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In this paper we explore the use of a quantum optimization algorithm for obtaining low-energy conforma-
tions of protein models. We discuss mappings between protein models and optimization variables, which are in
turn mapped to a system of coupled quantum bits. General strategies are given for constructing Hamiltonians
to be used to solve optimization problems of physical, chemical, or biological interest via quantum computa-
tion by adiabatic evolution. As an example, we implement the Hamiltonian corresponding to the hydrophobic-
polar model for protein folding. Furthermore, we present an approach to reduce the resulting Hamiltonian to
two-body terms gearing toward an experimental realization.
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I. INTRODUCTION

Finding the ensemble of low-energy conformations of a
peptide given its primary sequence is a fundamental problem
of computational biology, commonly known as the protein
folding problem �1–7�. The native fold conformation is usu-
ally assumed to correspond to the global minimum of the
protein’s free energy �according to the so-called thermody-
namic hypothesis �8��, although some exceptions have been
proposed �9,10�. Thus, the protein folding problem can be
described as a global optimization problem. Algorithms for
quantum computers have been developed for many applica-
tions such as factoring �11� and the calculation of molecular
energies �12�. In this paper, we investigate the approach of
using an adiabatic quantum computer for folding a highly
simplified protein model.

The hydrophobic-polar �HP� lattice model �13� is one of
the simplest protein models implemented. Still its accuracy
in predicting some of the folding behavior of real proteins
has made it a useful benchmark for testing optimization al-
gorithms such as simulated annealing �14�, genetic algo-
rithms �15–19�, and ant colony optimization �20�. Other heu-
ristic methods such as hydrophobic core threading �21�,
chain growth �22,23�, contact interactions �24�, and hydro-
phobic zippers �25� have also been considered. The HP
model has also been useful for a qualitative investigation of
the nature of the folding process and the interactions between
proteins. The HP model depicted in Fig. 1 is defined by three
assumptions: �1� There are only two kinds of amino acids or
residues, hydrophobic �H� and polar �P�; �2� residues are
placed on a grid �typically a square grid for the two-
dimensional �2D� model and a cubic grid for the three-
dimensional �3D� model�; �3� the only interaction among
amino acids is the favorable contact between two H residues
that are not adjacent in the sequence. The energy of this
interaction is defined as −1 in arbitrary units, representing a
hydrophobic effect which tends to fold the protein in a way
that aggregates the H residues in a predominantly hydropho-
bic core, and leaves the P residues at the surface of the pro-
tein. The search for the native conformation of the protein is
represented by a self-avoiding walk on the grid.

An important property of the model is that the number of
possible conformations is roughly proportional to 2.7N �13�,
where N is the length of the polypeptide chain. Proofs of the
NP completeness of both the 2D and 3D HP models have
been given �26,27�. Due to this exponential growth, global
optimality proofs become impractical when N reaches ap-
proximately 50 residues. For longer sequences, heuristics
and stochastic algorithms have been employed for N up to
136 for the 3D HP model �24�.

This paper is structured as follows. Section II presents the
general quantum algorithm and the terms of the Hamiltonian
necessary to obtain the folded structure of the protein, and
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FIG. 1. �Color online� The lattice protein hydrophobic-polar
�HP� model, showing the global energy minimum conformation for
a sequence of 24 amino acids, HHPHPPPHHHHPPHHHHPPPH-
PHH �E=−12�. Dark gray �blue� beads represent hydrophobic resi-
dues �H� and light gray �orange� beads represent polar residues �P�.
The model consists of a self-avoiding chain with favorable
�E=−1� energetic interactions among hydrophobic residues in con-
tact. Contact between nearest neighbors in the primary sequence are
unavoidable, and their contribution is not added to the calculated
energy. Black dots represent lattice sites. Dotted lines represent fa-
vorable energetic interactions, solid lines represent the self-avoiding
chain.
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describes how to map the problem to arrays of coupled quan-
tum bits �28,29�. Section III explains the construction of the
core component of the algorithm, the Hamiltonian that en-
codes the lowest-energy conformation of the protein. In Sec.
IV we solve in detail the four amino acid sequence HPPH in
a two-dimensional grid. In Secs. V and VI we discuss the
resources necessary to carry out the reduction from a general
k-body Hamiltonian to a two-body Hamiltonian, as a func-
tion of the size of the protein.

II. ADIABATIC QUANTUM ALGORITHM FOR THE HP
MODEL

We begin this section by describing the mapping of a
sequence of N amino acids into binary variables, which will
in turn be mapped to spin variables in the quantum-
mechanical version of the algorithm.

A. Mapping amino acids onto a lattice

The mapping of the coordinates of a sequence of N amino
acids to a given grid of size N�N is developed as follows.
We assume, without loss of generality, that the number of
amino acids is a power of 2. A binary representation for the
labels of the grid requires log2 N binary variables to specify
the position of an amino acid in each dimension, as shown in
Fig. 2. The position of each of the N amino acids in a
D-dimensional lattice may thus be encoded by a bit string q
composed of exactly DN log2 N binary variables qi. For ex-
ample, for N=4, D=2, the length of the bit string q is 16 and
therefore the number of configurations that can be explored
is 216. Let q denote a particular configuration of the protein
in the grid, written in the form

q = q16q15

y4

q14q13

x4

q12q11

y3

q10q9

x3

q8q7

y2

q6q5

x2

q4q3

y1

q2q1

x1

,

�1�

where xi and yi are the x and y coordinate of the ith amino
acid. Figure 2 shows an example of the coordinate mapping
given a specific sequence of residues or amino acids.

In the quantum version of the problem, these configura-
tions span a Hilbert space of dimension 216. The state vectors
can be written as

�q� � �q16��q15� ¯ �q2��q1� . �2�

We wish to implement a Hamiltonian which encodes the
ground state of the protein on a spin-1/2 quantum computer
�30�, or, in particular onto an Ising-like Hamiltonian with a
transverse magnetic field �31� �see Sec. II B�. To do so, we
realize the 16-qubit Hilbert space as a system of 16 spin-1/2
particles, with �qi=0� mapped to the spin state ��i

z= +1� and
�qi=1� mapped to ��i

z=−1�, with these spin states as the com-
putational basis. In other words, the quantum version of the
configuration states is related to spin variables through the
transformation

q̂i �
1

2
�I − �̂i

z� , �3�

with I= � 1
0

0
1 � and �z= � 1

0
0

−1 �, the identity operator and the �z

Pauli matrix represented in the computational basis, respec-
tively.

