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We investigate the monogamy nature of entanglement in a three-qubit system. A monogamy inequality is
presented to describe the exclusive relation between the A-B two-qubit concurrence CAB and the AB-C three-
qubit concurrence C�AB�C, which represents the entanglement between qubits A and B as a whole and the third
qubit C. It is found that the entanglement between any two qubits in a three-qubit system is limited by the
entanglement between these two qubits and another qubit. As a consequence, we present the upper bounds for
the concurrence CAB, when the concurrence between qubits A and C �CAC� and the concurrence between qubits
B and C �CBC� are both given or one of the two is provided.
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I. INTRODUCTION

Entanglement plays an important role in distinguishing
quantum theory from classical physics. Owing to its fascinat-
ing properties and many promising applications in informa-
tion science, entanglement is attracting more and more atten-
tion. During the last decade, great progress on entanglement
has been made in various aspects, such as its quantification
�1–5�, generation �6�, applications �7�, and experimental re-
alization �8�, etc. However, as a typical counterintuitive con-
cept in quantum word, entanglement is still far from being
completely understood. Recently, a very interesting property
of entanglement, usually called “monogamy nature of en-
tanglement” was discovered and frequently discussed, that is,
the degree of entanglement between any two objects A and B
will be limited if the object A �or B� is being entangled with
another object C. In the extreme case with maximally en-
tangled A �or B� and C, the composite system A-C �or B-C�
must stay in a pure state �9� and thus be separable to the rest
object B �or A�.

The first inequality for the quantification of the entangle-
ment monogamy was achieved by Coffman, Kundu, and
Wootters in 2000. In a tripartite system composed of qubits
A, B, and C, by regarding any two of the three qubits, e.g., A
and B, as a single object and two independent objects, re-
spectively, they find that the squared sum of the concurrence
between qubit A and C and the concurrence between qubit B
and C cannot exceed the squared concurrence between qubit
C and the composite object �AB� �10�, i.e.,

CAC
2 + CBC

2 � C�AB�C
2 . �1�

The generalization of the above monogamy relation to
n-qubit states, which is conjectured by Coffman, Kundu, and
Wootters in Ref. �10�, has been proven recently by Osborne
and Verstraete in Ref. �11�. In addition, if the concurrence for
two-qubit entanglement is replaced by other entanglement
measures, such as distillable entanglement �1�, negativity �4�,

and squashed entanglement �5�, the monogamy relation �1� is
also valid �12,13�. In continuous variable systems, a similar
constraint relation �14�, or even a stronger one �15�, can be
established in N-mode Gaussian states.

Another type of monogamy inequality for the entangle-
ment is related to the entanglement of assistance �EOA� �16�.
Given a tripartite quantum state ��ABC� with the three parties
A, B, and C belonging to three players Alice, Bob, and Char-
lie, respectively, Charlie can in principle find a suitable set of
local measurements to keep the state of the subsystem A-B,
i.e., �AB=TrC���ABC���ABC��, invariant and maximize the av-
erage entanglement between the other two parties A and B.
This maximum value of the average entanglement between A
and B, with the aid of the local operations of Charlie on party
C, is called “entanglement of assistance” Ea��AB� �16�. As is
well-known, provided an entanglement measure E���AB�� for
an arbitrary bipartite pure state ��AB�, the corresponding en-
tanglement for a mixed state �AB is then defined as

E��AB� � min
	pi,��i�


�
i

piE���i�� , �2�

where 	pi , ��i�
 stands for pure state decompositions of the
mixed state �AB, satisfying �AB=�ipi��i���i�. Following this
line, the EOA mentioned above can be mathematically de-
scribed by

Ea��AB� � max
	pi,��i�


�
i

piE���i�� . �3�

Obviously, for any bipartite state �AB, the EOA Ea��AB� is
always larger than or equal to the entanglement E��AB� �17�.
In terms of concurrence of assistance �COA� �18�, which is a
special type of EOA and also an entanglement monotone for
2 � 2 � n tripartite pure states �19�, the above conclusion can
be generalized into the case of n-qubit states �20�,

