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Certain classes of integrable quantum billiards provide a versatile arena for time-domain atom optics ex-
periments. In order to learn how to fully exploit the fractional revival behavior that governs these kinds of
systems, we here develop a convenient theoretical framework for their description. As an illustrative example,
we present a billiard-internal realization of Grover’s quantum search algorithm. The considered devices are
scalable and could be used for the construction of quantum computers using trapped neutral atoms.
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I. INTRODUCTION

Wave-billiard spectra have attracted considerable atten-
tion during the past decades. Exact analytic solutions of the
eigenvalue problem have been found in a few exceptional
systems only. More typically, information is extracted from
the statistical properties of the state density distribution. The
study of certain two-dimensional polygonal enclosures has
led to a natural generalization of the concept of billiard inte-
grability [1]. Higher-dimensional polyhedra enclosures have
also been mathematically analyzed [2]. For geometries that
are known to lead to chaos in the ray-optics (“classical”)
limit the questions arise; if and in which sense the same
concept is also applicable to the wave-optics (“quantum”)
versions of these systems [3]. Experiments have been con-
ceived to test the diverse predictions. Microwave billiards
can be employed to simulate the de Broglie wave dynamics
in a macroscopic frame [4]. Electrons trapped in semicon-
ductor billiards, on the other hand, have been used to study
chaos-related issues in the quantum domain [5]. Similar stud-
ies have taken place with atoms confined in two-dimensional
corrals made of light [6]. However, in these latter experi-
ments the accessible parameter space has so far not allowed
the observation of specifically wavelike features, i.e., the dy-
namics could be essentially understood in classical terms.

In view of these fascinating developments, it is under-
standable that integrable (wave-)billiards are perhaps gener-
ally considered to be less interesting objects of study. The
main goal of this paper is to demonstrate that there never-
theless exist quite noteworthy objects among these systems,
which in our opinion deserve special attention as well. By
developing a conveniently adapted theory for their descrip-
tion, we are able to discuss how they could be used for both
classical and quantum computing purposes. The rather
unique feature which makes this possible is the fact that in
this class of systems, the introduction of a proper (“strobo-
scopic”) observation-time discretization leads also to a dis-
crete (spatial) wave packet evolution, in a sense to be defined
later. Fractional revivals are the key to this phenomenon. For
a recent review, see Ref. [7]. Since we believe that our re-
sults may turn out to be most valuable in the quantum do-
main, in this paper we will often be referring to “quantum”
billiards. It should nevertheless always be kept in mind that
the essence of the problem treated here is linked to wavelike
behavior in general and not to anything specifically “quan-
tum.”
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The paper is structured as follows. After this introduction,
we first specify how and under which circumstances the dy-
namics in a quantum billiard in one, two, or three dimensions
becomes intrinsically periodic. Section III then specializes
on rectangular (two-dimensional) systems and develops a
compact mathematical description of their behavior. The so
called “A4 billiard” [8] is then analyzed in more detail and
shown to present particular features which allow one to pro-
duce, in its interior, arbitrary states of a suitably chosen four-
dimensional (discrete) Hilbert space. After demonstrating
how a billiard-analog of Grover’s quantum search algorithm
could be implemented within this frame, the section then
proceeds to analyze the scalability properties of nested bil-
liard setups. Proposals for multiple-path (“time-domain atom
chip”) interferometers, quantum computers with individually
trapped neutral atoms, and miniature conveyor belts (“atomic
bucket brigades”) round up this main part of the paper. After
the final Conclusions section, two appendices have been
added in order to place the previous results into a broader
context. Appendix A first explains how the close relationship
with certain self-imaging phenomena in classical optics
comes about. Appendix B then closes by using a rather el-
ementary physical argument to derive a mathematical rela-
tionship that plays a central role in number theory.

II. TIME-PERIODIC QUANTUM BILLIARDS

In our present context, by a “quantum billiard” we mean a
finite and field-free region of one-, two-, or three-
dimensional space that has well-defined boundaries and in
the interior of which we assume a quantum particle to be
confined in such a way that its wave function vanishes on
them at all times.

A. The one-dimensional case

The quantum behavior of a particle (mass M) that is one-
dimensionally (x axis) trapped in an infinite square well
(width a,) is a standard situation used to illustrate (and solve)
Schrodinger’s time-dependent and time-independent equa-
tions in many introductory textbooks. It is worth noticing,
however, that most discussions come to a halt as soon as the
eigenfunction expansion has been written down. At the very
best, some numerical examples of wave packet evolution are
pictorially represented.
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It seems almost unknown that this problem allows an ex-
plicit closed solution which is independently valid for any
possible initial condition. Since this solution will be our
workhorse in the next section, we are now going to present a
concise derivation. It is our hope that the simplicity of the
approach will induce readers to incorporate this neat (and not
at all novel; see, for instance, Ref. [9]) result in elementary
quantum mechanics lectures.

We first introduce the natural time scale T
E4M(1§/(ﬁ'ﬂ). It is convenient then to define rationalized
space and time coordinates according to {=mx/a, and T
=2mt/T. If the origin of the coordinate system is chosen
symmetrically with respect to the potential walls, the ratio-
nalized and normalized energy eigenfunction of order u (u
=1,2,3,...) will be given by

AGE \E Sin[(f‘*‘%)ﬂ], ()

where the restriction |& < /2 is tacitly understood. The time
propagation of an arbitrary state

]

.2
WET = 2 cpth(Ee T, 2)

u=1
where ¢, are expansion coefficients. By substituting 7 by 7

+24r, one immediately verifies that the temporal behavior is
periodic: (&, 7+2m)=y(&, 7). This identifies T as a charac-
teristic revival time of the one-dimensional quantum box
problem [7].

One can go further by analyzing the situation at fractional
multiples of the revival time, 7=2mm/n, where m and n
#0 are integers. Since the phase factor exp(-i2wu*m/n) is
n periodic with regard to u, it can be harmonically expanded
[10],

exp(—i2#u2ﬂ> =2 C(M',m,n)exp<i27&)’ (3)
n n

u'=1

where the Fourier coefficients

1 n 2+ '
Clu' mn) = - exp<—i2wu) (4)

s=1 n

are Gauss sums, known as “Talbot coefficients” in the optics
literature (see Appendices A and B). Since the left-hand side
of Eq. (3) is an even function of u, we can rewrite

exp(—i277,u,2ﬂ> = 2 C(,u,’,m,n)cos(ZW&) (5)
n n

w'=1

and introduce this expression together with eigenfunction (1)
into Eq. (2). The trigonometric identity 2 sin & cos B=sin(«
+B) +sin(a—B) can then be used to obtain
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p=1

(6)

where Eq. (1) has been reintroduced twice. The restriction
—m/2<§¢</2 has not so far played any role and it is, at
this point, notationally practical to lift it completely by gen-
eralizing the range of Eq. (1) to arbitrary ¢ By doing so, the
wave function becomes both spatially periodic, ¢¥(¢,7)
=y(é+2m,7), and odd (with respect to the box borders),
W Em/2+ &, 7)=—(E£m/2-¢, 7). Equation (6) can now be
written

w(f,zw%) =3 cw mn)
w'=1
% Y€+ 2mu'In,0) + (- 2mu'In,0)
2

s

()

which is a finite expression involving only stepwise laterally
shifted copies of the initial (given) wave function and corre-
sponding weighting factors. Such superpositions are known
as “fractional revivals” of a wave function.

