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By combining the Minkowski inequality and the quantum Chernoff bound, we derive easy-to-compute upper
bounds for the error probability affecting the optimal discrimination of Gaussian states. In particular, these
bounds are useful when the Gaussian states are unitarily inequivalent, i.e., they differ in their symplectic

invariants.
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I. INTRODUCTION

One of the central problems in statistical decision theory
is the discrimination between two different probability distri-
butions, intended as potential candidates for describing the
values of a stochastic variable. In general, this statistical dis-
crimination is affected by a minimal error probability pV),
which decreases with the number N of (independent) obser-
vations of the random variable. The general problem of de-
termining p¥) was faced by Chernoff in 1952 [1]. Remark-
ably, he derived an upper bound, today known as the
“Chernoff bound,” having the nontrivial property of provid-
ing p(N) in the limit of infinite observations (i.e., for N—
+). Very recently, a quantum version of this bound has
been considered in Refs. [2,3]. Such a “quantum Chernoff
bound” allows estimation of the minimal error probability
P™) which affects a corresponding quantum problem, known
as quantum state discrimination. In this problem, a tester
aims to distinguish between two possible quantum states of a
system, supposing that N identical copies of the system are
available for a generalized quantum measurement. The prob-
lem of quantum state discrimination is fundamental in sev-
eral areas of quantum information (e.g., quantum cryptogra-
phy [4]) and, in particular, for continuous-variable quantum
information [5]. Continuous-variable (CV) systems are quan-
tum systems with infinite-dimensional Hilbert spaces like,
for instance, the bosonic modes of a radiation field. In par-
ticular, bosonic modes with Gaussian statistics, i.e., in
Gaussian states [6], are today extremely important, thanks to
their experimental accessibility and the relative simplicity of
their mathematical description.

In the CV framework, the quantum discrimination of
Gaussian states can be seen as a central task. Such a problem
was first considered in Ref. [7], where a formula for the
quantum Chernoff bound has already been derived. In our
paper, we recast this formula by making explicit its depen-
dence on the symplectic spectra of the involved Gaussian
states. The computational difficulty of this formula relies on
the fact that, besides the symplectic spectra (easy to com-
pute), one must also calculate the symplectic transformations
that diagonalize the corresponding correlation matrices. The
derivation of these symplectic transformations can be in fact
very hard, especially when many bosonic modes are in-
volved in the process. In order to simplify this computational
problem, here we resort to standard algebraic inequalities,
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i.e., the Minkowski and Young’s inequalities. Thanks to
these inequalities, we can manipulate the formula of the
quantum Chernoff bound and derive much simpler upper
bounds for the discrimination of Gaussian states. These
bounds, which we call the Minkowski and Young bounds, are
much easier to compute since they depend on the symplectic
spectra only. Notice that, because of this simplification, these
bounds are inevitably weaker than the quantum Chernoff
bound. In particular, they are useful when the Gaussian states
are unitarily inequivalent, i.e., not connected by any unitary
transformation (e.g., displacement, rotation, or squeezing).
On the one hand, this is surely a restriction for the general
application of our results. On the other hand, inequivalent
Gaussian states arise in many physical situations, and easy-
to-compute upper bounds can represent the unique feasible
solution when the number of modes is very high.

The structure of the paper is as follows. In Sec. II we
review some of the basic notions about Gaussian states, with
a special regard for their normal mode decomposition. In
Sec. III we review the quantum Chernoff bound and refor-
mulate the corresponding expression for Gaussian states.
Section IV contains the central results of this paper. Here, we
derive the computable bounds for discriminating Gaussian
states by combining the quantum Chernoff bound with the
Minkowski determinant inequality and the Young’s inequal-
ity. We also provide a simple example in order to compare
the various bounds. Section V gives the conclusions.

II. GAUSSIAN STATES IN A NUTSHELL

Let us consider a bosonic system of n» modes. This quan-
tum system is described by a tensor product Hilbert space
H®" and a vector of quadrature operators X':=(g,

Pi»---»qn>Py) satisfying the commutation relations
[xAls)em] = 2is—llm (1 = l,m = 2”)3 (])

where

=1 \—-1 0

defines a symplectic form. An arbitrary state of the system is
characterized by a density operator p & D(H®") or, equiva-
lently, by a Wigner representation. In fact, by introduction of
the Weyl operator [8]

a0 1) >
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D(&) =exp(it'8) (£€ERY), (3)

an arbitrary p is equivalent to a Wigner characteristic func-
tion

x(é) = Tl pD(&)], (4)

or to a Wigner function

d2n
W= | L epcione. ©

In Eq. (5) the continuous variables x':=(q;,p;, ... qn.Pn)
are the eigenvalues of X’. They span the real symplectic
space KC:=(R>",Q) which is called the phase space.