In Sec. III we will derive an energy function in terms of
the ND log2 N binary variables used to describe all of the
possible configurations for the N amino acids in a
D-dimensional lattice. This energy function is constructed so
that its minimum will yield the lowest-energy conformations
of the protein. Equation �3� provides the rule for the mapping
of this energy function to a quantum Hamiltonian. Each qi in
the energy function will be replaced by an operator q̂i. The
operator q̂i is to be understood as a shorthand notation for a
quantum operator acting on the ith qubit of the ND log2 N
multipartite Hilbert space, HND log2 N � HND log2 N−1 � ¯

� Hi � ¯ � H1. The explicit form of q̂i is given by I � I
� ¯ � q̂i � ¯ � I. Notice that the operator q̂i as defined in
Eq. �3� has been placed in the ith position, and the identity
operator acts on the rest of the Hilbert space. Products of the
form qiqj will be replaced by a quantum operator q̂iq̂j, which
is a shorthand notation for the operators q̂i and q̂j acting on
the ith and the jth qubits, respectively. As an illustrative ex-
ample, consider an energy function dependent on four binary
variables,
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FIG. 2. �Color online� Grid-labeling conventions for a sequence
of 4 amino acids, HPPH. �a� Amino acids 2 and 3 are fixed in the
center of the grid to eliminate translational degeneracy. �b� One of
the possible invalid configurations that might arise in the search and
that would need to be discarded by the optimization algorithm. �c�
Lowest-energy conformation for this example. The dotted line be-
tween amino acids 1 and 4 represents the hydrophobic interaction
favored by the HP model. The configurations to optimize assume
the form q=q16q15q14q13 0110 0101 q4q3q2q1, where the set of vari-
ables q16q15q14q13 and q4q3q2q1 determine the position of amino
acids 4 and 1, respectively. For the particular case in �b�, q
=1100 0110 0101 1011.
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E�q1,q2,q3,q4� = 1 − q1q2 + q1q3 + q2q3q4,

which will be mapped to a Hamiltonian acting on a four-
qubit Hilbert space, H4 � H3 � H2 � H1. In the instance of
this particular energy function the Hamiltonian will assume
the form

Ĥ = I � I � I � I − I � I � q̂ � q̂ + I � q̂ � I � q̂ + q̂ � q̂

� q̂ � I � I − q̂1q̂2 + q̂1q̂3 + q̂2q̂3q̂4. �4�

Following this mapping, transformation of any energy func-
tion to the quantum Hamiltonian is straightforward.

In order to eliminate redundancy due to translational sym-
metry, we fixed the two middle amino acids in a central
position �see Fig. 2�. This reduces the number of binary vari-
ables in the bit string from 16 to eight. The variables corre-
sponding to amino acids 1 and 4, q4q3q2q1 and q16q15q14q13,
respectively, become the variables of interest, and the vari-
ables q8q7q6q5 and q12q11q10q9 corresponding to amino acids
2 and 3, become constant throughout the optimization pro-
cess. In general, the �N /2�th amino acid is assigned to the
�N /2�th grid point in all D dimensions. The �N /2+1�th amino
acid is fixed to the �N /2+1�th grid point in the x direction
and to the �N /2�th grid point in all other D−1 dimensions. As
shown in Fig. 2, the final configuration we will try to opti-
mize for the case of four amino acids takes the form �q�
= �q16q15q14q13��0110��0101��q4q3q2q1�.

B. Adiabatic quantum computation

The goal of an adiabatic quantum algorithm is to trans-
form an initial state into a final state which encodes the an-
swer to the problem. A quantum state ���t�� in the
2n-dimensional Hilbert space for n qubits, evolves in time
according to the Schrödinger equation

i�
d

dt
���t�� = Ĥ�t����t�� , �5�

where Ĥ�t� is the time-dependent Hamiltonian operator. The
design of the algorithm takes advantage of the quantum adia-

batic theorem �32�, which is satisfied whenever Ĥ�t� varies
slowly throughout the time of propagation t� �0,��. Let

��g�t�� be the instantaneous ground state of Ĥ�t�. If we con-

struct Ĥ�t� such that the ground state of Ĥ�0�, denoted as
��g�0��, is easy to prepare, the adiabatic theorem states that
the time propagation of the quantum state will remain very

close to ��g�t�� for all t� �0,��. One way to choose Ĥ�0� is
to construct it in such a way that ��g�0�� is a uniform super-
position of all possible configurations of the system, i.e.,

��g�0�� =
1

�2n 	
qi�
0,1�

�qn��qn−1� ¯ �q2��q1� �6�

summing over all 2n vectors of the computational basis. No-
tice that an initial Hamiltonian of the form

Ĥ�0� = 	
i=1

n

q̂x
i = 	

i=1

n
1

2
�I − �̂i

x� �7�

would have as a nondegenerate ground state the vector
��g�0�� defined in Eq. �6�.

Similarly to the operator q̂ from Eq. �3�, we define

q̂x
i �

1

2
�I − �̂i

x� , �8�

with I= � 1
0

0
1 � and �x= � 0

1
1
0 �, the identity operator and the

�x-Pauli matrix represented in the computational basis, re-
spectively.

