state �a symmetric su-
perposition of the M-qubit states with a single excited qubit�

�WM� =
1

�M
��0 ¯ 01� + �0 ¯ 010� + �permutations��

�68�

to which applying the W protocol produces a randomly
shared WM−1 state. Considering a bipartite split of the initial
and final states between one of the parties P who shares the
final state and all other parties, we see that

S��Pf� = H2� 1

M − 1
� � S��Pi� = H2� 1

M
� , �69�

where i and f denote initial and final states. Thus, such a
distillation cannot be reliably performed for predetermined
final parties.

We can also consider a more general class of states whose
entanglement properties are of some interest �18–20�—the
M-party symmetric Dicke states �21,22�. These are of the
form

���M,N�� =
1

�MCN
� �1��N�1���M−N�, �70�

where MCN are the binomial coefficients

MCN 

M!

N ! �M − N�!
�71�

and the sum is over all permutations of the individual qubits.
For example,

���4,2�� =
1
�6

��0011� + �0110� + �1100� + �1001� + �0101�

+ �1010�� . �72�

Considering the von Neumann entropy of a party P we have

S��P
M,N� = H2� 1

MCN
� �73�

and hence any LOCC distillation ��M ,N�→��M� ,N�� can-
not be reliably performed for predetermined final parties if
M�CN�� MCN.

However, we see that if we apply the W protocol to a state
��M ,N� we can reliably obtain either a randomly shared
��M −1,N� �applying the usual protocol� or ��M −1,N−1�
�applying the W protocol but with �0� and �1� states re-
versed�. Essentially the parties can reliably �drop� either a �0�
or �1� from the terms of the state to produce a state randomly
shared between one fewer party.

Given that the parties can also �by all applying a bit-flip
operation� always reliably convert ��M ,N�→��M ,M −N�,
we find that the parties can reliably perform

���M,N�� → ���M�,N���, or ���M�,M� − N��� �74�

if

M� � M ,

N� � N − �M − M�� ,

many of which output states could not be achieved for pre-
determined final parties.

V. RANDOM-PARTY DISTILLATION
IN THE MANY-COPY LIMIT

In our previous paper �1�, we show that random-party
distillation is useful for the case of a single copy of the W
state. One might wonder whether random-party distillation
remains advantageous in the limit of many copies of a gen-
eral pure state �including W states�. Here we show that �ac-
cording to our current definition� the answer is no.

In �1� we showed that one could distill to random parties
one EPR pair from a single W state compared to 0.92 EPR
pairs per W between predetermined parties in the many-copy
limit. Trivially, it follows that for multiple copies of the W
state we can obtain advantageous random-party distillation in
the context of Et�Esp—that is, many copies of the W state
can produce more EPR pairs in total �summing up those
between all pairs of parties� than can be obtained between
predetermined parties.

However, this does not tell us whether random-party dis-
tillation remains useful for many copies of a pure state in our
redefined sense of Ernd�Esp—obtaining more entanglement
between only two parties when the two are not predeter-
mined.

In what follows, we will discuss the case of two copies of
W states and note that we find an advantage for random-
party distillation for this case. More concretely, we can easily
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devise a simple two-copy analog to the W protocol, in which
three parties sharing two W states each repeatedly perform
the two-qubit unitary

�00� → �1 − 	2�00� + 	�2� �75�

�with all other states ��01� , �10� , �11�� mapping to themselves�
combined with a projection into either a �2� state or the
SU�2� � SU�2� subspace. As with the general three-qubit
state, in this case repeated rounds change the overall state.
We find, by considering a four-qubit measure analogous to q,
that

Ernd�W�2� � − 2�� log2 � − �0.5 − ��log2�0.5 − ��� 	 1.843,

�76�

where

� =

1 −�1 − �8

9
�2

4
. �77�

Hence

Ernd�W�2� � Esp
� �W�2� = 2H2�1

3
� 	 1.837. �78�

Hence, there is an advantage to random-party distillation of
W�2, but the proven advantage is very marginal. We see that
extending this protocol in a naïve manner to more copies
�i.e., performing a unitary �0��N→�1−	2�0��N+	�2�, etc.�
will not sustain the advantage, since for N copies the prob-
ability of success will fall roughly as O� 1

3N �, while not pre-
determining the parties will at most triple the expected en-
tanglement.

Confirming this idea more generally, we find the follow-
ing in the limit of large N,

Theorem 2. We have

Ernd���N� → Esp���N�, N → � . �79�

In other words, as defined in �21� and �22�,

Ernd
� ��� = Esp

� ��� . �80�

Proof. This is shown by the result of �23�, that for a
LOCC protocol distilling EPR pairs from N copies of a two-
party pure state �AB,

���AB
�N →

LOCC

���AB
N� ,

�81�

the probability of getting N��NS��A� tends to 0 as N→�.
Specifically the probability shrinks as exp�O�−N��. Note that
this is stronger than the well-known result that optimally
�N��=NS��A�, since it disallows improving on the optimum
expected yield even some of the time.

