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We present a general formalism for quantum-error-correcting codes that encode both classical and quantum
information �the EACQ formalism�. This formalism unifies the entanglement-assisted coding theory and the
classical coding theory in the sense that, after the encoding, error-correcting, and decoding steps, the encoded
quantum and classical information can be correctly recovered by the receiver. We formally define this kind of
quantum codes using stabilizer language, and derive the appropriate error-correcting conditions. We give
several examples to demonstrate the construction of such codes.
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I. INTRODUCTION

Since Shor proposed the first quantum-error-correcting
code �QECC� �1�, research in this field has progressed rap-
idly. A broad theory of QECCs was created under the stabi-
lizer formalism and its symplectic formulation �2,3� that al-
low the systematic description of a large class of quantum
codes and their error-correcting properties. In this formula-
tion, a QECC is defined to be a subspace fixed by a stabilizer
group. At the same time, a construction of QECCs from clas-
sical error-correcting codes was proposed separately by
Calderbank, Shor, and Steane �4,5�, the so-called CSS con-
struction. Later this was generalized to give a stronger con-
nection between quantum codes and classical symplectic
codes; however, it seemed that this connection between
quantum coding theory and classical coding theory was not
universal, since only certain symplectic codes possessed
quantum equivalents.

More recent developments in quantum coding theory
have led to the development of the operator quantum-
error-correcting formalism �OQECC� �6–12� and the
entanglement-assisted quantum-error-correcting formalism
�EAQECC� �13–15�; moreover, it is possible to produce a
unified formalism �EAOQECC� �16� that combines both
OQECCs and EAQECCs. This formalism demonstrates that
a broader connection exists between classical and quantum
coding theory. Good QECCs can be obtained by a general-
ized CSS construction from good classical codes. This opens
the door, for example, to the construction of high-quality
quantum codes from modern classical codes, such as TURBO

and LDPC codes �17�.
In this paper, we generalize this construction in a different

way, by proposing quantum codes that can be used to trans-
mit both classical and quantum information simultaneously.
We call this scheme the entanglement-assisted, classically
enhanced quantum-error-correcting formalism, but through-
out the paper it will be referred to simply as the EACQ

formalism. The EACQ formalism can be considered as a
unification of the entanglement-assisted quantum coding
theory �18� and the classical linear coding theory. This uni-
fication also makes contact with results in quantum informa-
tion theory, where bounds exist on the asymptotic transmis-
sion of simultaneous classical and quantum information,
including the use of entanglement assistance. It is believed
that these bounds are better than simple time sharing be-
tween codes for transmitting quantum and classical informa-
tion separately through a quantum channel �19�. It is our
hope that it may be possible to construct classes of codes
which achieve these rates in the limit of large block size.

This paper is organized as follows. We give a brief intro-
duction of EAQECCs using the stabilizer formalism in Sec.
II. In Sec. III, we formally define a quantum code �EACQ�
that can transmit both classical and quantum information at
the same time. Several properties of this kind of quantum
codes are also discussed in this section. We provide several
examples in Sec. IV to demonstrate the usefulness of this
formalism. We conclude in Sec. V by examining some spe-
cial cases, and arguing that the EACQ formalism is indeed a
generalization and unification of both quantum and classical
coding theory.

II. EAQECC

In this section, we will review the entanglement-assisted
quantum-error-correcting formalism using the stabilizer lan-
guage. Let Gn be the n-fold Pauli group �20�. Every operator
in Gn has either eigenvalues �1 or �i. An ��n ,q ,d ;e��
EAQECC is a quantum code that encodes q logical quantum
bits �qubits� into n physical qubits with the help of e maxi-
mally entangled pairs �e-bits� shared between sender and re-
ceiver, and can correct up to � d−1

2 � single-qubit errors. Such
an EAQECC is defined by a noncommuting group SQ

= �Z̄1 , . . . , Z̄s , Z̄s+1 , X̄s+1 , . . . , Z̄s+e , X̄s+e��Gn of size 2s+2e,
where s+e+q=n. We will continue to refer to the group SQ
as a “stabilizer,” even though, being non-Abelian, it does not

stabilize any state. The generators Z̄i and X̄i satisfy the fol-
lowing commutation relations:
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�Z̄i,Z̄j� = 0 ∀ i, j ,

�X̄i,X̄j� = 0 ∀ i, j ,
�1�

�X̄i,Z̄j� = 0 ∀ i � j ,

�X̄i,Z̄i� = 0 ∀ i .