For example, for the case of four qubits, n=4, Ĥ�0� is
given by

Ĥ�0� = 	
i=1

4

q̂x
i = q̂x

1 + q̂x
2 + q̂x

3 + q̂x
4 �9�

=I � I � I � q̂x + I � I � q̂x � I

+ I � q̂x � I � I + q̂x � I � I � I . �10�

To find the lowest-energy conformation of the protein, one

defines a Hamiltonian, Ĥprotein, whose ground state encodes

the solution. Adiabatic evolution begins with Ĥ�0� and

��g�0��, and ends in Ĥprotein= Ĥ���. If the adiabatic evolution
is slow enough, the state obtained at time t=� is ��g����, the

ground state of Ĥ���= Ĥprotein. The details about the construc-

tion of Ĥprotein will be provided in Sec. III. A possible adia-
batic evolution path can be constructed by the linear sweep
of a parameter t� �0,��,

Ĥ�t� = �1 − t/��Ĥ�0� + �t/��Ĥprotein. �11�

Even though Eq. �11� connects Ĥ�0� and Ĥprotein, determining
the optimum value of � is an important and nontrivial prob-
lem in itself. In principle, the adiabatic theorem states that
over sufficient adiabatic time �, the state ������ will converge
to the solution to the problem ��g����. The magnitude of �
dictates the ultimate usefulness of the quantum algorithm
proposed in this work. Farhi et al. �33,34� showed promising
numerical results for random instances of the Exact Cover
computational problem.

Notice that the parameter � determines the rate at which

Ĥ�t� varies. Following the notation from Farhi et al. �33�,
consider Ĥ�t�= H̃�t /��= H̃�s�, with instantaneous values of

H̃�s� defined by

H̃�s��l;s� = El�s��l;s� �12�

with

E0�s� � E1�s� � ¯ � EN−1�s� , �13�

where N is the dimension of the Hilbert space. According to
the adiabatic theorem, if the gap between the two lowest
levels, E1�s�−E0�s�, is greater than zero for all 0�s�1, and
taking
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� �
	

gmin
2 �14�

with the minimum gap, gmin
2 , defined by

gmin = min
0�s�1

�E1�s� − E0�s�� , �15�

and 	 given by

	 = max
0�s�1

�l = 1;s�
dH̃

ds
�l = 0;s�� , �16�

then we can make

�l = 0;s = 1������� �17�

arbitrarily close to 1. In other words, the existence of a non-
zero gap guarantees that ���t�� remains very close to the

ground state of Ĥ�t� for all 0� t��, if � is sufficiently large.
In the following sections, we derive the expression for an

energy function which is mapped to Ĥprotein using the proce-

dure explained in Sec. II A. The final expression for Ĥprotein
corresponds to an array of coupled qubits. We use H to de-
note both the Hamiltonians and the energy functions given
that the mapping is straightforward as explained at the end of
Sec. II A.

III. CONSTRUCTION OF THE LATTICE PROTEIN
HAMILTONIAN FOR ADIABATIC QUANTUM

COMPUTATION

Our goal in this section is to find an algebraic expression
for an energy function in which the ground state represents
the lowest-energy conformation of a protein. Ideally, this en-
ergy function should contain the least possible number of
terms. In order to optimize the computational resources, we
desire terms with low locality, defined as the number of
products of qi’s that appear in a certain term �e.g., a term of
the form h=q1q3q4q6 is 4-local�.

A. Small computer science digression

Encoding positions of the amino acids in the grid in terms
of Boolean variables makes it very convenient to use tools
from computer science and basic Boolean algebra �35�. In
this section, we will review these tools before using them to
construct arbitrary Hamiltonians that encode the spectrum of
statistical mechanical models. We begin with some simple
relations that are useful in the derivation of the Hamiltonian
terms.

Consider two Boolean variables x and y. Expressions for
the operations AND, OR, NOT can be written algebraically
as

fAND�x,y� = xy AND operation�x ∧ y� ,

fOR�x,y� = x + y − xy OR operation�x ∨ y� ,

fNOT�x� = 1 − x NOT operation�¬x� .

An additional useful Boolean operator for the construction of
Hamiltonian terms is XNOR. The output of the XNOR func-

tion is 0 unless all its arguments have the same value. The
two-input version XNOR operation is also known as logical
equality, here denoted as EQ,

fEQ�x,y� = 1 − x − y + 2xy XNOR operation�x EQ y� .

The XNOR operator can be used to construct a very useful
term for statistical mechanics Hamiltonians, an onsite repul-
sion penalty �described in Sec. III B and illustrated in Fig. 3�.

B. Hamiltonian terms for protein folding: HP model

Most of the configurations represented by the bit strings q
of Eq. �1� are invalid protein states. We seek a Hamiltonian
that energetically favors valid configurations of the HP
model by eliminating configurations in which more than one
amino acid occupy the same grid point, and discarding con-
figurations that violate the primary sequence of amino acids.
This Hamiltonian can be written as

Hprotein = Honsite + Hpsc + Hpairwise, �18�

where Honsite is an onsite repulsion term for amino acids
occupying the same grid point, Hpsc is a primary sequence
constraint term, and Hpairwise is a pairwise interaction term
that represents favorable hydrophobic interactions between
adjacent hydrophobic amino acids.

Each protein configuration can be described by a string of
ND log2 N bits, where D is the number of dimensions and N
is the number of amino acids. Without loss of generality, N is
here constrained to be a power of 2. Below, we describe each
term in Eq. �18�.

1. Onsite term, Honsite

The first term in Eq. �18�, Honsite, prevents two or more
amino acids from occupying the same grid point. For a given
protein, at least one position variable must differ between
each pair of amino acids for Honsite to evaluate to zero. As an
illustrative example, a simple one-dimensional two-site
Hamiltonian is shown in Fig. 3 using the XNOR operation
described in Sec. III A.

The general term for D dimensions and N amino acids is

FIG. 3. �Color online� Illustrative example of one of the uses of
the XNOR Boolean function in our scheme for the construction of
Hamiltonians. Consider two particles 1 and 2 that are restricted to
occupy either position 0 or 1 in the dimension shown, and let x1 and
x2 encode the position particle 1 and particle 2, respectively. The
Boolean function fEQ can be interpreted as an onsite repulsion
Hamiltonian which penalizes configurations where x1=x2. The pos-
sible configurations are encoded in the bit string x=x1x2.
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Honsite�N,D� = 
0	
i=1

N−1

	
j=i+1

N

Honsite
ij �N,D� �19�

with

Honsite
ij �N,D� = �

k=1

D

�
r=1

log2 N

�1 − qf�i,k�+r − qf�j,k�+r

+ 2qf�i,k�+rqf�j,k�+r� �20�

and

f�i,k� = D�i − 1�log2 N + �k − 1�log2 N . �21�

The terms enclosed by the parentheses in Eq. �20� are XNOR
functions. The double product of these terms tests that all of
these conditions are considered simultaneously by using
AND relations. If all of the binary variables describing the
coordinates of the ith and jth amino acids are equal, then the
series of products of XNOR functions is evaluated to +1. In
this case, the energy penalty 
0 with 
0�0 is enforced.
There will be no energy penalty, however, even if one of the
binary variables for the ith and jth amino acids is different.