This is a noteworthy and truly exceptional result. Usually,
the time development of an arbitrary wave function is ex-
pressed in terms of an integral propagator. [Consult Ref. [11]
for the propagator corresponding to the present case and its
relation to Eq. (7)]. Even in the simple case of a completely
free particle in one dimension, the integration step cannot be
skipped. Equation (7), on the other hand, expresses that this
is quite different in the present situation, where a universal
temporal behavior is obtained. This unique property indeed
identifies the box problem as the most elementary mechani-
cal system of quantum physics. The connection between
quantum revivals and classical periodicity is pedagogically
presented in Ref. [12].

B. The two-dimensional case

Due to the separability of the resulting problem, it is im-
mediately obvious that rectangular billiards can lead to peri-
odic revival phenomena as well. If a, and a, denote the side
lengths of a rectangular billiard and we choose to place its
center at the origin of our coordinate system, then all eigen-
functions are obtained by merely multiplying the one-
dimensional version (1), evaluated at £=x/a,, by the analo-
gous expression evaluated at 7=my/a,. Whenever there
exist two natural numbers M and N such that (a,/ ay)2
=M/ N, the resulting system evolution will be periodic with a
revival time equal to
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_4AM —
T= ﬁaxay\sMN. (8)

In order to make sure that this is the minimal period of the
system, the fraction M /N must be irreducible. By measuring
¢t again in these units, 7=2m¢/7T, one obtains the analog of
Eq. (2), i.e.,

WEDD = 2 D b (i (e VM7 (9)

u=1 v=1

In the particular case of a square billiard, due to the degen-
eracy caused by the special condition a,=ay, it becomes pos-
sible to linearly combine degenerate eigenfunctions in such a
way, that the resulting superposition vanishes on the billiard
diagonals. From this it is clear, and it has long been known,
that also a billiard in the shape of a (rectangular) isosceles
triangle can be “solved.” Only in 1980 it was discovered, in
two nearly simultaneous papers [13,14], that also the eigen-
function system belonging to an equilateral triangular billiard
involves but products of elementary trigonometric functions.
This result is one of the rather rare examples of a nonsepa-
rable problem for which the exact analytical solution has
been found. The completeness of the identified eigenfunction
set was rigorously proved a few years later [15]. By consid-
ering solutions that vanish on the line that symmetrically
bisects the equilateral triangle into a pair of rectangular ones,
the resulting 30°-60°-90° triangular billiard shape can also be
completely (analytically) tackled.

The emergence of quantum revivals in the (rectangular)
isosceles triangle is a direct consequence of the correspond-
ing property of its square (M/N=1) progenitor. Quantum
revivals in equilateral triangles (and their symmetric halves)
have been thoroughly studied in Ref. [16]. The question
quite naturally arises, if there exist also other geometrical
shapes capable of producing periodic quantum revivals of an
arbitrary initial wave function. One could for instance be led
to think that the rhombus obtained by gluing two equilateral
triangles together would produce such revivals. This, how-
ever, is not the case. For the set of eigenfunctions obtained
by multiplying the two equilateral triangle eigenfunction sets
is not complete, inasmuch as only odd-symmetry solutions
(under reflection about the short diagonal) are obtained. The
other exact half of the set, consisting of the even-symmetry
solutions including the ground state, cannot be generated this
way [17]. Also the hexagon [18] and all other geometrical
figures that can be created by such a gluing procedure do not
lead to intrinsically periodic quantum dynamics [19]. In 1991
it was shown that besides the already mentioned examples,
no other billiard shapes are amenable to solution in terms of
trigonometric function products [20]. A rigorous no-go theo-
rem has been formulated and proved in Ref. [21]. One con-
cludes that time-periodic two-dimensional quantum billiard
systems are restricted to the special cases mentioned so far.

C. The three-dimensional case

From what has been said, it becomes immediately clear
that any prism along the z axis will have eigenfunction sys-
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tems that can be completely expressed in terms of simple
trigonometric function products as long as the prism profile
is either shaped similar to a rectangle or like one of the three
triangles 60°-60°-60°, 45°-45°-90°, or 30°-60°-90°. If, in ad-
dition, the time period corresponding to a certain prism
length (z axis) is compatible with the transverse (x-y plane)
period of a given profile figure, the resulting temporal behav-
ior of the prism billiard will be periodic itself. The author is
not aware of the existence of any further billiards in three
dimensions sharing these characteristics.

III. QUANTUM BILLIARD ATOM OPTICS

The dynamics described by Eq. (7) are quite complex and
rich [22]. It is the main purpose of this paper first to sift out
those simple enough features that could turn out to be useful
for applications and, second, to cast them into a more con-
venient mathematical form. It is our conviction that if sys-
tems with such a unique time behavior do theoretically exist,
then it would be foolish not trying to make practical use of
them.

Atom optics provides a means to experimentally realize
quantum billiards under particularly clean conditions. The
realization of a one-dimensional atom billiard with walls
made of near-resonant laser light was proposed by Wilkens
et al. in [23]. A three-dimensional billiard atom “trap” in the
shape of a hexaedric box had been proposed even earlier
[24]. However, the first actual demonstration of atom bil-
liards took place in two dimensions [25,26].

There exist several optical means to realize both the ide-
ally flat (“quasi-two-dimensional”) billiard surface [27-29]
and variously shaped billiard walls [29-31] for atoms. To
date, experiments with these billiards have concentrated on
chaos-related questions in the quasiclassical regime [32].
By employing lighter atomic species in smaller-sized con-
finements, chaos could also be studied in the quantum do-
main [8].

It is this quantum domain in two dimensions which will
concern us exclusively. However, here we will be dealing
with the perfectly regular dynamics in the interior of rectan-
gular billiards with rational aspect ratios

2
B
Yy

a

as defined in Sec. II B. By doing so, we extend the original
proposal made in Ref. [8] to quite arbitrary situations and
introduce a superior—highly pictorial—algebraic formalism
for its description. Inasmuch as the detrimental effects
caused by wall imperfections (real-life billiard cushions are
never ideally hard nor are they inifinitely high) have already
been considered in [8] and shown to be rather unproblematic
under realistic experimental conditions, here we will neglect
them entirely.