We define the isotropic subgroup SQ,I of SQ to be the group

generated by �Z̄1 , . . . , Z̄s�; it is of size 2s. Similarly, the sym-
plectic subgroup SQ,S of SQ is of size 22e and is generated by

�Z̄s+1 , X̄s+1 , . . . , Z̄s+e , X̄s+e�. The isotropic subgroup SQ,I is
Abelian; however, the symplectic subgroup SQ,S is not. We
can easily construct an Abelian extension of SQ that acts on
n+e qubits, by specifying the following generators:

Z̄1 � I ,

]

Z̄s � I ,

Z̄s+1 � Z1,

X̄s+1 � X1,

]

Z̄s+e � Ze,

X̄s+e � Xe,

where the first n qubits are on the side of the sender �Alice�
and the extra e qubits are taken to be on the side of the
receiver �Bob�. The operators Zi or Xi to the right of the
tensor product symbol above is the Pauli operator Z or X
acting on Bob’s ith qubit. The picture is that Alice and Bob
initially share e e-bits; Alice encodes her q qubits together
with her halves of the e entangled pairs and s ancilla qubits.
Bob’s qubits are his halves of the e entangled pairs. Because
this code assumes pre-existing entanglement between Alice
and Bob, it is an entanglement-assisted quantum-error-
correcting code �EAQECC�. We denote such an Abelian ex-

tension of the group SQ by S̃Q. This EAQECC can correct an
error set E�Gn if for all E1 ,E2�E, E2

†E1�SQ,I� �Gn
−N�SQ��, where N�S� is the normalizer of group S.

III. CLASSICALLY ENHANCED QUANTUM-
ERROR-CORRECTING CODES

In this section, we will present a quantum code that can
transmit both classical and quantum information at the same
time.

A. The stabilizer formalism

We define an ��n ,q :c ,d ;e�� entanglement-assisted, clas-
sically enhanced quantum-error-correcting code �EACQ� to

be a quantum code which encodes q logical qubits and c
classical bits into n physical qubits with the help of e e-bits.
Our quantum information is given by the q-qubit state 	��
� �H2��q, and our classical information i� �1,2 , . . . ,2c� is
represented by a vector xi� �Z2�c. Here, we keep the sub-
script i in xi to remind the reader that xi is the binary expres-
sion of i. Let us denote the q-dimensional Hilbert space of
the original qubits by H
�H2��q, and the subspaces of the
n-dimensional encoded states by Ci. Our encoding operations

Ûenc
i :H→Ci consist of appending the ancilla states 	0��s and

maximally entangled states 	�+��e, where s+e+q=n and
	�+�
 1

�2
�	00�+ 	11��, to 	�� followed by performing the uni-

tary Ui. Thus, our encoded states, or “code words,” are de-
fined as

	�i� 
 Ui�	0��s
� 	�+��e

� 	��� . �2�

We require that ��i 	� j�=�ij so that the classical information
is perfectly retrievable. We specify an ��n ,q :c ,d ;e�� EACQ
by the pair of groups �SQ ,SC�.