CAB�1�
2 + CAB�2�

2 + ¯ + CAB�n−1�
2

� SL��A� � Ca
2 + Ca

2��AB�2��

+ ¯ + Ca
2��AB�n−1�� , �4�

where CAB�i� is the concurrence of the system composed of
two particles A and B�i�, and SL��A� being linear entropy �21�*hjhxyx@yahoo.com.cn
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with respect to the reduced density matrix �A.
Since a quantum system being entangled with another one

would limit its possible entanglement with a third system, we
ask ourselves the following two questions. First, given the
entanglement between any two subsystems of an A-B-C tri-
partite system, e.g., E��AC� or E��BC�, what are the upper and
lower bounds for the entanglement E��AB�? Second, in the
same tripartite system, if the entanglements E��AC� and
E��BC� are both provided, what is the limitation on the en-
tanglement E��AB�? In this paper, we focus on the simplest
tripartite system composed of three qubits A, B, and C. After
providing a monogamy relation between the entanglement
CAB and the entanglement C�AB�C, where CAB represents the
concurrence between qubits A and B, and C�AB�C represents
the concurrence between the qubits A and B as a single ob-
ject and qubit C, we will present some typical examples and
then give the answers to the above questions.

II. MONOGAMY RELATION IN A THREE-QUBIT STATE

A. Entanglement of a bipartite 4‹2 quantum state

In a tripartite state composed of three qubits A, B, and C,
if the first two qubits A and B are considered as a single
object, denoted by �AB� in this paper, such a three-qubit state
is equivalent to a bipartite 4 � 2 quantum state. To quantify
the entanglement of a pure 4 � 2 quantum state, many com-
putable measures could be chosen, such as � concurrence
�22� and I concurrence �23�. Just as done in Ref. �10�, here
we quantify the entanglement of a pure 4 � 2 quantum state,
���AB�C�, in terms of linear entropy, which is defined by �21�

C2����AB�C�� = SL���AB�� = 2�1 − Tr ��AB�
2 �

= SL��C� = 2�1 − Tr �C
2 � , �5�

where ��AB�=TrC����AB�C����AB�C�� and �C
=Tr�AB�����AB�C����AB�C�� are the reduced density matrices
with respect to the first object composed of qubits A and B,
and the second object with single qubit C, respectively. Simi-
lar to concurrence for two-qubit states, the linear entropy of
entanglement of a bipartite pure 4 � 2 state is also directly
determined by the reduced density matrix, and they even
present the same result for a pure two-qubit state and a pure
4 � 2 state if the reduced density matrices of the two quan-
tum states have the same eigenvalue spectrum. In this paper,
we use the symbol C�AB�C to represent the entanglement be-
tween the first object �AB� and the second object �qubit C� in
a three-qubit state and call it concurrence too. Given two
eigenvalues, �1 and �2=1−�1, for the reduced density matrix
���AB� or �C� of a three-qubit pure state ���AB�C� �as men-
tioned above, considering the two qubits A and B as a
whole�, the concurrence C�AB�C can be calculated by �10�

C�AB�C = 2��1�2 = 2��1�1 − �1� . �6�

B. Maximal concurrence of two-qubit states having two fixed
nonzero eigenvalues

The reduced state of a three-qubit pure state has at most
two nonzero eigenvalues, no matter what subsystem, a

single-qubit state or a two-qubit state, is under consideration.
Here we assume the reduced density matrix of a three-qbuit
state, �AB=TrC��ABC���ABC�, has two eigenvalues �1 and �2,
with �1	�2. That is to say, the reduced two-qubit state �AB
can be generally described by a diagonal matrix 
 and a 4
�4 unitary transformation U,

�AB = U
U†, �7a�

with the diagonal matrix 
 being determined by two eigen-
values �1 and �2 through


 = diag��1,�2,0,0� . �7b�

Now we want to know if the two nonzero eigenvalues �1 and
�2=1−�1 ��1	�2� of a two-qubit state are provided, but the
detailed information about the unitary transformation U in
Eq. �7a� is not clear, what is the maximal and minimal con-
currence we can estimate for such a two-qubit state? As is
well-known, the concurrence of a two-qubit state �AB is cal-
culated through

CAB = max	0,��1 − ��2 − ��3 − ��4
 , �8�

with �1, �2, �3, and �4 being eigenvalues of the matrix
�AB�̃AB=�AB�y � y��AB

� �y � y� in decreasing order. Based
on Eqs. �7�, the �AB�̃AB in our present case could be written
as

�AB�̃AB = U
U†�y � y��U
U†���y � y�

= U
U†�y � y�U�
UT�y � y� . �9�

Since the concurrence of �AB is strictly determined by the
eigenvalues of �AB�̃AB, we can make a similar transformation
on the above matrix,

U†�AB�̃ABU = 
S†
S , �10�

where S=UT�y � y�U is a symmetric unitary matrix, and
solely determined by the matrix U in Eq. �7a� �UT represents
the transpose of the matrix U�. Thus the concurrence of the
state �B� is now determined by the eigenvalues of 
S†
S. As
a similar matrix of 
, the matrix S†
S has the same eigen-
value spectrum with 
, i.e., 	�1 ,�2 ,0 ,0
.