The thick-bordered square in Fig. 1 represents the billiard
under scrutiny. Due to the chosen rationalization of spatial
variables, physical billiards of any aspect ratio appear as
squares. If an arbitrary initial (7=0) wave function is sym-
bolically represented by the letter “F,” the actual (i.e., natu-
ral) spatial period of the problem doubles the billiard lengths
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FIG. 1. (Color online) When represented in terms of the ratio-
nalized units defined in the main text, a rectangular billiard assumes
a square shape (thick lines). Its dynamics can be most easily ex-
pressed by extending the considered view into both spatial direc-
tions, ¢ and 7. In order to illustrate the symmetry properties of the
billiard wave function in the resulting additional fields (thin lines),
we consider an amplitude distribution in the shape of a letter “E.”

both along & and along 7. The correspondingly mirrored im-
ages of the initial wave function are also shown in the figure.
In order to study the time development, we again begin by
considering rational multiples,

m
=27, (11)
n

of the revival period 27. We then evaluate Eq. (9) at these
times and introduce identity (5) twice. As in Eq. (6), the
finite sums (with counter variables labeled u’ and v') can be
extracted and one obtains

¢<§, 772#%) = > > C(u' ,Nm,n)C(v',Mm,n)
w'=17v"=1
X E E Cﬂv'ffﬂ(g)‘/’v(ﬂ)COS(ZW—)
pu=1 r=1
XCOS(ZWV_I/). (12)
n

Following the same reasoning that eventually led to Eq. (7),
the double infinite series can be rewritten in terms of appro-
priately shifted copies of the initial wave function and we
arrive at

z,b(§, 7],277%) = E 2 C(u' ,Nm,n)C(v',Mm,n)

LI»—*

{ §+27‘r— 7]+27TV_ O)

u v
+ iyl é+27—,p-27—,0
n n
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FIG. 2. (Color online) If the situation depicted in Fig. 1 repre-
sents the state of the system at the initial time 7=0, then the poste-
rior evolution of the wave function depends on the aspect ratio of
the considered billiard. Here we depict the situation at the instant
7=17 for the cases M=1, N=1 (a) and M=1, N=2 (b).

M/ V/
+ 1//(5— 2m—,p+ 277—,0)
n n

+¢<§—277M7,,77—27T%,,0)}. (13)

We illustrate this result with the elementary examples de-
picted in Fig. 2. They correspond to the time instant 7=1r
Figure 2(a) represents the situation of a square, M/N=1.
Using the ingredients C(1,1,2)=1 and C(2,1,2)=0, one
verifies (&, n, m)=(é+ 1, p+ar,0). Similarly, case 2(b) re-
fers to a billiard with M/N=1/2. Here, also the identities
C(1,2,2)=0 and C(2,2,2)=1 are needed and one can
readily check that (&, 5, 7)=y(&, p+,0). The periodicity
relation

C(r,m+n,n) = C(r,m,n) (14)

is a direct consequence of definition (4). From it we can
conclude that Fig. 2(a) applies whenever both M and N are
odd, while Fig. 2(b) always applies for odd M and even N. A
third—not depicted—situation is obtained if M is even and N
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FIG. 3. (Color online) The “sliding tile puzzle” behavior shown
in Fig. 2 for the case m=1, n=2 suggests that the (extended) billiard
plane should be conveniently divided into n X n elementary “tiles”
or cells. The procedure and the introduced nomenclature is illus-
trated in the present figure for the example n=5.

is odd. Under these conditions, one computes (&, 5, )
=&+, 71,0). [The possibility that both M and N are even
leads to (&, n,m)=iy(€,7,0). This is expected, since the
fraction M/N in that case is manifestly reducible by a com-
mon factor of 2, so that according to Eq. (8) a correspond-
ingly halved period T is obtained.] This classification of all
possible dynamic alternatives is possible at any given time
instant m/n. Due to the n periodicity expressed by Eq. (14),
no more than n? different alternatives may exist.

Figure 2 visualizes how the fractional revival dynamics
described by Eq. (13) causes whole sections of billiards to be
shifted around as in a sliding tile puzzle. If T is divided into
n equal time intervals, it is thus natural to cut up the “object”
(the wave function distribution in the billiard) into nXn
square pieces. We therefore introduce an “object matrix”
¥, the elements (W , , of which are precisely those in-
dividual pieces of the wave function, as representatively
shown in Fig. 3 for the case n=5. The cyclic (or anticyclic)
rotation of the picture’s rows and columns along the two
axes, as observed in Fig. 2, is then mathematically described
by corresponding rotation matrices (1), (1) (acting from
the left) and (), (,)(—) (acting from the right), which for
the example of Fig. 3 read

o= = (5(<) (15)

S O O = O

S O = O O

oS = O O O

- o O O O

S O O O =
|

and correspondingly, by inversion, in the other cycling direc-
tions. In general, however, Eq. (13) expresses that opposite
directions are quantum mechanically superposed with equal
weights, and it is notationally convenient then to introduce
the v'th floor “quantum paternoster” operator symbol
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_ (n)(T)V, + (n)(l),,r

for row and, by analogy, n(:’),y for column rotations. It is
then possible to write Eq. (13) in matrix form, i.e.,

(,1)\1’(2”%): > C(v' . Mm,n)y(T1), |,y ¥(0)
V=1

n

x| X (' Nmn)y(S), | (A7)
w'=1

The beauty of this formulation is that the billiard table
(square, due to the chosen rationalization) can be directly
identified with a square matrix, which leads to an inherently
pictorial way of looking at the problem. This, in an unusual
way, is “matrix mechanics” in its purest form. The require-
ment that a time skip mT/n can be equivalently thought of as
a composition of m elementary time steps 7/n finds a par-
ticularly simple expression within this formalism. It implies
that expression (17) is equivalent to

m n m
w27 =| 2 ' Man)y(1 Dy | (¥ (0)
n v'=1
X[ 2 Cu' No)y(S), | - (18)

w'=1

At this point there is no need anymore to depict the whole
27 periods along & and 7 in our graphics. Figure 4, for
instance, shows merely the billiard plane itself (notice the
axes labels) and the evolution of an “F” initially placed into
one of its corners after a time 7/4. The resulting matrix
expressions are shown for three different aspect ratios. Since
the coefficients C(1,2,4), C(3,2,4), C(4,2,4), C(1,3.,4),
and C(3,3,4) all vanish, no other possibilities than those of
the figure exist. [That is, once more excluding the trivial
exact revivals that are obtained if the fraction M /N is reduc-
ible.] The remaining coefficients in this case read C(2,2,4)
=1, C(2,3,4)=(1-i)/2, and C(4,3,4)=(1+i)/2.