Theorem 1. The quantum stabilizer SQ= �SQ,I ,SQ,S� of the
code is generated by s+2e−c elements

SQ,I = �Z̄c1+1,Z̄c1+2, . . . ,Z̄s� ,

SQ,S = �Z̄s+c2+1,X̄s+c2+1, . . . ,Z̄s+e,X̄s+e� . �3�

The classical stabilizer SC= �SC,I ,SC,S� of the code is gener-
ated by c elements

SC,I = �Z̄1,Z̄2, . . . ,Z̄c1
� ,

SC,S = �Z̄s+1, . . . ,Z̄s+c2
,X̄s+1, . . . ,X̄s+c2

� , �4�

where q+s+e=n and c1+2c2=c, such that ∀ gj � S̃Q,

gj	�i� = 	�i� , �5�

and

gj�	�i� = �− 1�xij	�i� , �6�

where gj� is the jth element of the generator set of S̃C, which
is the Abelian extension of SC introduced in Sec. II, and xij is
the jth element of xi� �Z2�c.

Proof. We begin with a canonical code that encodes the
quantum information 	��� �H2��q together with classical in-
formation xi in the following trivial way:

	��→
xi

	�i� = �Xxa	0��c1�	0���s−c1�

���Xxb1Zxb2 � IB�	�+��c2�	�+��e−c2	�� , �7�

where xa� �Z2�c1 and xb1
, xb2

� �Z2�c2, and IB is the identity
acting on Bob’s qubits. Given a vector u� �Z2�k, we define

Xu = Xu1 � ¯ � Xuk,

and similarly for Zv where v� �Z2�k. The classical informa-
tion xi is encoded using elementary and superdense coding
�14�, respectively. Instead of encoding xi as a whole, the first
c1 bits of xi �denoted by xa� are encoded on the first c1

KREMSKY, HSIEH, AND BRUN PHYSICAL REVIEW A 78, 012341 �2008�

012341-2



ancillas using elementary encoding. The rest of xi is further
divided into two parts xb1

and xb2
of equal length, and are

encoded on the first c2 pairs of e-bits using superdense cod-
ing.

Clearly, the set �	�i�� is stabilized by the Abelian exten-
sion of SQ� = �SQ,I� ,SQ,S� �, where

SQ,I� = �Zc1+1,Zc1+2, . . . ,Zs� ,

SQ,S� = �Zs+c2+1,Xs+c2+1, . . . ,Zs+e,Xs+e� . �8�

Now let SC� = �SC,I� ,SC,S� �, where

SC,I� = �Z1, . . . ,Zc1
�, SC,S� = �Zs+1, . . . ,Zs+c2

,Xs+1, . . . ,Xs+c2
� ,

�9�

and let S̃C� be the Abelian extension of SC� . Then it is easy to
verify that

gj�	�i� = �− 1�xij	�i� , �10�

where gj� is the jth generator of S̃C� .
Since �SQ� ,SC� � is isomorphic to �SQ ,SC�, there exists a

unitary U such that SQ=USQ� U† and SC=USC�U† �14,21�.
The code words �	�i�� can also be obtained by

U	�i� = 	�i� . �11�

It is then easy to verify that Eqs. �5� and �6� hold. �
Notice that �SQ ,SC� is the stabilizer of an ��n ,q ;e��

EAQECC code, and thus it fully specifies one of the code
words from Eq. �2�, 	�0�. For c�0, the additional code
words are just unitary transformations of 	�0�. Theorem 1
confirms that SC and SQ together are sufficient to fully
specify the code words.

Now that we have uniquely defined our code, we will
consider the conditions that make a set of errors correctable,
as well as the decoding procedure for a given set of correct-
able errors. We will consider here only error sets which are
subsets of Gn, since the ability to correct such a discrete error
set implies the ability to correct any linear combination of
errors in that set �14�.

Theorem 2. A set of errors E�Gn is correctable if for all
Em, Ep�E, Em

† Ep� �SQ,I ,SC,I�� �Gn−N�SQ��, where N�S� is
the normalizer of group S.

Proof. We consider the following different cases.
�1� If Em

† Ep�Gn−N�SQ�, then by definition there is at
least one element gj �SQ such that

�Em
† Ep,gj� � 0.

Then we are guaranteed that Em and Ep have different error
syndromes on the set of code words �	�i��. We can then
perform a recovery operation based on the error syndrome. If
it is determined that the error Em occurred, the original code
word may be recovered by simply performing the unitary Em
since Em�Gn.