The function f�i ,k� is a pointer to the bit substring de-
scribing the coordinates of a particular amino acid. The index
i points to the ith amino acid and the index k points to the
first bit variable of the kth spatial coordinate. Here, k=1
corresponds to the x coordinate, k=2 to the y coordinate, and
k=3 to the z coordinate. For example, consider the case with
N=4 and D=2. If we are interested in referring to the first
binary variable describing the y coordinate �k=2�, for the
third amino acid �i=3�, a direct substitution in Eq. �21�
would yield f�3,2�=10, which is indeed the variable we are
interested in according to the convention established in Eq.
�1�.

2. Primary structure constraint, Hpsc

The term Hpsc in Eq. �18� evaluates to zero when two
amino acids P and Q that are consecutive sequencewise must
be nearest neighbors on the lattice. Nearest neighbors are
defined as those points with a rectilinear �L1� distance of
dPQ=1 between them. We define a distance function that
gives the base 10 distance squared between any two amino
acids P and Q on the lattice,

dPQ
2 �N,D� = 	

k=1

D � 	
r=1

log2 N

2r−1�qf�P,k�+r − qf�Q,k�+r��2

�22�

with f�i ,k� defined as in Eq. �21�.
A simple way of defining Hpsc is

Hpsc� �N,D� = 
1	
m=1

N−1

�1 − dm,m+1
2 �2 �23�

or, preferably,

Hpsc�N,D� = 
1�− �N − 1� + 	
m=1

N−1

dm,m+1
2 � . �24�

Unlike Eq. �23�, the improved Hamiltonian in Eq. �24� is
always 2-local regardless of the number of amino acids or

the dimensionality of the problem, since dPQ
2 �N ,D� is always

2-local.
First, notice that for valid configurations, all �N−1� terms

in the sum will equal 1, and Hpsc�N ,D� evaluates to zero. If
any of the dm,m+1

2 terms is zero, meaning that two amino
acids occupy the same location, then Honsite will be drasti-
cally raised by the energy penalty 
0. This can be achieved
by setting 
0�
1, and 
1=N. After excluding configurations
in which any dm,m+1

2 are zero, only configurations with values
of dm,m+1

2 �1 are left. In these instances, Hpsc�N ,D��0 and

1 will play the role of an energy penalty since 
1�0.
Choosing 
1=N and 
0=N+1�
1 constrains unwanted or
penalized configurations to eigenstates of Hprotein with ener-
gies greater than zero, while plausible configurations of the
protein correspond to energies less than or equal to zero.
Note that the minimum energy of the HP model, in the case
of all hydrophobic sequences with the maximum number of
favorable contacts, is always greater than −N. This is satis-
fied in general for N amino acids in either two or three di-
mensions.

3. Pairwise hydrophobic interaction term, Hpairwise

The HP model favors hydrophobic interactions by lower-
ing the energy by 1 whenever non-nearest-neighboring hy-
drophobic amino acids are a rectilinear distance of 1 away.

This kind of interaction is represented by the following
general expression:

Hpairwise�N,D� = − 	
i=1

N

	
j=1

N

GijHpairwise
ij . �25�

Here G is an N�N symmetric matrix with entries Gij equal
to +1 when amino acids i and j are hydrophobic and non-
nearest neighbors, and 0 otherwise. Note that Gij is set to
zero for amino acids that are neighbors in the protein se-
quence. Notice also that alternate definitions of Gij could
allow us to define lattice protein models that are more com-
plex than the HP model. One of these models is the more
realistic Miyazawa-Jernigan model �36� which includes in-
teractions between 20 types of amino acids.

The form of Hpairwise
ij depends on the spatial dimensional-

ity of the problem. In two dimensions, we have

Hpairwise
ij = Hpairwise

ij,2D �N� = x+
ij,2D�N� + x−

ij,2D�N� + y+
ij,2D�N�

+ y−
ij,2D�N� �26�

and in three dimensions,

Hpairwise
ij = Hpairwise

ij,3D �N� = x+
ij,3D�N� + x−

ij,3D�N� + y+
ij,3D�N�

+ y−
ij,3D�N� + z+

ij,3D�N� + z−
ij,3D�N� . �27�

The terms on the right-hand side of Eq. �27� are independent;
each one serves to query whether the jth amino acid is lo-
cated, with respect to the ith amino acid, to the right, left,
above, below, in front, or behind as represented by x+

ij,3D,
x−

ij,3D, y+
ij,3D, y−

ij,3D, z+
ij,3D, and z−

ij,3D terms, respectively. If the
jth amino acid is located at a distance of exactly one in any
direction, Hpairwise

ij is set to +1; otherwise it is set to zero.
There is a subtle but important condition embedded in these
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terms: They all vanish if the rightmost binary variable de-
scribing the ith residue’s coordinate of interest �say x for
x+

ij,3D and x−
ij,3D or y for y+

ij,3D and y−
ij,3D or z for z+

ij,3D and
z−

ij,3D� does not end in 0, i.e., the coordinate must correspond
to an even number. This is why we intentionally double
count each pair of amino acids in Eq. �25� by allowing both
indexes i and j iterate from 1 to N. No special treatment is
provided for the case where i= j, since the diagonal terms of
Gij are all zero due to the lack of amino acid self-interaction.
Finally, because we want the interaction to be attractive
rather than repulsive, we use the minus sign in Eq. �25�.