So far, in our graphics we have used wave distributions
shaped similar to an “F” in order to show unambiguously
how the images become periodically rotated and mirrored
inside a billiard. Now that this behavior has become clear,
however, we will only consider “blobs” of matter that are
symmetric both along the x (&) and along the y (7) axis. By
doing so, the shape of the blob, being merely a common
factor, can be pulled out of the matrices, as depicted sym-
bolically in Fig. 5. The actual shape of the blob becomes
irrelevant and the remaining, square matrices just contain
complex numbers which we will assume to be normalized in
such a way, that the sum of their squared moduli equals 1. By
stroboscopically synchronizing the detection of trapped at-
oms with the—intrinsically periodic—emergence of frac-
tional revivals in a given billiard, a set of blobs of identical
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FIG. 4. (Color online) The insight gained by the tiling intro-
duced in Fig. 3 allows us, first, to concentrate fully on the proper
billiard itself, as shown on the left-hand side of (a). As shown in the
same part (a) on the right-hand side, it allows us, second, to equiva-
lently substitute the (square) billiard plane by a (square) matrix. The
cross drawn with thin lines has only been introduced as a guide for
the eye. If a wave amplitude in the shape of an “F” is initially
placed into one corner of the billiard, as shown on the left of (a), its
time development will again depend on the aspect ratio of the con-
sidered billiard (i.e., before its rationalization). Three cases are il-
lustrated for the same instant of time, 7=1r/2. The right side of (a)
applies to the case M=1, N=1. The situation for M=1, N=2 is
depicted in (b). Finally, (c) illustrates what happens if M=2, N=3.

shape but varying amplitudes and phases (and conserved to-
tal intensity, i.e., norm) will be observed. Such intermittent
and nondestructive detection methods, based for instance on
far off-resonance phase imaging techniques, are common-

[E—
[\l
—-
— —
ol oL

FIG. 5. (Color online) We define a “blob” as a billiard-internal
wave function which is symmetric both along the & and # direc-
tions. At periodically timed space intervals, it becomes possible to
“pull” these blobs out of the matrices, which then end up containing
but numeric values, as illustrated in this figure. The situation de-
picted corresponds to the case shown in Fig. 4(b).

FIG. 6. (Color online) The figure makes explicitly clear, how the
orientation of the A4 billiard introduced in the main text is defined.
It also shows how the corresponding matrix elements are called and
what the short forms “tL” (top left), “bL” (bottom left), “tR” (top
right), and “bR” (bottom right) actually stand for.

place in time-domain atom optics experiments in order
to minimize the influence of the measuring apparatus on
the system that is being observed. The fact that real-life bil-
liard walls are of course neither perfectly hard nor infinitely
high leads to a loss of revival fidelity, caused especially by
the higher modes, which are by nature more susceptible to
the detailed shape of the optical potential that defines a bil-
liard cushion. Blobs with a soft, approximately Gaussian in-
tensity profile are therefore particularly convenient in the
sense that, on the one hand, their power spectrum falls off
rather quickly and, on the other, they are generally quite easy
to produce.

IV. THE “A4” (M=1, N=2) BILLIARD

Deviations from ideal wall characteristics set a lower limit
to the physical size that a billiard can attain before it loses its
fractional revival qualities. Since, according to Eq. (8), the
revival time in a two-dimensional billiard is proportional to
the enclosed area, an upper limit to its physical size is de-
fined by the average trap lifetime (to which various different
loss mechanisms usually contribute and which can nowadays
be as large as a few seconds and even more). For a given
billiard area, the aspect ratio parameters M and N should be
chosen to be as small as possible. The simplest and possibly
most convenient choice turns out to be M=1 and N=2,
which corresponds to a billiard in the shape of an A4 paper
sheet.

A. Vectorial representation and transformation matrices

For our intended purposes, we choose a revival time di-
vision factor of n=4, which (compare with Fig. 3) requires
us to divide the billiard into four symmetric sectors, as
shown in Fig. 6. Sectors will be labeled as indicated in the
figure and one blob will be placed in each of them. The
amplitude and phase of each blob will be interpreted as the
information content of its sector, which then plays the role of
a register. We will treat these registers on an equal footing
and thus prefer to write them using a column vector notation
of the form
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(19)

ZpL

For convenience, whenever from now on we talk about the
“right” and “left” (or, alternatively, about the “top” and “bot-
tom”) sections of the trap, we will be explicitly referring to
the rectangle orientation depicted in Fig. 6.

The discretized time evolution inside the billiard is de-
scribed by a set of unitary matrices acting on the vector (19).
We will denote the matrix corresponding to a time step of
m/n by R,,,. For instance, the situation depicted in Fig. 2(b)
(assuming a symmetric distribution) is mathematically ex-
pressed by the matrix

PHYSICAL REVIEW A 78, 012340 (2008)

0 i 01
R=£’“i01o o)
= hlo 1o i

10i o0

One readily verifies that R%M:Rm and that R%/2=1, as it
should be. Quite unexpectedly, however, the numerical simu-
lation of a billiard with these proportions shows that blobs
are reconstructed also at 1/8, 3/8, 5/8, etc. of the revival
time. In order to analytically see the reason for this, one
needs the following coefficients: C(1,1,8)=C(3,1,8)
=C(5,1,8)=C(7,1,8)=C(1,2,8)=C(2,2,8)=C(3,2,8)

=C(5,2,8)=C(6,2,8)=C(7,2,8)=0, C(2,1,8)=C(6,1,8)
=1/2, C(4,1,8)=(P™%)/2=-C(8,1,8), C(4,2,8)
=(e'™4)/ V2= C(8,2,8)*. A straightforward calculation then
demonstrates that the wave function at m/n=1/8 consists of

00 10 a weighted superposition of the four possible mirror images
R 0001 (20) of the initial wave function (taking Fig. 1 as an example, all
2= 1 000 symmetry variations of “F” become coherently combined).
Since here we are considering blobs that are by definition
0100 . : .
symmetric along both Cartesian axes, the blob image can
Similarly, the situation of Fig. 4(b) is described by once more be pulled out of the matrix, which then reads
J
V2-\2 —i2-\2 242 V2402
T —i2—\2 V2-2 242 2402
Rl/S = T . / — = — X = (22)
V8 | 242 2442 22 —i2-\2
\/2 + \6 i\/2 + \E - i\/2 - \6 \/2 - \E
|
This elementary time step, e.g., one eighth of the full revival 1
period, we shall define as our fundamental clock cycle. The 0
natural clock frequency of the A4 billiard is therefore twice (24)
as large as naively expected. As demonstrated numerically in 0
Ref. [8], the time windows at the blob revival times are 0

rather large and easily allow one to impinge controlled phase
shifts ¢;; on each blob by means of suitable laser pulses (i.e.,
via the dynamic Stark shift),

R 0 0

0 €% 0
Pt bprtp, = 0 0 e%r 0 (23)
0 0 0 €%

As we will show next, with the help of the ingredients (22)
and (23) it becomes possible to manipulate the four registers
Ziks ZiLs k> 2z, At Wll.