�2� If Em
† Ep�N�SQ�, there are three cases. �a� If Em

† Ep
�SQ,I, then Em

† Ep	�i�= 	�i�. The errors have the same syn-
drome, but they also act on the code space the same way.
�This is the case of a degenerate code.� �b� If Em

† Ep�SC,I,
then by Eq. �6�, Em

† Ep	�i�= � 	�i�. The errors have the same

syndrome, but their effects differ by a possible global phase
without changing the classical information i embedded in the
code word 	�i�. Therefore, we can still recover both the
quantum and classical information �see Theorem 3�. �c� For
all the rest, the errors act nontrivially on the code words
�	�i��, but do not have a unique syndrome. If this case ap-
plies to a pair of errors Em ,Ep�E then the error set E is
uncorrectable.

Combining these cases, we conclude that whenever
Em

† Ep� �SQ,I ,SC,I�� �Gn−N�SQ�� ∀ Em ,Ep�E, the code
words �	�i�� can be recovered up to a possible global
phase. �

Theorem 3. Once error recovery has been performed, the
classical index i may be determined by measuring each of

the gk�� S̃C observables. The original quantum state 	�� may
be recovered by performing the unitary Ui

−1 and then discard-
ing the ancillae.

Proof. After we have performed error recovery, the state
in our possession will be �	�i�. Measuring the generator set

�gk�� of S̃C will guarantee proper identification of xi by Eq.
�6�. Once the classical index has been identified, we can see
from Eq. �2� that we may recover the original quantum state
	�� by performing Ui

−1 and discarding the states
�	0��s	�+��e. �

B. Properties of EACQs

Theorem 4. We can transform any ��n ,q+c ,d1 ;e��
EAQECC code C1 into an ��n ,q :c ,d2 ;e�� EACQ code C2,
and transform any ��n ,q :c ,d2 ;e�� EACQ code C2 into an
��n ,q ,d3 ;e�� EAQECC code C3, where d1	d2	d3.

Proof. The stabilizer group SQ of C1 is of size 2s+2e, where
s+q+c+e=n. The isotropic subgroup SQ,I and the symplec-
tic subgroup SQ,S of SQ are of sizes 2s and 22e, respectively.
If we simply add an Abelian group SC of size 2c such that
SC�SQ= �I�, then �SQ ,SC� defines an ��n ,q :c ,d2 ;e�� EACQ
code S2 for some d2, which follows from Theorem 1. Let E1
be the error set that can be corrected by C1, and E2 be the
error set that can be corrected by C2. Clearly, E1�E2 �see
Table I�, so C2 can correct more errors than C1. Therefore,
d2
d1.

In general, an ��n ,q :c ,d2 ;e�� EACQ code C2 is defined
by SQ= �SQ,I ,SQ,S� and SC= �SC,I ,SC,S�, where the isotropic
subgroup SQ,I and the symplectic subgroup SQ,S of SQ are of
sizes 2s−c1 and 22�e−c2�, respectively, and the isotropic sub-
group SC,I and the symplectic subgroup SC,S of SC are
of sizes 2c1 and 22c2, respectively. Here the parameters
satisfy s+q+e=n and c1+2c2=c. Now let SQ,I� = �SQ,I ,SC,I�
and SQ,S� = �SQ,S ,SC,S�. Then SQ� = �SQ,I� ,SQ,S� � defines an
��n ,q ,d3 ;e�� EAQECC code C3. Let E3 be the error set that

TABLE I. The error-correcting conditions of EAQECCs and
EACQs.