By definition, a bosonic state p is called Gaussian if the
corresponding Wigner representation (y or W) is Gaussian,
ie.,

(&) = exp[— SEVE iin} , (6)

_expl- S -0V (x- %))
- 2m)" vdet V .

W(x) (7)

In such a case, the state p is fully characterized by its dis-
placement X:=Tr(Xp) and its correlation matrix (CM) V,
with entries

Vlm = Tr[{A)el’A)em}p]’ (8)

1
2

where AX;:=%,-Tr({;p) and { , } is the anticommutator. The
CM is a 2nX2n, real, and symmetric matrix which must
satisfy the uncertainty principle

V+iQ =0, 9)

directly coming from Eq. (1) and implying V>0.

Fundamental properties of the Gaussian states can be eas-
ily expressed via the symplectic manipulation of their CM’s.
By definition, a matrix S is called symplectic when it pre-
serves the symplectic form of Eq. (2), i.e.,

SQST=Q. (10)

Then, according to the Williamson theorem, for every CM V
there exists a symplectic matrix S such that

n
ST= s{ S, Vklk}sT,
k=1

(1

where the set {v,...,v,} is called the symplectic spectrum
[9]. In particular, this spectrum satisfies
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n
1T v =Vdetv, (12)
k=1

since det S=1. By applying the symplectic diagonalization
of Eq. (11) to Eq. (9), one can write the uncertainty principle
in the simpler form [10]

=1 and V>0. (13)

Normal mode decomposition of Gaussian states
and its application to power states

An affine symplectic transformation
(X,9):x — Sx +Xx (14)

acting on the phase space K:=(R?",Q) results in a simple
congruence transformation V— SVST at the level of the CM.
In the space of density operators D(H "), the transformation
of Eq. (14) corresponds instead to the transformation

p— UgspULs. (15)

where the unitary lA]iS:[A)(i) Us is determined by the affine
pair (X,S) and preserves the Gaussian character of the state
(Gaussian unitary). As a consequence, the symplectic diago-
nalization of Eq. (11) corresponds to a normal mode decom-
position of the Gaussian state

p= 0x,S|: (]g O'(Vk):|0;s’ (16)
where
2 -1V
o(v) = 2( ‘ >|j>k<i| (17)
Vk+lj=0 Vk+1

is a thermal state with mean photon number 7;=(v,—1)/2
{ j)k};';o are the number states for the kth mode). Thanks to
the normal mode decomposition (X,S,{»;}) of Eq. (16), one
can easily compute every positive power of an n-mode
Gaussian state p. In fact, let us introduce the two basic func-
tions

D, (x) = (x+ 1)’ * (x=1)7, (18)

which are non-negative for every x=1 and p=0. Let us also
construct

27 2°
A R T (19
and
A) = D (x) G+ DP+ =1 (20)

Do) e+ 1= (= 1)

Then, we have the following lemma.
Lemma 1. An arbitrary positive power p” of an n-mode
Gaussian state p can be written as

p"=(Tr p")p(p), (21)

where
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Tr p{? = H Gp(vk) (22)
k=1
and
n
p(p) = U)f,s (§ U[Ap(yk)] U;,S' (23)
Proof. By setting
1+ 77/<( Vi — 1)
_ — 24
Vi 1 - T = Tk v+ 1 ( )

into Eq. (17), we have the following equivalent expression
for the thermal state:

om) = (1= 2 2 7Ll (25)
=
By iterating Eq. (16) we get
n
= f]i,s{ %Zl) [ m)]”} Uls (26)
for every p=0. Then, from Eq. (25), we get

[o(n) )P =(1- m)”Z (ﬂp)j|]>k<l| )

Ea

27)

which, inserted into Eq. (26), leads to the expression

(1_77k) o Py
[IHI T HU [@0(%)]%{,5}. (28)

Now, from Eq. (28) we have

(1-m)”
Tr = kH] P (29)
and, applying Eq. (24), we get
n o
o=l e (0

which is equivalent to Egs. (22) and (19). Then we can easily
derive the symplectic eigenvalue vy, of the thermal state
o(7}) which is present in Eq. (28). In fact, by using Eq. (24),
we get