B. Generation of arbitrary states

In order to demonstrate how this works, let us assume that
a single blob has been deposited in the upper right billiard
register, so that initially the system’s state is described by

Our goal is to show that this state can be transformed into
any arbitrary state of our choice. The transformation (20) is
little useful for this purpose, inasmuch as it merely inter-
changes the upper and lower halves of the billiard. The pos-
sibilities offered by R;,, are richer and have already been
discussed in Ref. [8]. There it was noticed that

1 0

0 1
Posmao-miRia| o | = 2ol (25)

0 1

By introducing a relative phase shift « between the two com-
ponents, an arbitrary splitting ratio |z,z|/|z,z| can be obtained
after a further R,,, operation,
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0 ez(a+7r/4) + e—171'/4

2R
1 eia i 0 2L
R, ,— == . . = , (26
1/4 \12 0 2 et(a—ﬂ'/4) + 6177/4 ZuR ( )
1 0 ZpL
for
1-sina
el = —— (27)
and
1 +sin
Jeurl* = ——— (28)

On the other hand, the R;,, operator is incapable of changing
an initially given splitting ratio between the left and the right
side’s total intensities. That means that, irrespective of the
chosen input state, the identity

!
LR 2R
!
i <L
Risl | = (29)
bR bR
Z;,L pL

satisfies |zjl*+|zpl* =z, +|zp. ] and |z P +]zp, =zl
+|z,&|>. Consecutive applications of R,,, will thus only swap
the summed intensities between the left and the right half of
the billiard, yet without ever being able to modify them. It
can be considered quite fortunate (in the sense of not being a
priori obvious), that R allows to do precisely this, thus
leading to a simple and intuitive algorithm for the prepara-
tion of arbitrary quantum states. In order to see how this
works, we first notice that in the same time that it takes to
symmetrically split the initial blob (24) into a top-and-
bottom superposition state according to Eq. (25), it is equally
possible to create a symmetric left-and-right superposition by
applying the operator series

(30)

R8P0 w2, 3m2R 18

S O O =
=
Sk

O O = =

By introducing a relative phase (8 between the two resulting
components, an arbitrary splitting ratio (|z,z]>+|z,&l?)/ (|z,.]?
+|z,./*) can be obtained after a further R,,5 operation,

e'® iR

1 1 3L
RysT= o |7 "l (31)

V2 bR

0 ZpL

for
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1+sin B
|z * + |zpr)* = > (32)
and
1-sinfB
|zl + |zpr]* = T (33)

With this insight, we have in our hands a simple recipe for
creating an arbitrary state with components d,z, d,;, dpr, and
dy,; out of Eq. (24). First of all, one creates the superposition
state defined in Eq. (30). Next, one evaluates the value of
|d,;|*+|d,.|* and determines B from Eq. (32). A phase of this
size should then be impinged on the upper right blob. After
waiting for one clock cycle, the correct relative populations
between the left and the right sectors of the billiard will have
been established. The correct ratios between |d,gz| and |d,g|,
on the right side, and |d,;| and |d,;| on the left side of the
billiard can be now adjusted by inducing appropriate phase
shifts aj and a; on each side, and letting pass 1/4th of the
revival time. At this stage, the magnitudes |d,z|, |d,;|, |dyr
and |d,;| will have been correctly distributed in the billiard
plane. The only thing that remains to be done is to correct the
phases as required. All in all, the described process takes up
five elementary clock cycles. This does not of course imply
that particular states cannot be produced faster. However, it
does demonstrate that it is possible to develop an intuitive
feeling for the dynamics and to use this understanding to
achieve intended goals in a systematic way. Numeric tools
may be used instead to determine the optimum procedure to
be employed for a given task. Although at this stage we are
more interested in providing but a proof of principle, optimi-
zation aspects would definitely become important in the mo-
ment of practical implementation.

) s

C. Quantum search in a billiard

Our following example has been chosen to illustrate these
ideas. It demonstrates how Grover’s paradigmatic “quantum
search algorithm” [33] could be realized in a billiard system.
This algorithm was conceived to transform the initially un-
observable phase marking of a single item in a quantum list
(e.g., in our present case, one of the entries in a four-
dimensional column vector) into an easily identifiable ampli-
tude marking.

We begin with an “unbiased” state, i.e., one of the form

[u—

(34)

|
—_— = = =

It can be quite intuitively constructed by starting with an
initial, single blob (placed, for instance, in the upper right
billiard corner) and splitting it once along the top-bottom
axis and once along the perpendicular, left-right axis of the
billiard. A final phase correction leads to the desired state,
ie.,
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—im/4
e P—7T/2,—77/2,O,ORl/4Rl/8P0,7T/2,7T,37T/2Rl/8

o o O =
N | =
—_— = = e

(35)

Here we have used the fact that the matrix representation of
the triple operator product in the splitting sequence of Eq.
(30) is block diagonal,

1 1 0 0
111 -1 O
R8P0 w2, 3m2R 18 = E 00 -1 -11° (36)
0O 0 -1 1

Standard imaging techniques are sensitive to amplitudes
only. Detectors of this sort will not be able to discern the four
states

PHYSICAL REVIEW A 78, 012340 (2008)

-1 1 1 1
1|1 -1 1|1 1
- b - b - 2 o (37)
2| 1 2| 1 2|-1] 2

1 1 1 -1

obtained by impinging a 7 phase on one and only one of the
components of our unbiased state (34). Grover’s algorithm
allows one to transform these phase-marked states into cor-
responding amplitude-marked ones. It does so in such a way
that a one-to-one correspondence is established, thus allow-
ing to unambiguously identify each of the states (37).