The case of N amino acids in a two-dimensional grid for
N=2M and M �3: The terms listed below correspond to the
pairwise interaction Hamiltonian terms described above. The
expressions below were constructed for M �3. The four
amino acid case �M =2� is much simpler and will be dis-
cussed in Sec. IV. The expression for x+

ij,2D�N� is

x+
ij,2D�N� = �1 − qf�i,1�+1�qf�j,1�+1

� �
s=2

log2 N

�1 − qf�j,1�+s − qf�i,1�+s + 2qf�j,1�+sqf�i,1�+s�

� �
r=1

log2 N

�1 − qf�i,2�+r − qf�j,2�+r + 2qf�i,2�+rqf�j,2�+r�

�28�

The first two factors of x+
ij,2D�N� �Eq. �28�� treat the rightmost

binary digit of the x position of the ith and jth amino acid.
The first factor guarantees that the ith residue is in an even
position on the x axis. For an interaction to be considered,
the position of the jth residue on the x axis must be odd, as
required by the second factor qf�j,1�+1. The remaining factors
of x+

ij,2D are XNOR functions that ensure that the rest of the
binary digits that encode the x position are equal for the ith
and jth amino acids. Finally, all the digits encoding the y
position must be equal, so that the ith and jth amino acids are
nearest neighbors displaced only in the x direction forcing
the two residues to be in the same row. If all these conditions
are satisfied, x+

ij,2D evaluates to +1; otherwise it evaluates to
0. These conditions rely on the fact that adding 1 to an even
number only changes the rightmost binary digit from 0 to 1.

The construction of y+
ij,2D follows the same procedure as

that of x+
ij,2D, namely,

y+
ij,2D�N� = �1 − qf�i,2�+1�qf�j,2�+1

� �
s=2

log2 N

�1 − qf�j,2�+s − qf�i,2�+s + 2qf�j,2�+sqf�i,2�+s�

� �
r=1

log2 N

�1 − qf�i,1�+r − qf�j,1�+r + 2qf�i,1�+rqf�j,1�+r� .

�29�

The construction of x−
ij,2D,

x−
ij,2D�N� = �1 − qf�i,1�+1�qf�j,1�+1�1 − �

k=1

log2 N

�1 − qf�i,1�+k��
��qf�j,1�+2 + qf�i,1�+2 − 2qf�j,1�+2qf�i,1�+2�

� �
r=3

log2 N �1 − �qf�j,1�+r + �
u=2

r−1

qf�j,1�+u

− 2�
u=2

r

qf�j,1�+u� − qf�i,1�+r + 2qf�i,1�+r�qf�j,1�+r

+ �
u=2

r−1

qf�j,1�+u − 2�
u=2

r

qf�j,1�+u�� �
s=1

log2 N

�1 − qf�i,2�+s

− qf�j,2�+s + 2qf�i,2�+sqf�j,2�+s� �30�

involves several considerations. As in the expression for
x+

ij,2D, the first factor �1−qf�i,1�+1� tests if the ith amino acid is
in an even position along the x axis. Here, we are interested
in querying whether the jth amino acid is directly to the left
of the ith, and apply a different procedure than that of Eq.
�28�. We add 00¯01 to the x coordinate of the jth residue,
thus moving “right” by one unit, and use the XNOR function
to check if the result matches the x coordinate of the ith
amino acid. The problem is not as trivial as the case of x+

ij,2D.
Setting i at an even coordinate value along the axis of inter-
est forces j to be in an odd coordinate. However, adding
00¯01 to an odd binary number in general will change
more digits than just the last digit due to carry bits. We used
the circuit presented in Fig. 4 and the Boolean algebra
introduced in Sec. III A to obtain the general expression
for the addition of 00¯01 to an n-bit number. If we
take x=xnxn−1¯x2x1 and y=00¯01, then the result z
=zn+1znzn−1¯z2z1 for the addition z=x+y is the recursive
algebraic expression,

z1 = 0,

z2 = 1 − x2,

zk = xk + �
u=2

k−1

xu − 2�
u=2

k

xu for 3 � k � n ,

zn+1 = �
u=2

n

xu.

As in the case of x+
ij,2D, we impose conditions that guarantee

that the y coordinate is the same for both amino acids �that
they are in the same row�.

A special case arises when the jth amino acid is at the
rightmost position in the grid, with an x coordinate value of
11¯11. When 00¯01 is added to this coordinate, zn+1
evaluates to 1 and the n bits z1 to zn evaluate to 0. Since only
the first n bits are used to compare coordinates, this z would
be an undesirable match with an ith amino acid positioned at
x=00¯00. Notice that a value of x=00¯00 positions the
ith amino acid positioned at the minimal and leftmost posi-
tion in the grid, for which x−

ij,2D should not even be consid-
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ered. The factor �1−�k=1
log2 N�1−qf�i,1�+k�� in Eq. �30� sets the

term x−
ij,2D to 0 if the x coordinate of the ith amino acid is

00¯00, taking care of both of these concerns.
The construction of y−

ij,2D follows the same procedure as
that of x−

ij,2D, namely,

y−
ij,2D�N� = �1 − qf�i,2�+1�qf�j,2�+1�1 − �

k=1

log2 N

�1 − qf�i,2�+k��
��qf�j,2�+2 + qf�i,2�+2 − 2qf�j,2�+2qf�i,2�+2�

� �
r=3

log2 N �1 − �qf�j,2�+r + �
u=2

r−1

qf�j,2�+u

− 2�
u=2

r

qf�j,2�+u� − qf�i,2�+r + 2qf�i,2�+r�qf�j,2�+r

+ �
u=2

r−1

qf�j,2�+u − 2�
u=2

r

qf�j,2�+u��
� �

s=1

log2 N

�1 − qf�i,1�+s − qf�j,1�+s + 2qf�i,1�+sqf�j,1�+s� .

�31�

The three-dimensional extension of these equations is pre-
sented in the Appendix.

C. Maximum locality and scaling of the number of terms
in Hprotein

In this section, we estimate the number of terms included
in the total Hamiltonian Hprotein and present procedures re-
quired to reduce the locality of the terms to 2-local. These
estimates assess the size of a quantum device necessary for
eventual experimental realizations of the algorithm. The re-
duction of the locality of the terms involves ancillary qubits.