Consider a process �16�, where �=�A1¯Am

�N , for some pure
state �. The optimum distillation to specified parties will be
to some pair of parties AI ,AJ. where �from �9�� the distilla-
tion rate is S��AITIJ

� � where S� denotes von Neumann en-
tropy of the bracketed parties’ reduced state of �, TIJ in

general represents some group of parties not containing AI or
AJ and Tij

� is the group that minimizes S��AiTij�, i.e., for any
fixed but arbitrary pair of parties Ai, Aj,

S��AiTij
�� � S��AiTij� ∀ Tij . �82�

Thus, as N→�,

Esp��� → NS��AITIJ
� � �83�

and

S��AITIJ
� � � S��AiTij

�� ∀ ij . �84�

For Ernd����Esp���, by the definition in �20� we require at
least one possible output state � f to have Esp�� f��Esp���.
Let us consider one such � f, denoted by � f�, and occurring
with some fixed probability pf�. Suppose optimal distillation
of � f� �to specified parties� is to parties AX and AY with the
corresponding bipartite cut being between AXTXY

f on one side
�using, here and below, f to denote quantities defined for
reduced states of � f�, analogously to � above� and its
complementary set on the other side. Similar to Eqs. �82� and
�84�, we have for each fixed but arbitrary pair �i , j,
Sf�AiTij

f ��Sf�AiTij� for all Tij and Sf�AXTXY
f ��Sf�AiTij

f � for
all i , j. Then, in the many-copy limit

Esp�� f�� = Sf�AXTXY
f � � Esp��� = NS��AITIJ

� � . �85�

However, from �82�, �84�, and �85� we have that

Sf�AXTXY
� � � Sf�AXTXY

f � � NS��AITIJ
� � � NS��AXTXY

� � .

�86�

Consider now a bipartite division of � between the group
AXTXY

� acting as a single party �i.e., we allow joint quantum
operations within this group� denoted by A and the group of
all other parties acting as a single party B. A and B perform
the above LOCC protocol independently on M copies of �.
Then with probability �pf��

M, they obtain M copies of � f�. In
the limit of large M, the parties A and B can, through LOCC,
distill these copies to MSf�A��MNS��A� EPR pairs.

Thus A and B would be distilling more than MNS��A�
EPR pairs from MN copies of �, and from �23� their success
probability must be exp�O�−MN��, hence pf��exp�O�−N��.
But for Ernd����Esp��� under these circumstances would
require Sf�AXTXY

f ��exp�O�N��, which would require a for-
bidden increase in Schmidt number across a bipartite split
between group AXTXY

f and all other parties.
Hence in the limit of large N, we cannot have advanta-

geous random-party distillation of N copies of a pure state.�

VI. CONCLUSION

We have generalized several of the results noted for spe-
cific cases in �1�. We have more carefully defined what con-
stitutes “random-party” distillation so that any apparent ad-
vantage in terms of entanglement yield is specifically due to
the final parties not being predetermined. The advantageous
random-party distillation we previously noted for the W and
similar states has been shown to apply to the general W class
of three-qubit states �and the GHZ class not to have a con-
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sistent property in this respect�. We have shown that for the
important class of symmetric Dicke states our W protocol
can achieve conversions between states which are not
achievable for predetermined final parties. Finally we have
shown that advantageous random-party distillation does not
occur in the many-copy limit, and hence is a property spe-
cific to individual quantum states that cannot be considered
in a regularized form, in contrast to many other entanglement
properties.

Clearly we have still only dealt with a limited class of
states and the extremal conditions of a single-copy or the
many-copy limit. Our quantitative approach does not readily
generalize to all states—e.g., for random-party distillation to
final states shared between more than two parties, the lack of
a standard entanglement measure makes the choice of target
state more arbitrary, and an “advantageous” random-party
distillation is less defined by a measure than by the probabil-
ity of achieving a given target state. However, as demon-
strated with Dicke states above, two-party entanglement
measures can be used to determine whether or not such states
are achievable between predetermined parties.

For distillation to two-party entanglement from multiple
copies of a state, an open question is how any advantage due
to random-party distillation scales with the number of copies,
since we now know such advantage vanishes in the many-
copy limit.

As noted in �1�, even when the target states are two-party
and thus the final entanglement is reasonably well defined,
the full “structure” of the output of random-party distillation
would be defined by a probability distribution over final en-
tanglements for given pairs of parties, rather than a single
number. For example, the W protocol for a W state shared
between parties A ,B ,C reliably produces an EPR pair be-
tween one of the three pairs of parties AB ,BC ,AC, with each
pair having a probability of 1/3 of receiving the EPR. As
shown in �1�, EPR pairs can be reliably produced from some
W-like states which are not symmetric, but in this case the
probability of getting an EPR is not the same for each pair.

An interesting open question is what the optimum such prob-
ability distribution �in terms of Ernd� is for a given state, and
how this can be determined from the form of the state.
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APPENDIX

Proof of Lemma 2 can be done explicitly as follows:

qrnd
2 − q��B�2 = 4�1 − 2


2

�2 +

4

�4��2�2 + 4
4 +

4�4

�4

+ 8
2���1 −

2

�2� + 4

4�2

�2

+ 4

2�3

�
�1 −


2

�2� − 4�2�
2 + �2� �A1�

=
2�4�2��

�
− 1��2 −

�

�
�

+ 
2���2

�2 −
2�

�
�2

+ 4�1 −
�

�
�2�� .

�A2�

There are thus three terms in the above. We recall that 0
�
����. The first term is clearly �0 since ���, and the
other two terms are clearly �0 since they are squared. The
first and third terms are both equal to 0 if and only if �=�,
but in that case the second term is �0. Thus,

qrnd � q��B� . �A3�
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