The following question is, what are the minimal and
maximal concurrences of the state with the form �7� by scan-
ning the matrix U in Eq. �7a� over all 4�4 unitary matrices,
or equivalently scanning the matrix S in Eq. �10� over all 4
�4 symmetric unitary matrices? The minimal one is easy to
achieve. In Eqs. �7�, if we chose the matrix U as the four-
dimensional unity matrix, all four eigenvalues of �AB�̃AB
�and also 
S†
S� are zero, which corresponds to zero con-
currence.

The derivation of the maximal concurrence for the state
�7� is a little more complicated. Based on matrix theory,
given two semipositive n�n matrices M1 and M2 with ei-
genvalues 	�1 , . . . ,�n
 and 	�1 , . . . ,�n
 in decreasing order,
respectively, the eigenvalues of the product of M1 and M2 are
bounded by �1�1 from above and by �n�n from below �24�.
Since the two matrices 
 and S†
S in Eq. �10� have the
same eigenvalue spectrum with �1 being the maximal one,
we know that the maximal eigenvalue of the matrix 
S†
S
is �1=�1

2. This maximal eigenvalue is always achievable,
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e.g., we can choose such a matrix S with the following form:

S = diag	1,S3
 , �11�

where the block S3 is an arbitrary three-dimensional symmet-
ric unitary matrix.

Our following task is to find the minimal value of ��2
+��3+��4 to maximize the concurrence in Eq. �8�. In the
ideal case, the three eigenvalues, �2, �3, and �4, should be
set to zero. Fortunately, this ideal case is also achievable. For
example, we can choose

U =
�2

2 
1 0 0 i

0 0 �2 0

0 �2 0 0

− 1 0 0 i
� �12a�

in Eq. �7a�, corresponding to

S =
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1
� �12b�

and

�AB =
1

2
�1 0 0 − �1

0 0 0 0

0 0 2�2 0

− �1 0 0 �1

� . �12c�

The above two-qubit state �12c� has two nonzero eigenvalues
�1 and �2, and the four eigenvalues of �AB�ÃB are
	�1

2 ,0 ,0 ,0
, which implies the maximal concurrence CAB
max

=�1. Thus we conclude that for a two-qubit state �AB with
two fixed nonzero eigenvalues �1 and �2=1−�1 ��1	�2�,
the possible concurrence CAB is confined in the range �0,�1�.

C. Monogamy inequality in a three-qubit state

Now let us consider the above two conclusions together.
According to the discussion in Sec. II A, a two-qubit state
with two fixed nonzero eigenvalues �1 and �2=1−�1 can
represent the reduced density matrix of an �AB�-C three-
qubit pure state, and the concurrence between the composite
object �AB� and qubit C is evaluated by C�AB�C
=2��1�1−�1�. At the same time, the possible concurrence of
such two-qubit states has a maximal value CAB

max=�1 �we
have assumed that �1	�2�. That is to say, in a three-qubit
pure state ���AB�C�, the concurrence between qubits A and B,
CAB, is limited by the concurrence between the composite
object �AB� and qubit C, C�AB�C, through the following rela-
tion:

CAB �
1

2
�1 + �1 − C�AB�C

2 � . �13�

Obviously, the entanglement between qubits A and B does
not favor the participation of the third party C because the
maximal concurrence CAB decreases with increasing concur-

rence C�AB�C. This phenomenon is in accord with the mo-
nogamy nature of entanglement. From Eq. �13�, we also see
that the disturbance of the third qubit C on the previous two
qubits A and B as a whole cannot completely destroy the
quantum correlation between qubits A and B. That is, given
an arbitrary value for the concurrence C�AB�C, we can always
find a suitable three-qubit state, in which the qubits A and B
are entangled with concurrence not less than 0.5. For ex-
ample, in the extreme case with C�AB�C=1, we can choose
such a three-qubit state ���= 1

2 �100�+ 1
2 �010�+ 1

�2
�001�, in

which CAB=0.5.
In the following, we present the proof that the above mo-

nogamy inequality �13� also holds for mixed three-qubit
states. By tracing a mixed three-qubit state �ABC over the
degrees of one subsystem, e.g., qubit C, the reduced density
matrix �AB=TrC��ABC� is a general two-qubit state, usually
having four nonzero eigenvalues, i.e.,