A billiard version of this algorithm can be constructed by
slightly generalizing Eq. (35). In a first step, we identify an
operational means to bijectively transform the state of a
single initial blob placed in any one of the four billiard quar-
ters into each of the phase-marked states (37). The fact that
the blob starting position is a priori unknown implies that
some of the required phase-shifting pulses will actually hit
empty space. These “shots in the dark” are indeed a basic
and intuitively expected feature of such an algorithm. The
following time series demonstrates how it goes:

1 000 -1 1 1 1
P R, P Ry 5P R, 5P R s I (38)
0,—7/2,—7/2,0001/44 —7/2,0,0,7/2, 47 1/8% 0,7/2,7,37/2°M1/8% ww/4, /4, 7w/4,-37w/4 0010 - 2 1 -1 1
0001 I 1 1 -1
In a second step, we now invert this operator sequence. To do so, it is convenient to make use of the time-reversal relations
Ryy=¢"Py 200R1aP n.m00 (39)
and
Rig=e"™*P 1 00.2R18P 00, (40)
With their help, we finally obtain
-1 1 1 1 1 000
BT4p 0oR1sP R, 5P R, .P o I 0100 (41)
e 7,0,0,0001/84 377/2,m,7w/2,0001/81 0, 7/2,—7/2,08 0 1/4 77,377/2,77/2,02 1 -1 1 1 - 0010
1 1 -1 0001

D. Scalability—classical vs quantum computers

By appropriately introducing a new wall at the geometric
center of an A4 billiard, two billiards of the same aspect ratio
as the original one are obtained. This of course is the spirit of
the International Organization for Standardization (ISO) 216
norm that conveniently defines paper sheet aspect ratios by
an iterative process of symmetric dichotomies (leading to the
standard series denominated A0, A1, A2, A3, A4, etc.). This
is important to notice, since it easily allows us to extend our
previous results involving the four registers of a single bil-
liard to a cascade of nested, self-similar “billiard onions,”

thus providing a proportionally larger number of sectors, as
represented symbolically in Fig. 7.

There exist at least two good reasons to be interested in
the scalability of these kinds of systems. It had indeed al-
ready been proposed in Ref. [8] to interpret billiards as time-
domain interferometric devices. In this sense, billiard-in-a-
billiard architectures enable one to generalize the analog of
an elementary two-arm Mach-Zehnder interferometer to
multiple-path interference machines. Also for these larger
compounds it remains true that any conceivable state can be
generated. This crucial insight we would also like to illus-
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FIG. 7. (Color online) By removing the wall between two adja-
cent M =1, N=2 billiards, a new billiard with the same aspect ratio
is obtained. If the possibility to individually turn the intermediate
walls (dashed, dotted, and dash-dotted in this figure) on or off is
contemplated, it becomes possible to create “nested” billiard archi-
tectures. The blobs illustrate the method described in the main text
to create arbitrary states in such systems.

trate with the help of Fig. 7 and the nomenclature defined
therein.

The large A2 billiard on the right-hand side of the figure
comprises four elementary A4 traps with four registers each,
thus spanning a sixteen dimensional complex vector space.
Given an arbitrary (normalized) vector that we want to con-
struct, three steps are required for this purpose. First of all
we must make sure that every A4 sector in the A2 billiard
contains the correct intensity. Once this has been achieved,
the internal walls separating the four sections should be
turned on and each separate A4 billiard be manipulated ac-
cording to the recipe given in Sec. IV B in order to produce
the desired pattern. Finally, the internal walls can be re-
moved again and the target state will be ready. Steps 2 and 3
do not involve anything new, so that only step 1 needs to be
considered in more detail. As will be made clear in the next
paragraph, this first step does not require operation R;,g at
all. Consequently, there is no need whatsoever to presuppose
wave functions of a particular symmetry, as we had already
made visually clear in Figs. 2(b) and 4(b).

Here is how it goes. Starting point, as in Sec. IV B, is a
single blob in an A4 billiard, compare Fig. 7. Next, one
determines the desired total intensity on the left (L) and right
(R) sides of billiard A2 from the rated values of the final
state to be constructed. In order to correctly produce this
intensity ratio, the right border of A4 (i.e., the dashed line in
the billiard A3) must be removed and steps (25) and (26) be
applied to the resulting billiard (A3, see Fig. 7). This leads to
a pair of (generally nonidentical) blobs, as symbolically de-
picted. Now that the (L) and (R) intensities are correctly
implemented, the desired up and/or down intensity ratios on
each side can be calculated, all the internal walls in A2 be
removed and steps (25) and (26) be applied to this larger
(A2) billiard. At this stage, A2 will contain one blob of the
correct intensity in each of its four sectors and our goal will
have been met.

1. Classical computers

Now that it has become clear that arbitrary states can be
created in such a nested system of billiards, it has at the same
time been shown that the states can be manipulated at will.
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Since the probability densities in each “register” can also be
nondestructively measured by phase-imaging techniques, in-
formation feedback mechanisms become feasible. These bil-
liard systems can therefore be viewed as (classical) analog
computers in which the external, continuous control knobs
are represented by the phases that can be independently in-
duced in each billiard sector. In the atom optics context, this
corresponds to interpreting these two-dimensional trap arrays
as “atom chips” that (stroboscopically) operate in the time
domain and which, according to what has already been dem-
onstrated, can in principle be made as complex as desired.

The advantage of a time-domain approach to atom chips
can be illustrated by the fact that the first manifestly coherent
atom beam splitter on such devices was demonstrated in this
manner [34], years after the introduction of an analogous
component that operated in the spatial domain [35]. Such an
element is of course a basic building block for the construc-
tion of atom interferometers. One drawback of the rf-field
approach described in Ref. [34] (or in the earlier magnetic
microtrap proposal of Ref. [36]) is that care must be taken to
change the involved atom-optical potentials slowly enough
as to guarantee the adiabaticity of the wave function splitting
process in all moments. On the contrary, our proposed time-
domain “beam” splitter, as described for instance by Eqgs.
(25) and (30), does not involve any “moving parts” in the
sense of those adiabatically varying, external potentials. It is
intrinsically coherent and the time it takes to spatially sepa-
rate a wave packet depends exclusively on the built-in time
scale, i.e., the revival period (8) of the chosen system.

This leads us directly to the second reason, why the scal-
ability issue could be of utmost importance, namely in view
of the possibility to use these extended billiard systems as a
platform for (decoherence-time limited) quantum informa-
tion processing.

2. Quantum computers

It is conceptually important to keep emphasizing that the
mere fact that we are talking about matter waves does not
imply that the billiard systems under scrutiny are themselves
quantum computers. The phenomena discussed so far could
be well reproduced in an entirely classical frame using, for
instance, electromagnetic waves [4] or perhaps even water
waves.

Instead, the idea is to store the quantum information that
one intends to process in the internal state of the atoms
trapped in the billiard and to use the billiard as a means to
manipulate the external, i.e., motional atomic degree of free-
dom.

Most typically, qubits in atom optics are physically repre-
sented by suitably chosen two-level atomic transitions. Dif-
ferent proposals to implement universal quantum gates with
neutral atoms have been put forward [33]. Essential in all
these schemes is that two trapped atoms can be brought to-
gether and later separated again in a controlled way. In the
methods proposed so far, the required (adiabatic) particle
motion can be visualized and interpreted in classical terms.