Lt (et D+ (=17
T l-g (m+ 1) - (m-1)r

i.e., v, is connected to the original eigenvalue v; by the A
function of Eq. (20). Finally, by inserting all the previous
results into Eq. (28) we get the formula of Eq. (21). [ |

Notice that, thanks to the formula of Eq. (21), the un-
normalized power state p” is simply expressed in terms of
the symplectic spectrum {v;} and the affine pair (x,S) de-
composing the original Gaussian state p according to Eq.
(16). In particular, the CM V(p) of the normalized power
state p(p) is simply related to the CM V=V(1) of the origi-
nal state p=p(1) by

=A,(m), (1)

Vi,
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n
V(p) = s{ gBl A,,(vk)lk]ST. (32)

III. QUANTUM CHERNOFF BOUND

Let us review the general problem of quantum state dis-
crimination (which we specialize to Gaussian states of
bosonic modes later in this section). This problem consists in
distinguishing between two possible states p, and pg, which
are equiprobable for a quantum system [11]. In this discrimi-
nation, we suppose that N identical copies of the quantum
system are available for a generalized quantum measure-
ment, i.e., a positive operator valued measure (POVM) [12].
In other words, we apply a POVM to N copies of the quan-
tum system in order to choose between two equiprobable
hypotheses about its global state p", i.e

 ®pyi=p,
N (33)

Hy:pV=p,®

and

© ® pg=py.
N (34)

Hp: pN=pp®

In order to achieve an optimal discrimination, it is sufficient
to consider a dichotomic POVM {EA,EB}, whose Kraus op-
erators £, and Ej are associated with the hypotheses H, and

Hp, respectively. By performing such a dichotomic POVM
{E A,E 5}, We get a correct answer up to an error probability

PN =

err

1
P(H,|Hp) + EP(HB|HA)

0o | =

1 A 1 A
= S Tr(Eapp) + S Tr(Egp}). (35)

Clearly, the optlmal POVM will be the one minimizing Perr
Now, since E W= =]-E 5, we can introduce the Helstrom matrix

[13]
Y= pp— pa- (36)
and write

1
J S . ETr(yEB) (37)

The error probability of Eq. (37) can be now minimized over
the Kraus operator E only. Since Tr(y)=0, the Helstrom
matrix vy has both positive and negative eigenvalues. As a
consequence, the optimal EB is the projector onto the posi-
tive part y, of 7y (i.e., the projector onto the subspace

spanned by the eigenstates of y with positive eigenvalues).
By assuming this optimal operator, we have

. 1
Tr(yEp) = Tr(y,) = 5 (38)

where
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I = Te|f = Ty Ty (39)

is the trace norm of the Helstrom matrix y. Thus, the mini-
mal error probability P := min Pg;? is equal to

1 1
P(N)=§<1 —5||Pg—PIX||1)~ (40)
The computation of the trace norm in Eq. (40) is rather
difficult. Luckily, one can always resort to the quantum
Chernoff bound [3]

pW < ngc)’ (41)
where
1
P(QNC) = Eexp(— KkN) (42)
and [14]
K= — m[ inf Tr(pjp};s)]. (43)
0=s=1

More simply, this bound can be written as

1
PR =—[ inf Q,]", -
Qc Z[OS.VSI Q ] ( )
where
Q,=Tr(pipyp ). (45)

Notice that the quantum Chernoff bound involves a minimi-
zation in the variable s. By setting s=1/2 in Eq. (44), one
can also define the quantum version of the Bhattacharyya
bound [15]:

1 —
Py = E[Tr(\@vpg)]” , (46)

which clearly satisfies
Poe =P (47)

In particular, for p,—pp=39p=0, one can show that ngc)
:P%N). Notice that we also have the following inequalities
[7,12]:

F_ = P(l) = Pg(): = F+’ (48)
where
PEEv— E(n o)
1 =1 =F(ps.pp) VE(pa-ps)
F_:= 5 F+ =T (49)
2 2
and
F(pa,pp) = [Tr(\ \’/EPB\"’PA)]2 (50)

is the fidelity between p, and pg [16]. In particular, if one of
the two states is pure, e.g., p4=|@)4{¢|, then we simply have

F(lo)alel, pp)
B

Pge= (51)
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Formula for Gaussian states

Let us now specialize the problem of quantum state dis-
crimination to Gaussian states of n bosonic modes. In this
case, the quantum Chernoff bound can be expressed by a
relatively simple formula thanks to the normal mode decom-
position (x,S,{»}) of Eq. (16).