Each amino acid requires D log2 N qubits to specify its
position in the lattice. Since our algorithm fixes the position
of two amino acids, the number of qubits needed to encode
the coordinates of the �N−2� remaining amino acids is �N
−2�D log2 N. From the expressions given for Honsite, Hpsc,
and Hpairwise, one can deduce that the maximum locality is
determined by 2D log2 N—the number of qubits correspond-
ing to two amino acids. As described in Sec. III B 2, the Hpsc
term is always 2-local in nature regardless of the number of
amino acids. For scaling arguments, it is crucial to point out
that all possible 1-local and 2-local terms, that account for
�N−2�D log2 N and �

�N−2�D log2 N
2 � total terms, respectively,

appear in the expansion, but that not all possible 3-local or
higher locality terms will be present. For example, the terms
qiqjqk, where the indexes i, j, and k are associated with three
different amino acids, are not part of the expansion, since
every term should only involve products of qubits describing
two amino acids, regardless of its locality. Table I summa-
rizes the number of k-local terms required to construct the
protein Hamiltonian, Hprotein=Honsite+Hpsc+Hpairwise. The al-
ternative count from the combinatorial expressions of Table I

FIG. 4. Half-adder and full-adder components for the addition circuit implemented in the pairwise interaction Hamiltonian. We show the
implementation of these two components for the addition of two 4-bit numbers yielding z=z5z4z3z2z1. The addition of n-bit numbers can be
generalized trivially.
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scales as N6 for D=2 and as N8 for D=3. Table I provides
the exact term count.

IV. CASE STUDY: HPPH

With the goal of designing an experiment for adiabatic
quantum computers with small numbers of qubits, we con-
centrate on the simplest possible instance of the HP-
model—a four amino acid loop that contains a favorable
interaction and therefore “folds.”

In this section we present the protein Hamiltonian, fol-
lowed by the partitioning of the N-local Hamiltonian terms to
2-local. Finally, we present numerical simulations which
confirm the local minimum through the use of the proposed
algorithm.

Hamiltonian terms for the case of four amino acids in 2D.
Here, we present explicit representations of the on-site, pri-
mary structure constraint and pairwise terms for a four amino
acid problem.

�1� Onsite term, Honsite. The onsite Hamiltonian for this
example takes the following form

Honsite�N = 4,D = 2� = 
0�Honsite
12 + Honsite

13 + Honsite
14 + Honsite

24

+ Honsite
34 � �32�

with

Honsite
ij �N = 4,D = 2� = �

k=1

2

�
r=1

2

�1 − qf�i,k�+r − qf�j,k�+r

+ 2qf�i,k�+rqf�j,k�+r� �33�

and

f�i,k� = 4�i − 1� + 2�k − 1� . �34�

Note that Honsite
23 does not appear in Eq. �32� since, as de-

scribed in Sec. II A, the two central amino acids are fixed in
position and guaranteed not to occupy overlapping grid
points that would contribute an energy penalty to the onsite
term a priori. On the other hand, other terms involving
amino acids 2 and 3 cannot be discarded, since these amino

acids will affect their other neighbors through Hpsc and they
can participate in hydrophobic interactions through Hpairwise.

�2� Primary structure constraint term, Hpsc. The pairwise
term

dPQ
2 �N = 4,D = 2� = 	

k=1

2 �	
r=1

2

2r−1�qf�P,k�+r − qf�Q,k�+r��2

�35�

with

Hpsc�N = 4,D = 2� = 
1�− 3 + d12
2 + d23

2 + d34
2 �

= 
1�− 2 + d12
2 + d34

2 � �36�

takes advantage of the fact that d23
2 =1 by construction.

�3� Pairwise term, Hpairwise. Finally, a pairwise interaction
term is required to impose an energy stabilization for non-
nearest-neighbor hydrophobic amino acids that occupy adja-
cent sites in the lattice.

For the sequence HPPH,

G =�
0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0
� �37�

and therefore,

Hpairwise
2D �N = 4,D = 2� = − �Hpairwise

14,2D + Hpairwise
41,2D � . �38�

For this particular case of interest

Hpairwise
ij,2D �N = 4� = x+

ij,2D�N = 4� + x−
ij,2D�N = 4� + y+

ij,2D�N = 4�

+ y−
ij,2D�N = 4� . �39�

The explicit forms of these functions are

x+
ij,2D�N = 4� = �1 − qf�i,1�+1�qf�j,1�+1�1 − qf�j,1�+2 − qf�i,1�+2

+ 2qf�j,1�+2qf�i,1�+2��
s=1

2

�1 − qf�i,2�+s − qf�j,2�+s

+ 2qf�i,2�+sqf�j,2�+s� , �40�

TABLE I. The number of k-local terms obtained in the final expression for Hprotein as a function of the
number of amino acids N, N=2M, and dimensions �D� of the lattice.

Locality Number of terms, Tk

k=0 1

k=1 �N−2�D log2 N

2�k�D log2 N
� N−2

2 � 	
i=1

k−1

�
D log2 N

i ��
D log2 N

k−i �+ �N−2��
D log2 N

k �

D log2 Nk�2D log2 N
� N−2

2 � 	
i=k−D log2 N

D log2 N

�
D log2 N

i ��
D log2 N

k−i �

Total number of terms
	

k=0

2D log2 N

Tk�N2D+2
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y+
ij,2D�N = 4� = �1 − qf�i,2�+1�qf�j,2�+1�1 − qf�j,2�+2 − qf�i,2�+2

+ 2qf�j,2�+2qf�i,2�+s��
s=1

2

�1 − qf�i,1�+s − qf�j,1�+s

+ 2qf�i,1�+sqf�j,1�+s� , �41�

x−
ij,2D�N = 4� = �1 − qf�i,1�+1�qf�j,1�+1qf�i,1�+2�qf�j,1�+2 + qf�i,1�+2

− 2qf�j,1�+2qf�i,1�+2��
s=1

2

�1 − qf�i,2�+s − qf�j,2�+s

+ 2qf�i,2�+sqf�j,2�+s� , �42�

y−
ij,2D�N = 4� = �1 − qf�i,2�+1�qf�j,2�+1qf�i,2�+2�qf�j,2�+2 + qf�i,2�+2

− 2qf�j,2�+2qf�i,2�+2��
s=1

2

�1 − qf�i,1�+s − qf�j,1�+s

+ 2qf�i,1�+sqf�j,1�+s� . �43�

After expanding all of the terms in Honsite, Hpsc, and Hpairwise,
we fix amino acids 2 and 3 as described in Sec. II A, substi-
tuting the variables q12q11q10q9 q8q7q6q5 by the constant val-
ues 0110 0101 as shown in Fig. 2. The final expression for
Hprotein now depends on the eight binary variables encoding
the coordinates of amino acids 1 and 4, q4q3q2q1 and
q16q15q14q13, respectively. For convenience in notation, we
relabel the coordinates of amino acid 4 from q16q15q14q13 to
q8q7q6q5. After these substitutions, the final expression for
the energy function Hprotein will be dependent on products
involving the variables q1 through q8. Following the map-
ping explained at the end of Sec. II A, the quantum expres-

sion for Ĥprotein is a 28�28 matrix. This Hamiltonian matrix

defines the final Hamiltonian Ĥ�t=�� of the adiabatic evolu-
tion. The initial Hamiltonian representing the transverse field
whose ground state is a linear superposition of all 28 states in
the computational basis can be written as