�AB = U
U†, �14a�

with 
 being a diagonal matrix


 = diag��1,�2,�3,�4� . �14b�

Without loss of generality, we assume the four eigenvalues
�1, �2, �3, and �4 in Eq. �14� satisfy �1	�2	�3	�4. In the
case of �1�

1
2 , we can rewrite the diagonal matrix 
 as


 = ��1 −
�1�2

1 − �1
+

�1
2�3

�1 − �1�2 −
�1

3�4

�1 − �1�3�diag�1,0,0,0�

+ � �2

1 − �1
−

�1�3

�1 − �1�2 +
�1

2�4

�1 − �1�3�diag��1,1 − �1,0,0�

+ � �3

1 − �1
−

�1�4

�1 − �1�2�diag�0,�1,1 − �1,0�

+
�4

1 − �1
diag�0,0,�1,1 − �1�

= p0
0 + p1
1 + p2
2 + p3
3, �15�

where the diagonal matrices 
 j �j=1,2 ,3� have two nonzero
eigenvalues �1 and 1−�1. According to the result in Sec.
II A, each one of them corresponds to a pure 4 � 2 state with
concurrence 2��1�1−�1�. The matrix 
0 in Eq. �15� repre-
sents a pure state component in a decomposition of the re-
duced state �AB, which is related to a product state compo-
nent in the state ��AB�C. The coefficients pj �j=0,1 ,2 ,3� are
the probabilities of components 
 j�j=0,1 ,2 ,3�, satisfying
� j=0

3 pj =1. In the case of �1	
1
2 , we can also find a decom-

position of 
 by exchanging �1 and 1−�1 to each other in
Eqs. �15�. That is


 = p0�
0� + p1�
1� + p2�
2� + p3�
3�, �16�

where the diagonal matrices 
 j� �j=1,2 ,3� also have two
nonzero eigenvalues �1 and 1−�1, and each one of them
corresponds to a pure 4 � 2 state with concurrence
2��1�1−�1� in a decomposition of the mixed state ��AB�C.
Based on the convexity of the entanglement of a mixed state,
which is usually defined as the minimum average entangle-
ment among all pure state decompositions �see expression
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Eqs. �2��, the concurrence of ��AB�C in both cases �15� and
�16� should satisfy

C�AB�C � �
i=0

3

piC
i
= 2��1�1 − �1��p1 + p2 + p3�

� 2��1�1 − �1� ,

or

C�AB�C � �
i=0

3

pi�C
i�
= 2��1�1 − �1��p1� + p2� + p3��

� 2��1�1 − �1� , �17�

where we have used the symbols C
i
�or C
i�

� to represent
the concurrence of a pure 4 � 2 state, whose reduced state is
similar to the diagonal matrix 
i �or 
i��.

The upper bound for the concurrence of Eq. �14� can be
achieved in a similar way as in Sec. II B. Assuming the four
eigenvalues of �AB�ÃB, or equivalently 
S†
S, in decreasing
order are �1, �2, �3, and �4, the concurrence CAB is calcu-
lated by ��1−��2−��3−��4. At the same time, the maxi-
mal eigenvalue of 
S†
S is bounded by the product of the
maximal eigenvalues of 
 and S†
S, i.e., �1��1

2. Thus we
have

CAB � ��1 � �1. �18�

This result provides a mathematical evidence that all maxi-
mally entangled two-qubit states with unity concurrence are
pure states �9� because the maximal eigenvalue �1 for all
maximally entangled states has to be set to one according to
the above Eq. �18�, which leaves the remaining three eigen-
values vanishing. The combination of Eqs. �17� and �18�
leads to the same monogamy inequality described in Eq.
�13�.

III. RESULTS AND DISCUSSIONS

In this section, we will illustrate some examples for the
monogamy relation in three-qubit states. By combining a
previous result, we present a useful application for estimat-
ing the concurrence between two qubits A and B on the con-
dition that these two qubits are being entangled to another
qubit C.