Theorem 2. Let us consider two arbitrary n-mode Gauss-
ian states p, and pp with normal mode decompositions
(X4,S4,{}) and (Xz,Sg.{B:}). Then we have

0,=0, exp{— %dT[VA(S) + V(1 - S)]_ld} . (52)

where

211 G(a)Gy_y(BY
k=1

. . (53)
\"det[VA(S) + VB(I - S)]
In these formulas d: =X,—Xp and
n
VA(S) = SA|: @ As(ak)lk:| SZA-’ (54)
n
V(1 -5) =SB|: g—? Al—x(ﬂk)lk:|SlT3~ (55)
Proof. By applying Lemma 1 to Eq. (45), we get
Q,=N Trlpa(s)ps(1 - 5)], (56)

where

n

N:=(Tr pi)(Tr pp ") = [1 G @) G _(BY,  (57)
k=1

and p,(s),pp(1—s) are two Gaussian states defined according
to Eq. (23). In particular, the CM’s of these states are given
by Egs. (54) and (55) [according to Eq. (32)]. For an arbi-
trary pair of n-mode Gaussian states p,p’ with characteristic
functions x,x’ and moments (V,X) and (V’,X’), we have
the trace rule

Tr(pp’) = f
R2n

expl- 3X =X (V+ V)X -X')]

Y det(V +V l)
Then, by using Eq. (58) in Eq. (56), we easily get Egs. (52)
and (53). [ |

Thanks to the previous theorem, the Chernoff quantity Q,
can be directly computed from the normal mode decomposi-
tions (X4,S4,{ax}) and (Xz,Sg,{B}) of the Gaussian states.
Notice that this theorem is already contained in Ref. [7], but
here the formula of Egs. (52) and (53) is conveniently ex-
pressed in terms of the symplectic spectra {a;} and {8,}.

In applying this theorem, the more difficult task is the
algebraic computation of the symplectic matrices S, and Sp
to be used in Egs. (54) and (55). In fact, while finding the
symplectic eigenvalues {»;} is relatively easy (since they are

d2n
—E@on-o

-2 . (58)
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the degenerate solutions of a 2n-degree polynomial), finding
the diagonalizing symplectic matrix S is computationally
harder (since it corresponds to the construction of a symplec-
tic basis [17]). For this reason, it is very helpful to derive
bounds for the minimal error probability P®) that do not
depend on S and, therefore, are much easier to compute.

IV. COMPUTABLE BOUNDS FOR DISCRIMINATING
GAUSSIAN STATES

Let us derive bounds that do not depend on the affine
symplectic transformations (X,,S,) and (Xz,Sp), but only on
the symplectic spectra {a;} and {B;}. This is possible by
simplifying the determinant in Eq. (53) involving the two
positive matrices V4(s) and Vg(1-s). Such a determinant
can be decomposed into a sum of determinants by resorting
to the Minkowski determinant inequality [18]. In general,
such an algebraic theorem is valid for non-negative complex
matrices in any dimension (see, e.g., the Appendix). In par-
ticular, it can be specialized to positive real matrices in even
dimension and, therefore, to correlation matrices.

Lemma 3. Let us consider a pair of 2n X 2n real, symmet-
ric, and positive matrices K and L. Then, we have the
Minkowski determinant inequality

[det(K+L)]"?" = (det K)"*" + (det L)"?".  (59)

By combining Theorem 2 and Lemma 3, we can prove the
following theorem.

Theorem 4. Let us consider two arbitrary n-mode Gauss-
ian states p, and pg with symplectic spectra {c;} and {B}.
Then we have the “Minkowski bound”

1
ngc) = ™ = _[03{1 MS]N, (60)
where
M, = 4”|:H (o B) + [T ¥, (B, ak)] (61)
k=1 k=1
and

W, (x,y) = [OH 0D, ()], (62)
Proof. By taking the nth power of Eq. (59), we get
[det(K +L)]"? = [(det K)"*" + (det L)>"]".  (63)

This inequality can be directly applied to the CM’s V 4(s) and
V(1-s) of Egs. (54) and (55). Then, by inserting the result
into Eq. (53), we get