Ĥ0 � Ĥ�t = 0� = 	
i=1

8

q̂x
i = 	

i=1

8
1

2
�I − �̂i

x� �44�

with

��g�t = 0�� =
1

�28 	
qi�
0,1�

�q8q7q6q5q4q3q2q1� . �45�

Finally, we can construct a time-dependent Hamiltonian as
shown in Eq. �11�,

Ĥ�t� = �1 − t/��Ĥ0 + �t/��Ĥprotein. �46�

This time-dependent Hamiltonian is also a 28�28 matrix as
well. The instantaneous spectrum can be obtained by diago-
nalizing at every t /� without need to specify �. Since � is the
running time, we are interested in 0� t /��1. The spectrum

of the corresponding Ĥ�t� for this four amino acid peptide
HPPH is given in Fig. 5.

Snapshots of the instantaneous ground state are shown in
Fig. 6. Even though these snapshots do not correspond to
explicit propagation of the Schrödinger equation, they indi-
cate that the final Hprotein is correct and that it provides the
correct answer if a sufficiently long time � is allowed. Notice
that at t /�=0, the amplitude for all 256 states is equal, indi-
cating a uniform superposition of all states; at t /�=1, the
readout corresponds to the two degenerate solutions of
HPPH.

V. CONVERTING AN N-LOCAL HAMILTONIAN
TO A 2-LOCAL HAMILTONIAN

Motivated by the possibility of an experimental imple-
mentation, we explain how to reduce the locality of a Hamil-
tonian from k-local to 2-local while conserving its low-lying
spectrum. We use Boolean reduction techniques �37,38� for
Hamiltonians constructed from energy functions with struc-
ture similar to Hprotein, where all of the terms are sums of
tensor products of �z

i operators. By reducing the locality of
the interactions, we introduce new ancilla qubits to represent
higher-order interactions with sums of at most 2-local terms.
Here, we present an illustrative example with a relative

FIG. 5. �Color online� Spectrum of the instantaneous energy eigenvalues for the 8-local time-dependent Hamiltonian used in the
algorithm for the peptide HPPH �left-hand side�. The plot to the right examines the lowest 15 states of the 256 states from the left.
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simple energy function but the methodology can be immedi-
ately extended to higher locality energy functions such as the
one resulting in Hprotein.

Consider a 4-local energy function of the form

Htoy�q� = 1 + q1 − q2 + q3 + q4 − q1q2q3 + q1q2q3q4.

�47�

As shown in Table II, this energy function has a unique mini-
mum energy given by q=q4q3q2q1=0010. The energy asso-
ciated with this configuration is 0 in arbitrary units and all
other possible values of the binary variables q1 , q2, q3, and
q4 have energies ranging from 0 to 4.

The goal is to obtain an energy function H� that preserves
these energies along with their associated bit strings, but de-
fines H� using only 1-local and 2-local terms. That is, the
goal is to obtain a substitution for Htoy with the following
form:

H��q̃1, . . . , q̃M� = c0 + 	
i=1

M

ciq̃i + 	
i=1

M−1

	
j=i+1

M

dijq̃iq̃j . �48�

In Eq. �48� the new set of binary variables q̃ includes the
original variables qi as well as ancillary variables required to
reduce locality. The extra ancillary bits raise the total number
of variables to M.

Since the information contained within the problem and
the solution we are seeking both rely on the original set of q
variables �in the case of protein folding, for example, the
string q encodes the positions of the amino acids in the lat-
tice�, we must be able to identify values corresponding to the
original q, regardless of the substitutions made to convert a
k-local function to a 2-local. The new energy function H�
needs to have the energy values of the original function in its
energy spectrum. In addition, the values of the bit string q̃ for
these energies must match the same values of q in the origi-
nal function. For the particular example of Eq. �47�, consider
the substitutions, q1q2→ q̃5 and q3q4→ q̃6. These two substi-

2 3

4100

01

10

11

00 01 10 11

2 3

41

00

01

10

11

00 01 10 11

s=0 s=0.33 s=0.66

s=1.0

x

y

FIG. 6. �Color online� Snapshots of the instantaneous ground state for H�t�. The brightness of the box is proportional to �cn�2. Axis labels
and state vectors for each particular box correspond to ���=	n=0

255cn�n� with �n� the nth state vector out of the 256 possibilities given by
�q16��q15��q14��q13��q4��q3��q2��q1�. Notice that the x axis is given by �q4��q3��q2��q1� and the y axis given by �q16��q15��q14��q13�. The final state
corresponds to the two degenerate minima shown at the end
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tutions introduce two independent binary variables, q̃5 and q̃6
and regardless of the values of q1 , q2 , q3, and q4, they can
take any value in 
0,1�. Since we want to preserve both the
physical meaning of the original energy function, as well as
its energy spectrum, we need to perform an action on the
cases where the conditions q̃5=q1∧q2 and q̃6=q3∧q4 are not
satisfied and lack any meaning in the context of the original
energy function. One way to address this problem while
keeping the original spectrum intact is to add a penalty func-
tion which enforces the conditions q̃5=q1∧q2 and q̃6
=q3∧q4. For every substitution of the form qiqj→ q̃n, con-
sider a function of the form �37�

H∧�qi,qj, q̃n� = ��3q̃n + qiqj − 2qiq̃n − 2qjq̃n� . �49�

As shown in Table III, for ��0, the function H∧�qi ,qj , q̃n� is
greater than zero whenever q̃n�qi∧qj and it evaluates to
zero whenever q̃n=qi∧qj.