A. Monogamy relation in W-type and GHZ-type
three-qubit states

The monogamy inequality �13� in the three-qubit states
could be shown in the shadow area of Fig. 1. Let us now
examine two famous three-qubit states, which are the W state
�25�, defined as �W�= 1

�3
��100�+ �010�+ �001��, and the

Greenberger-Horne-Zeilinger �GHZ� state �26�, defined as
�GHZ�= 1

�2
��000�+ �111��. By considering the two qubits A

and B as a whole, it is not hard to get the concurrence
C�AB�C

�W� =2�2 /3 and C�AB�C
�GHZ�=1, based on Eq. �5�. In the basis

	�00� , �01� , �10� , �11�
, the reduced states of W state and GHZ
state after tracing out the degrees of qubit C are

�AB
�W� =

1

3
1 0 0 0

0 1 1 0

0 1 1 0

0 0 0 0
� �19a�

and

�AB
�GHZ� =

1

2
1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1
� . �19b�

It is easy to get the concurrence CAB
�W�=2 /3 and CAB

�GHZ�=0.
Here we see the monogamy inequality �13� is saturated for
the W state, and the GHZ state only reaches the lower bound
of the above monogamy inequality.

We can make a deeper discussion by extending the W
state and GHZ state to a more general case. Considering the
following W-type and GHZ-type states,

�W�� = ��100� + ��010� + ��001� ����2 + ���2 + ���2 = 1�
�20a�

and

�GHZ�� = a�000� + b�111� ��a�2 + �b�2 = 1� , �20b�

the reduced density matrices by tracing the above two states
over the degrees of qubit C are

FIG. 1. �Color online� Limitation of the concurrence CAB in a

three-qubit state due to the concurrence C�AB�C. The arc OHĜ cor-
responds to the state �W��=�1− ���2� 1

�2
ei�1�100�+ 1

�2
ei�2�010��

+ ���ei�3�001�, and the arc OQP̂ corresponds to the state �W��
=�1− ���2� 3

�10
ei�1�100�+ 1

�10
ei�2�010��+ ���ei�3�001�. Relation be-

tween concurrence CAB and concurrence C�AB�C in an extended
GHZ state �20� is shown as the bottom line OD of the shadow area.
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�AB
�W�� =

���2 0 0 0

0 ���2 ��� 0

0 ��� ���2 0

0 0 0 0
� �21a�

and

�AB
�GHZ�� =

�a�2 0 0 0

0 0 0 0

0 0 0 0

0 0 0 �b�2
� . �21b�

Based on Eq. �5� for the concurrence of high dimensional
bipartite pure states, and standard two-qubit concurrence by
Wootters, the above two density matrices lead to

C�AB�C
�W�� = 2�������2 + ���2,

C�AB�C
�GHZ�� = 2�a��b� , �22�

for the concurrence between qubits A and B as a whole and
qubit C in the W-type state and the GHZ-type state, and

CAB
�W�� = 2������ ,

CAB
�GHZ�� = 0, �23�

for the concurrence between qubits A and B. It is easy to
verify that the monogamy inequality �13� is saturated for the
above extended W state when ���= ��� and ���2�0.5 in Eq.

�20a� �see the arc GĤ in Fig. 1�. The curve OĤ in Fig. 1

describes the relation between the concurrence CAB
�W�� and the

concurrence C�AB�C
�W�� for ���= ��� and ���2	0.5. In Fig. 1, we

also plot the dependence of CAB
�W�� on C�AB�C

�W�� when ���=3���.
The curves OQ and PQ in Fig. 1 correspond to ���2	0.5 and
���2�0.5 in this case, respectively. Since the concurrence
between qubits A and B is always zero �see the second equa-
tion in �23�� for the extended GHZ state �20b�, it can be
represented by the line OD in Fig. 1.

The entanglement of a three-qubit GHZ-type state �20b� is
very fragile in real noisy environments, because the loss of
any qubit, A, B, or C, will lead to complete destruction of
entanglement in this system. Comparatively speaking, the
entanglement of the W-type state �20a� is more robust be-
cause the noises on qubit C, which induce decoherence be-
tween qubit C and object �AB�, might not destroy the con-
currence CAB. To this point of view, the bottom line OD in
Fig. 1 represents the most fragile three-qubit entangled
states, the entanglement in which cannot resist the noises

imposed on qubit C, whereas the arc GĤ in Fig. 1 means the
maximal concurrence left in the system, after qubit C is
missing, or say, disturbed by some quantum noises, and this
maximal value depends on the original concurrence C�AB�C
before the noises imposed on qubit C is considered.