ZnH Gs(a'k)Gl—s(:Bk)
k=1

C= =M.
0 {[det V4(5)]"*" + [det V(1 —5)]"2"}" )
(64)
By using the binomial expansion and the relations
det V(s) = [T[A (@) 7, (65)
k=1
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det V(1 —s) = H (AL (BT, (66)
k=1

we get

1 z (n )H [A.Y(ak)]i/n[Al_x(ﬁk)]m-i),n. o

M;'=—
2" P Gy(a)Gy_(By)
Now, by using Egs. (19) and (20), we get

n n iln
YRRy (n ) [H CD:(ak)(DT—s(ﬂk):|

s T an
4% \i k=1

i

n (n—i)/n
X [ IT (I);(ak)q);——s(ﬂk)] ; (68)
k=1

and, by using Eq. (62), we derive

=L () [ Il wk,ﬂk)] [H w]_.mk,ak)]

~ an
4% \i

n—i

1 n n n
= 47 [ 1_.[ \Ifs(ak’ :Bk) + 1_.[ \Pl—s(ﬁk’ ak):| . (69)
k=1 k=1

The latter quantity corresponds to the inverse of the one in
Eq. (61). Now, since every convex combination of positive
matrices is still positive, we have that exp{---}=1 in Eq.
(52). Then we get

0,=0,=M,, (70)

leading to the final result of Eq. (60). |
The basic algebraic property which has been exploited in
Theorem 4 is the concavity of the function *"\det on every
convex combination of 2n X 2n positive matrices (like the
correlation matrices). Such a property is simply expressed by
Eq. (59) of Lemma 3. It enables us to decompose the deter-
minant of a sum into a sum of determinants and, therefore, to
derive the bound in the “sum form” of Eq. (61). Now, thanks
to the Young’s inequality [19], every convex combination of
positive numbers is lower bounded by a product of their
powers, i.e., for every k,/>0 and 0= #= 1, one has

Ok + (1 - 6)l = k%', (71)

As a consequence, every sum of positive determinants can be
bounded by a product of determinants. Then, by applying the
Young’s inequality to Theorem 4, we can easily derive a
weaker bound which is in a “product form.” This is shown in
the following corollary. Notice that this bound can be equiva-
lently found by exploiting the concavity of the function
“log det” on every convex combination of positive matrices.
(See the Appendix for details.)

Corollary 5. Let us consider two arbitrary n-mode Gauss-
ian states p, and pg with symplectic spectra {a;} and {B,}.
Then we have the “Young bound”

1
MM < yW™ = —|: inf YS:|N, (72)

0=s=1

where
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Y,=2"T] Ty(a)T\_(BY- (73)
k=1
and
[0 =[x+ 1) = (x = D>, (74)

Proof. From Eq. (71) with 6=1/2, we have that every pair
of real numbers k,/>0 satisfies

k+1=2Kl. (75)
Then, for positive K and L, we can apply Eq. (75) with
k= (det K)"?">0, [:=(detL)"*">0. (76)
This leads to the further lower bound
[(det K)"?" + (det L)"?"]" = 2"[det K det L]"*. (77)

By applying Eq. (77) to the CM’s V(s) and Vg(1-s), and
inserting the result into Eq. (64), we get
Gs(ak)Gl—s(ﬂk)

M=]] =Y,  (78)
o1 Vdet V (s)det V(1 —s)

n

Then, by using Egs. (65) and (66), we can write

Gs(ak)Gl—x(ﬁk)
Y, =] et 79
k=1 \”As(ak)\”Al—s(:Bk) ( )

n

Exploiting Egs. (19) and (20), we can easily derive Eq. (73),
where

T,(x) = [®F ()5 ()] 12, (80)
also equivalent to Eq. (74). Finally, since M=, the result
of Eq. (72) is straightforward. |

As stated in Theorem 4 and Corollary 5, the two bounds
MW and Y™ depend only on the symplectic spectra {c;} and
{B} of the input states p, and pg. As a consequence, such
bounds are useful in discriminating Gaussian states which
are unitarily inequivalent, i.e., such that

for every unitary U. In fact, since ps and pp are Gaussian
states, every unitary U such that p,=UpgU’ must be a

Gaussian unitary U= Ugs. Its action corresponds therefore to
an affine symplectic trasformation (X,S), which cannot
change the symplectic spectrum (so that {ay}={B:}).
Roughly speaking, the previous bounds are useful when the
main difference between p, and pp is due to the noise, whose
variations break the equivalence and are stored in the sym-
plectic spectra. This situation is common in several quantum
scenarios; for instance, in quantum illumination [20,21],
where two different thermal-noise channels must be dis-
criminated, or in quantum cloning, when the outputs of an
asymmetric Gaussian cloner [22] must be distinguished.