Wave billiards, on the contrary, can be used to achieve the
same goal in a more subtle, manifestly quantum-mechanical
fashion. If we again consider an elementary (i.e., not nested)
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A4 trap as an example, we notice that the operator R g is not
required for the mere purpose of moving atom blobs around.
If we thus do not make use of single 27/8 time steps, this
implies, as we have already seen, that the left- and the right-
hand sides of the billiard do not become mingled if observed
at the corresponding fractional revival times. Thus, instead of
dealing with a four-dimensional complex vector space, one
would be effectively facing a physical situation representable
by a pair of mutually independent, two-dimensional complex
vector spaces.

Without loss of generality, we may therefore assume that
precisely two atoms are initially loaded into such a billiard,
say, into the top and bottom registers on its left-hand side.
Since their wave function will become delocalized, forming
a pair of distinct blobs on the right-hand side of the billiard
after 1/4 of a revival cycle, it is the dynamics of a billiard
itself that periodically—and without further ado—brings the
atoms spatially together in such a scheme. The implementa-
tion of a fast (“Rydberg”) phase gate based on an externally
triggered electric-dipole interaction [37] appears particularly
promising in this context. (The magnetic-dipole quantum
gate proposed in Ref. [38], on the other hand, would be
problematic, inasmuch as the phase-inducing interaction is
then necessarily “always on.”)

3. Conveyor belts

Despite its experimental difficulty, the deterministic deliv-
ery of single atoms into traps made of light has already been
repeatedly demonstrated. An interesting example involves
the controlled loading of an optical conveyor belt with a
preestablished number of atoms [39,40]. Figure 8 shows two
possible ways to realize optical conveyor belts by alternat-
ingly switching between a linear series of overlapping bil-
liards. As in Ref. [40], one expects such a device to be co-
herence preserving. Scheme 8(b) is faster than 8(a) by a
factor of 2. Of course, both devices should in principle
work perfectly well even if they are loaded with clouds of
atoms, which is actually the more common situation encoun-
tered in (“macroscopic”) atom optics. If the particles are in
the Bose-condensed state, however, nonlinear effects pro-
duced by weak atomic interactions can lead to a highly non-
trivial time evolution [41]. Fundamental limits for integrated
atom optics with Bose-Einstein condensates have been iden-
tified [42]. It is still an open question, if nonlinearities in
quantum billiard systems can be employed to create useful
nonlinear atom optical components.

V. CONCLUSIONS

We have developed a convenient formulation of the frac-
tional dynamics that governs the time development in a well-
defined class of quantum billiards. In the two-dimensional
case, we extensively discuss the important example of rect-
angular billiards with aspect ratios that are known to lead to
regular dynamic behavior. The simplicity of our treatment
should allow its inclusion in elementary quantum mechanics
lectures. Particle identity aspects could also be easily taken
into account in a pedagogical context.
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FIG. 8. (Color online) A ribbon made of consecutive adjacent
billiards can be used to spatially transport blobs as in a “bucket
brigade,” if one allows for the possibility to switch between alter-
nating billiard walls, as illustrated in the two schemes of (a) and (b).
In order to perceive the motion of the various blobs more clearly,
they have been coded with different shapes.

Billiards with proportions identical to an A4 paper sheet
have the important and distinct advantage that the introduc-
tion of just one additional wall can split the initial rectangle
into a pair of geometrically similar ones. This property is not
shared by the sole more elementary and particularly symmet-
ric paradigm of a rectangular billiard, i.e., the square one.
For this reason, we decided to pay special attention to the
possibilities offered by these A4 systems. This finally led us
to consider billiard-in-a-billiard architectures.

By stroboscopically restricting the observation of quan-
tum wave evolution to appropriately defined time intervals,
the arising revival structures offer a possibility of interpret-
ing the billiard plane as a collection of information-carrying
registers. Their time development can be expressed in terms
of discrete (unitary) matrix transformations. We present a
constructive method for generating arbitrary states in the so-
defined Hilbert space. For this purpose, the only requirement
is the ability to modify the phases of the individual registers
at will.

This leads to a direct link to interferometry, since it allows
to transform invisible phase differences into easily detectable
intensity signals. As a tangible example, we demonstrate
how the billiard-version of Grover’s (quantum) search algo-
rithm could be implemented. Nested billiard systems gener-
alize these concepts and lead to the analog of multiple path
interferometric devices.

The possibility to experimentally realize these ideas is
illustrated with the example of atom optics. Revival times
are inversely proportional to the mass of the trapped particle.
Their minimization is crucial for the construction of
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coherence-time limited devices, such as quantum computers.
Also electrons in semiconducting billiards [43] could be used
to implement the proposals discussed in this paper.

As far as the fractional wave evolution itself is concerned,
probably the simplest way of illustrating the rich dynamic
behavior would make use of electromagnetic waves. By ex-
ploiting the mathematical analogy to situations encountered
in the optics context (and briefly analyzed in the Appendix
A), a waveguide with rectangular cross section would, for
instance, serve this purpose. Another—maybe more immedi-
ate and pictorial—possibility is to employ correspondingly
shaped microwave billiards [44].

Now that a comfortable framework for the description of
the dynamics inside of “rational” rectangle billiards has been
established, it would be interesting to extend our understand-
ing by including additional variables. Ideally, these should
involve currently available experimental possibilities. With
the invention of laser “scanning” atom traps [45], for in-
stance, it has become feasible to study resonant phenomena
in rotating rectangular billiards [46]. New opportunities are
opened by our current ability to load atom chips with degen-
erate, weakly interacting fermions [47]. In a recent experi-
ment involving graphene, the phase-coherent transport of fer-
mions in quantum billiards has been investigated in a
completely different kind of systems [48]. In view of these
developments, we expect our study to represent a convenient
starting point for the analysis of more complex and physi-
cally richer billiard models.
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APPENDIX A: TALBOT EFFECT

Quantum billiard revivals are closely related to an optical
self-imaging phenomenon known as the Talbot effect [49].
Here we briefly elucidate this connection. Let us consider the
case of a plane monochromatic wave propagating along the
positive z direction,

W(x,z < 0,1) = ek, (A1)

At z=0, it traverses a (strictly periodic) grating of transmit-
tance
T(x)= X T,

==

(A2)

for which two assumptions are made. First, the grating con-
stant should be much larger than the employed wavelength,
k,<<k,. Second, beyond the evanescent cutoff diffraction or-
der w=k,/k,, the Fourier expansion contribution shall be
negligible, | u\>ﬁ|T,u|2<1' Under these circumstances, the
paraxial approximation can be applied and leads to a propa-
gation kernel of the Fresnel-Kirchhoff type [50],
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a Y

FIG. 9. Definition of angle y and segments a, b, and ¢ in a
parallelogram, as used in Appendix A.