EAQECC EACQ

Em
† Ep�N��SQ,I ,SQ,S�� Em

† Ep�N��SQ,I ,SQ,S��
Em

† Ep�SQ,I Em
† Ep� �SQ,I ,SC,I�
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can be corrected by C3. Let E�E2, then either E
� �SQ,I ,SC,I� or E�N�SQ�. If E� �SQ,I ,SC,I�, then E�SQ,I� .
Thus, E�E3. Since SQ�SQ� , we have N�SQ� ��N�SQ�. If
E�N�SQ�, then E�N�SQ� �. Thus, E�E3. Putting these to-
gether we get E2�E3. Therefore d3
d2. �

It is worth pointing out that the theory of EACQs natu-
rally includes the set of classically enhanced quantum codes
that do not require entanglement as a subclass. These would
be codes for which there is no nontrivial symplectic sub-
group for either SQ or SC, so that both of these groups are
purely isotropic. In terms of the parameters describing the
code, this is the special case where e=0. Our first example in
the next section is exactly such a code. To conclude this
section, we list the different error-correcting criteria of an
EAQECC and an EACQ.

IV. EXAMPLES

In the following, we will refer to a binary �n−k��n ma-
trix H= �hi,j� that defines a k-dimensional subspace over
�Z2�n as a “parity check matrix.” Let S�Gm, where n�m, be
generated by �p1 , . . . , pn�. A new group V derived from H ·S
means that the ith generator gi of V is

gi = �
j=1

n

pj
hi,j .

A. [[9,1:2,3;0]] EACQ

We first give an example of a code that starts from an
overly redundant quantum code, and exploits that redun-
dancy to encode additional classical information. The ex-
ample we pick is the well-known nine-qubit Shor code. The
modified Shor code presented here encodes one qubit and
two classical bits into nine physical qubits, and it is still able
to correct an arbitrary error on a single qubit.

The code is a combination of the �9,1,3� Shor code de-
fined by the stabilizer given in Table II, and the �8,2� classi-
cal code with parity check matrix H

H =

1 0 1 0 1 0 0 0

0 1 0 1 0 1 0 0

1 0 0 1 0 0 0 0

0 1 1 1 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

� . �12�

The generators of SQ and SC as in Eqs. �5� and �6� for the
code are given in Table III such that gi=� j=1

8 pj
hi,j and gk� is the

kth generator of SC=S \SQ, where hi,j is the �i , j�th element
of H, gi is the ith generator of SQ, and pj is the jth generator
of S.

Remark. Though we have used the jargon of classical cod-
ing theory in referring to H as a “parity check matrix,” this is
not really necessary. What we need here is a matrix that
specifies the subsystem degrees of freedom of the original
quantum code. While H technically does define a classical
code, we have not made explicit use of the error-correcting
properties of this code �such as its distance�.

Proposition 5. The modified Shor code presented above
can correct an arbitrary error on a single qubit.

Proof. This modified Shor code is degenerate. A single-
qubit Z error on any of the qubits in the same triplet �that is,
on any of qubits 1, 2, 3, or any of qubits 4, 5, 6, or any of
qubits 7, 8, 9� result in the same error syndrome, and can be
corrected using the same recovery operation. However, it is
easily verified that each of the single-qubit X errors gives a
distinct error syndrome and can therefore be corrected. The
syndromes are obtained by measuring �g1 , . . . ,g6�, but we
omit the syndrome list for brevity. Since this code is a CSS-
type QECC, the single-qubit Y errors can therefore be cor-
rected. �

B. [[8,1:2,3;1]] EACQ

The following example comes from modifying the
��8,1,3;1�� EAQECC given in Ref. �16�. The ��8,1:2,3;1��
EACQ comes from a combination of the ��8,1,3;1��
EAQECC given in Table IV and the �8,2� classical code with
parity check matrix H

TABLE II. The stabilizer S of the ��9,1,3�� Shor code.

S

p1 Z Z I I I I I I I

p2 I Z Z I I I I I I

p3 I I I Z Z I I I I

p4 I I I I Z Z I I I

p5 I I I I I I Z Z I

p6 I I I I I I I Z Z

p7 X X X X X X I I I

p8 I I I X X X X X X

TABLE III. The stabilizer �SQ ,SC� of the ��9,1:2,3;0�� EACQ
that encodes one qubit and two classical bits into nine physical
qubits.