Discrimination of single mode Gaussian states:
An example

Let us compare the bounds of Theorem 4 and Corollary 5
with the fidelity bounds of Eq. (48) in a simple case. Accord-

PHYSICAL REVIEW A 78, 012331 (2008)

ing to Ref. [23], the fidelity between two single-mode Gauss-
ian states p, and pg, with moments (V,,X,) and (Vg,Xp), is
given by the formula

F(pa,pp) = mﬁXP[— %dT(VA + VB)_ld:| )
(82)
where
A:=det(V,+Vp), &:=(detV,—1)(detVg—1),
(83)

and d: =X, —Xjp. Let us discriminate between the two single-
mode states: py=0(1)=|0){0| (vacuum state) and pz=o(p)
(arbitrary thermal state). In such a case, it is very easy to
compute the infima of M, and Y, in Egs. (60) and (72),
respectively. In fact, by exploiting
O, (1) =[T,(D]"'=2", Pjx)+Dy(x) =2(x+ 1),
(84)
we get
( 2 )l—s 2
M= , Y= , (85)
BASEYC SN - (8- D

whose infima are taken at s=0 and 1, respectively. As a
consequence, for a single copy of the state, we have

1
MV=1+p7, YW=—r (86)
AV
At the same time, we have
Flpapp) =2(1+B)7", (87)
which implies
1 1 /B-1 1
===\ = (88)
2 2VB+1 201+
By using Eq. (51), we also derive
Pol=(1+p7". (89)

As evident from Fig. 1, the Young bound Y'! is tighter than
the fidelity bound F,, while the Minkowski bound M M co-
incides exactly with Pgé in this case.

V. CONCLUSION

We have considered the general problem of discriminating
two Gaussian states of n bosonic modes, supposing that N
copies of the state are provided. To face this problem, we
have suitably recast the formula for the quantum Chernoff
bound given in Ref. [7]. By combining this formula with
classical algebraic inequalities (the Minkowski determinant
inequality and Young’s inequality) we have derived easy-to-
compute upper bounds whose computational hardness is
equivalent to finding the symplectic eigenvalues of the in-
volved Gaussian states. Since these upper bounds depend
only on the symplectic spectra, they are useful in distinguish-
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0 5 10 15 20

FIG. 1. Behavior of the various bounds YV, M), Pgé F,, and
F_ versus the eigenvalue S in the discrimination of a thermal state

o(B) from a vacuum state. Notice that M (1)=P8% in this example.

ing Gaussian states which are unitarily inequivalent. This is
indeed a common situation in various quantum scenarios
where the noise is the key element to be discriminated. For
instance, the discrimination between two different thermal-
noise channels is a basic process in quantum sensing and
imaging, where nearly transparent objects must be detected
[20,21]. Potential applications of our results concern also
quantum cryptography, where the presence of noise is related
to the presence of a malicious eavesdropper.
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APPENDIX: BASIC ALGEBRAIC INEQUALITIES

For completeness we report some of the basic algebraic
tools used in our derivation (see also Refs. [18,24,25]). Here

PHYSICAL REVIEW A 78, 012331 (2008)

we denote by M(m,C) the set of m X m matrices with com-
plex entries.

Theorem 6 (Minkowski determinant inequality). Let us
consider K,L € M(m,C) such that K'=K=0 and L'=L
=(. Then

[det(K + L)]"" = (det K)'"" + (det L)"™. (A1)

More generally

{det[6K + (1 — OL]}"™ = 6(det K)"" + (1 — 6)(det L)""™,
(A2)

for every 0=6=1.
By taking the mth power of Eq. (A1), it is trivial to check
that

det(K+ L) =det K +det L. (A3)

Then, by using the Young’s inequality of Eq. (71), we can
easily prove the following corollary.

Corollary 7. Let us consider K,L €M(m,C) such that
K'=K>0 and L'=L>0. Then

det[ 6K + (1 — O)L] = (det K)¥det L)'~?, (A4)

for every 0=6=1.

Proof. By setting k:=(det K)"">0 and [:=(det L)""
>0, we can apply Eq. (71) to the right-hand side of Eq.
(A2). Then, we get the result of Eq. (A4) by taking the mth
power. |

Notice that, by taking the logarithm of Eq. (A4), we get

JIOK + (1 — OL] = 6f(K) + (1 — §)f(L), (A5)

where

f(M) := log det(M). (A6)

In other words, Corollary 7 states that the function “log det”
is concave on convex combinations of positive matrices.
Theorem 6 instead states that the function m\«"dT:t 1S concave
on convex combinations of m-square non-negative matrices.
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