B. Application of the monogamy relation in three-qubit states

The monogamy relation �13� presents an upper bound for
a two-qubit state when these two qubits, considered as a

single object, are being entangled to another qubit. However,
a more practical question is, in an A-B-C three-qubit system,
how the entanglement between qubits A and B is affected by
the entanglement between qubits A and C? Furthermore, if
the entanglement between qubits A and C, and the entangle-
ment between qubits B and C are given simultaneously in a
three-qubit system, what estimation can we make for the
entanglement between qubit A and B? To answer these two
questions, we need to replace the three-qubit concurrence
C�AB�C �actually a bipartite 4 � 2 concurrence� in the mo-
nogamy relation �13� by two-qubit concurrences. This can be
satisfied by substituting the previous entanglement mo-
nogamy relation �1�, derived by Coffman, Kundu, and Woot-
ters, into the present result �13�, i.e.,

CAB �
1

2
�1 + �1 − CAC

2 − CBC
2 � . �24a�

The above equation presents a direct relation between three
two-qubit concurrences in a three-qubit state. In a direct way,
we see that the concurrence between qubits A and B is lim-
ited by the concurrence between qubits A and C, and the
concurrence between qubits B and C. Another two similar
monogamy inequalities can be achieved under the permuta-
tion of the three qubits A, B, and C, that is,

CAC �
1

2
�1 + �1 − CAB

2 − CBC
2 � , �24b�

CBC �
1

2
�1 + �1 − CAB

2 − CAC
2 � . �24c�

The combination of the above three equations forms the con-
straint relation among the three two-qubit concurrences CAB,
CAC, and CBC. With these three new monogamy inequalities,
we can discuss the above questions now. If only one of the
two concurrences, CAC and CBC, is provided, and the other
one is completely unknown, the above three inequalities con-
fine the concurrence CAB in the range

0 � CAB � �1 − CAC
2 �25a�

or

0 � CAB � �1 − CBC
2 . �25b�

In the other situation, if the two concurrences, CAC and CBC,
are both provided, the inequality �24� gives CAB

��1−CBC
2 − ��CAC− 1

2 �+ �CAC− 1
2 ��2, and the inequality �24�

gives CAB��1−CAC
2 − ��CBC− 1

2 �+ �CBC− 1
2 ��2. In a word, the

concurrence between qubits A and B in a three-qubit state,
CAB, is confined in the range

0 � CAB � min	a1,a2,a3
 , �26a�

with

a1 =
1

2
�1 + �1 − CAC

2 − CBC
2 �;

a2 =�1 − CBC
2 − ��CAC −

1

2
� + �CAC −

1

2
��2

;
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a3 =�1 − CAC
2 − ��CBC −

1

2
� + �CBC −

1

2
��2

. �26b�

Obviously, this is a stronger upper bound compared with the
result �25�, in accord with the more stringent condition that
both concurrences CAC and CBC are provided. In Fig. 2, we
plot the dependence of the upper bound of concurrence CAB
on the other two two-qubit concurrences CAC and CBC in this
case. It is easy to verify that the standard three-qubit GHZ
state, with CAB

�GHZ�=CAC
�GHZ�=CBC

�GHZ�=0, corresponds to the ori-
gin point in Fig. 2. The standard three-qubit W state, with

CAB
�W�=CAC

�W�=CBC
�W�= 2

3 , saturates the monogamy inequality
�26�. The graph in Fig. 2 also tells us that the concurrence
CAB is constrained by, but not strictly determined by, the
other two concurrences CAC and CBC, unless the qubit C is
maximally entangled to either one of the two qubits A and B.

IV. CONCLUSIONS

To summarize, we investigate the monogamy nature of
entanglement in a three-qubit system, and the inequality �13�
is derived to quantify this monogamy relation. It is found
that the entanglement between any two qubits in a three-
qubit system is limited by the entanglement between these
two qubits and another qubit. This monogamy inequality is
saturated by a group of W-type three-qubit states, while the
GHZ-type three-qubit states only reach the bottom line of the
inequality. Combining our current result with a previous en-
tanglement monogamy inequality, we present an upper
bound for the two-qubit concurrence CAB in an A-B-C three-
qubit state, on condition that the other two two-qubit concur-
rences CAC and CBC are both given or solely provided, which
is practically valuable in a quantum-information science. As
is well-known, many mathematical relations derived in qubit
systems might not be valid in high dimensional systems. A
typical example is the monogamy relation �1� may be vio-
lated for qutrits or higher dimensional objects �27�. Then
whether and how our current discussions and results could be
generalized to high dimensional systems or multipartite sys-
tems is worth a further investigation.
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