SQ

g1 Z Z I Z Z I Z Z I

g2 I Z Z I Z Z I Z Z

g3 Z Z I I Z Z I I I

g4 I Z Z Z I Z I I I

g5 X X X X X X I I I

g6 I I I X X X X X X

SC

g1� Z Z I I I I I I I

g2� I Z Z I I I I I I
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H =

1 0 1 0 1 0 0 0

1 0 0 1 0 0 0 0

0 1 1 1 0 0 0 0

0 0 0 0 0 1 0 0

0 1 0 1 0 0 1 0

0 0 0 0 0 0 0 1

� .

Table V gives generators of �SQ ,SC� for the ��8,1:2,3;1��
EACQ. The resulting EACQ encodes one qubit and two clas-
sical bits into eight physical qubits with the help of one e-bit.
Since the ��8,1,3;1�� code is also derived from the Shor code,
this EACQ is closely related to our first example.

C. EACQ codes from classical BCH codes

Here, we start from the ��63,21,9;6�� EAQECC shown in
Ref. �16�, which is constructed from a classical binary
�63,39,9� BCH code �22�. This EAQECC has the interesting
property that removing the symplectic pairs from the quan-
tum parity check matrix only decreases the distance from d
=9 to d=7, no matter how many pairs are removed. There-
fore, if we switch all the e-bits from SQ to SC, we will have
a ��63,21:12,7;6�� EACQ. This example shows that it is pos-
sible to encode extra classical information using e-bits with-
out degrading the distance performance too much.

V. CONCLUSIONS

In this paper, we have demonstrated yet another extension
of the standard quantum-error-correcting scheme. The EACQ
can transmit both classical and quantum information simul-
taneously. We consider this EACQ formalism as a generali-
zation and unification of both entanglement-assisted quan-
tum coding theory and classical coding theory, in the
following sense.

For a purely quantum code �c=0�, we have SC= �I�. This
corresponds to the entanglement-assisted formalism. In this
case, the classical parity check matrix H is chosen to be
I�n−q���n−q� such that the stabilizer of the code stays the same.

For a purely classical code �q=0�, we can assume that the
original quantum stabilizer is S= �Z1 , . . . ,Zn�. Then given an
arbitrary classical parity check matrix H and its correspond-
ing generator matrix G, the resulting quantum and classical
stabilizer is SQ=H ·S and SC=G ·S, respectively. The classi-
cal code can be thought of as encoded in the Z basis.

On the other hand, the EACQ formalism provides further
flexibility in the use of quantum-error-correcting codes. As
shown in Sec. IV, EACQs can make use of extra redundancy
in quantum codes to encode additional classical information.
We also note that the passive error-correcting ability of an
EACQ is increased, though at the cost of the quantum code
rate of an EAQECC.

We are currently investigating the relation between
EACQs and other extensions of standard quantum-error-
correcting codes, such as OQECCs or “operator algebra
quantum error-correcting” codes �OAQECs� �23�. Recently
we have become aware of Ref. �24�, which also allows cor-
rection of hybrid classical-quantum information based on op-
erator algebra. Given the wider variety of resources in quan-
tum information theory compared to classical information
theory, we can expect a correspondingly richer set of families
of quantum-error-correcting codes.
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TABLE IV. This ��8,1,3;e=1�� EAQECC encodes one qubit into
eight physical qubits with the help of one e-bit �e=1�.

p1 Z Z I I I I I I

p2 I Z Z I I I I I

p3 I I I Z Z I I I

p4 I I I I Z Z I I

p5 I I I I I I Z Z

p6 X X X X X X I I

p7 I I I I I I I Z

p8 I I I X X X X X

TABLE V. The stabilizer �SQ ,SC� of the ��8,1:2,3;1�� EACQ
that encodes one qubit and two classical bits into eight physical
qubits with the help of one e-bit.

SQ,I

g1 Z Z I Z Z I Z Z

g2 Z Z I I Z Z I I

g3 I Z Z Z I Z I I

g4 X X X X X X I I

SQ,S

g5 I Z Z I Z Z I Z

g6 I I I X X X X X

SC

g1� Z Z I I I I I I

g2� I Z Z I I I I I
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