¢(X,Z =0,1) = piot ikz / . kZ f dx’T(x')eikl(X_x,)z/(2Z)~
27z )

(A3)

It essentially modulates the incoming wave (A1) by a mani-
festly x-periodic and not-so-evidently z-periodic factor, as
can be explicitly verified by introducing series (A2) into Eq.
(A3), thus obtaining

©

Lo . . 2
w(x,Z = O,t) — e—lwtelkzz 2 Tuelﬂk'*xe_lzw# z/Z.
I,L:—OC

. J
VT

=T(x) at z=0,Z,2Z,3Z,...

(A4)

Here Z=4mk,/ ki denotes the self-imaging or “Talbot” re-
vival distance. This result slightly generalizes expression (2)
inasmuch as T(x) is not required to periodically vanish as in
the billiard case. (A completely analogous—optical—
situation in which the function is assumed to equal zero on
the boundaries arises in coherent waveguide image transmis-
sion. See Ref. [9] for a thorough mathematical treatment and
Ref. [51] for a review.) Fractional revivals (or “Fresnel im-
ages”) are again obtained by introducing (Talbot) coefficients
C(u',m,n) and making use of their defining properties, Eqgs.
(3) and (4). Although these results are monnaie courante in
the optics community, this is generally untrue for other areas
of research, and quantum mechanics in particular [52]. In
view of the school-level simplicity of the solution (and its
resulting mathematical wealth and beauty [53]), this is quite
astonishing and one is spontaneously led to ask, paraphrasing
Gori, why the Fresnel transformation is so little known [54].

In the two-dimensional case, there exist a larger set of
diffracting structures capable of self-imaging [55]. Doubly
periodic gratings, in particular, produce Talbot images if and
only if the squared ratio, (a,/ a},)z, of their periods along the
orthogonal directions x and y is a rational number. Since the
wave function is not required to vanish on the unit cell bor-
ders, there are no restrictions concerning their geometric
shape. This makes the situation quite more general than in
the case of billiards, where tiling requirements have been
shown to be extremely stringent. (Although rectangular unit
cells lead to the simplest formulation of the self-imaging
criterion, other possibilities have been considered in the lit-
erature as well [56]. Tiling with parallelograms characterized
by their side lengths a, b, and the enclosed angle y—see Fig.
9—has for instance been studied in Ref. [57]. Indeed, the
resulting pair of conditions, e.g., the quantities (a/b)cos y
and (a/b)?* to be both rational, immediately lead to the re-
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quirement c¢/a to be a rational number as well. This implies
that the two-dimensional grating in fact possesses rectangu-
lar unit cells and that their side-length ratio leads to Talbot
revivals. Hexagonal rasters satisfy the self-imaging criterion,
too. They play a role in insect vision [58,59] and they may
turn out to be useful in the context of atom optics nanofab-
rication as well [60,61].)

APPENDIX B: LANDSBERG-SCHAAR FORMULA

There exist many useful relations among the coefficients
C(u',m,n). Most of them are quite easy to prove, such as
Eq. (14). Here we derive one of the less trivial examples. It is
related to the so called “Landsberg-Schaar formula” for qua-
dratic Gauss sums, which plays a key role in analytic number
theory and states that for any positive integers m and n

e-m/422m ( nj2> 1 é ( mjz)
exp| 27— | =—F= exp| — 27— |.
JE;;j=1 p 4 ln p n

m 1 =1

(B1)

The standard proof of this identity (as given, for instance, in
Ref. [62]) presupposes detailed knowledge of theta functions
and their behavior around singular points. A physically in-
spired, yet rigorous proof of Eq. (B1) that avoids the need for
higher functions and nontrivial limiting processes was re-
cently described in [63].

Here we present a short and straightforward “physicist’s
derivation” of expression (B1). It is not intended to be a
strict mathematical proof in the above sense. But rather tries
to capture the essence of the problem by interpreting it in
terms of the introductory textbook example of diffraction at a
grating made of infinitely narrow slits. Starting with Eq. (A3)
and rationalizing units by defining é=kx and {(=27z/Z,
propagation within the paraxial approximation is described
by

(" .(é’—f)z]
: 0)=— dé' —_— ",0).
WEL>0) i) ¢ exp{z % |MEo

(B2)

Here, (&',0) denotes the initial wave function, which is
defined by the grating transmittance and assumed to be of the
form

WE(=0)= X 8- ¢&2m). (B3)

j:—x

This distribution, sometimes referred to as “Dirac’s comb,”
can be (formally) rewritten in terms of its Fourier series ex-
pansion,

WE0)= 2 et (B4)
et

After introducing Eq. (B3) into the Fresnel-Kirchhoff for-
mula (B2), one immediately obtains
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2 - i — )2
¢(§’§>O)=.—%E exp{i%

Vi j=—o
Introducing Eq. (B4) into the propagator (B2) and perform-
ing the Gaussian integrals, one obtains

]. (B5)

WEC=0)= D, ek, (B6)

j:—m

As much as the dependence on j is concerned, both expres-
sions are essentially of the same form and lead to the revival
dynamics already described in the main part of the paper. By
again choosing {=2mm/n, where m and n# 0 are (positive)
integers, and then introducing Eq. (3) into Eq. (B6), one
finds

lﬁ(f,f: 277@) => C(r,m,n) 2, 5(j_ £ £>.
h r=1 27 n

j:-oc
(B7)
By proceeding the same way with Eq. (B5), one equivalently

obtains
m 2m ., .no,
W EL=2m—|=\|—e"™ expl|i &
n n 8mm

4m
X > C*(r,n,4m)
r=1
oo 2 .
xEo{ﬂ_i_L). (B8)
jm—co n 27 2n

We identify the corresponding & peaks in Egs. (B7) and (BS),
and infer that C(r,n,4m)=0 for any odd r. Making use of
this property, Eq. (B8) can be rewritten

m 2m . n
¢<§,§=277—> N exp(i §2>
n n 8mm

2m
X >, C*(2r,n,4m)
r=1
oo 2 .
x> 6(—"1]—5—5), (B9)
oo n 27 n

thus allowing a more direct comparison with Eq. (B7). No-
ticing that every pair of indices (r,j) is responsible for ex-
actly one peak of the wave function, we arrive at

) r—2mj)? 2m
e i exp{ﬂﬂ'@} \/ —C*(2r,n,4m)
dmn n

=C(r+jln-2m],m,n). (B10)

Setting (r,j)=(2m,1) and using the Talbot coefficient defi-
nition (4), this identity reduces to the Landsberg-Schaar for-
mula (B1).
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