A two-local expression of the form presented in Eq. �48�
can be obtained by adding one H∧�qi ,qj , q̃n� function for
each substitution q1q2→ q̃5 and q3q4→ q̃6 and by making the
additional trivial substitutions q1→ q̃1, q2→ q̃2, q3→ q̃3, and
q4→ q̃4, to conveniently change in notation to the set of bi-
nary variables q̃. For the case of the energy function of Eq.
�47�, the locality reduced version is

Htoy,reduced�q̃� = 1 + q̃1 − q̃2 + q̃3 + q̃4 − q̃5q̃3 + q̃5q̃6

+ H∧�q1,q2, q̃5� + H∧�q3,q4, q̃6�

= 1 + q̃1 − q̃2 + q̃3 + q̃4 − q̃5q̃3 + q̃5q̃6 + ��3q̃5

+ q̃1q̃2 − 2q̃1q̃5 − 2q̃2q̃5� + ��3q̃6 + q̃3q̃4

− 2q̃3q̃6 − 2q̃4q̃6� . �50�

Recall that the additional functions H∧�q̃1 , q̃2 , q̃5� and
H∧�q̃3 , q̃4 , q̃6� increase the energy of Htoy,reduced by at least �
whenever the conditions q̃5= q̃1∧ q̃2 and q̃6= q̃3∧q4 are not
satisfied. Table IV shows the one-to-one mapping between
the energies of nonpenalized configurations of Htoy,reduced�q̃�
and configurations presented in Table II associated with
Htoy�q�. Even though there is a unique configuration 
q̃6
= q̃3∧ q̃4 , q̃5= q̃1∧ q̃2 , q̃4 , q̃3 , q̃2 , q̃1� associated with every

q1 ,q2 ,q3 ,q4� with the same energy, it does not necessarily
hold that the lowest 24 out of the 26 energies of Htoy,reduced
consist of the 24 energies of Htoy. For example, if we pick a
small penalty � in Table IV, say 0���4, then some of the
states penalized by either H∧�q̃1 , q̃2 , q̃5� or H∧�q̃3 , q̃4 , q̃6� can
still have an energy within the energy values of Htoy. To
avoid this situation, we can choose ��max�Htoy� which will
be sufficient to remove the energies of the penalized states
from the region corresponding to energies of Htoy, therefore
conserving the low-lying spectra of the original Htoy. Using
the mapping explained at the end of Sec. II A, the quantum
version of the 4-local energy function from Eq. �47� is

Ĥtoy = I + q̂̃1 − q̂̃2 + q̂̃3 + q̂̃4 − q̂̃1q̂̃2q̂̃3 + q̂̃1q̂̃2q̂̃3q̂̃4. �51�

The quantum version of the 2-local reduced form presented
in Eq. �50� is

Ĥtoy,reduced = I + q̂̃1 − q̂̃2 + q̂̃3 + q̂̃4 − q̂̃5q̂̃3 + q̂̃5q̂̃6 + ��3q̂̃5 + q̂̃1q̂̃2

− 2q̂̃1q̂̃5 − 2q̂̃2q̂̃5� + ��3q̂̃6 + q̂̃3q̂̃4 − 2q̂̃3q̂̃6

− 2q̂̃4q̂̃6� . �52�

Notice that Ĥtoy acts on a 24-dimensional Hilbert space, span


�q̃4� � �q̃3� � �q̃2� � �q̃1��, while Ĥtoy,reduced acts on a
26-dimensional Hilbert space, span 
�q̃6� � �q̃5� � �q̃4� � �q̃3�
� �q̃2� � �q̃1��.

Due to the conservation of the spectrum and bit strings
described above �as reflected in Tables II and IV�, the solu-
tion obtained from an adiabatic quantum algorithm using ei-

ther Ĥtoy or Ĥtoy,reduced as Ĥfinal,

Ĥ�t� = �1 − t/��Ĥ�0� + �t/��Ĥfinal �53�

should be the same.

TABLE II. Truth table for the energy function Htoy�q�=1+q1

−q2+q3+q4−q1q2q3+q1q2q3q4.

q4 q3 q2 q1 H�q1 ,q2 ,q3 ,q4�

0 0 1 0 0

0 0 0 0 1

0 0 1 1 1

0 1 1 0 1

0 1 1 1 1

1 0 1 0 1

0 0 0 1 2

0 1 0 0 2

1 0 0 0 2

1 0 1 1 2

1 1 1 0 2

0 1 0 1 3

1 0 0 1 3

1 1 0 0 3

1 1 1 1 3

1 1 0 1 4

TABLE III. Truth table for the function H∧�qi ,qj , q̃n�=��3q̃n

+qiqj −2qiq̃n−2qjq̃n� used for the locality reduction procedure de-
scribed in Sec. V.

q̃n qi qj H∧�qi ,qj , q̃n�

0 0 0 0

0 0 1 0

0 1 0 0

1 1 1 0

1 0 0 3�

1 0 1 �

1 1 0 �

0 1 1 �
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In the case of the 2-local Hamiltonian Ĥtoy,reduced, the so-
lution to the optimization problem is obtained using an adia-
batic algorithm after reading the qubits associated to
q̃4 , q̃3 , q̃2 , q̃1 at t=� from the space span 
�q̃6� � �q̃5� � �q̃4�
� �q̃3� � �q̃2� � �q̃1�� at t=�. Notice that the ancillary qubits in
the six-qubit version do not carry any physical information,
as expected, since all of the valuable information was stored
in the qubits coming from the original expression before the
reduction. The cost of reducing the locality of a Hamiltonian
to another which contains at most two-body interactions is
the increase in the number of resources due to the additional
ancillary bits.

Figure 7 shows the eigenenergies of Eq. �53� vs t /�,
where Ĥfinal is replaced by Ĥtoy �see Fig. 7�a��, and by
Ĥtoy,reduced with �=5 �see Fig. 7�b��. As expected from Tables
II and IV, Fig. 7 illustrates the preservation of the subsystem
corresponding to the variables q̃1 , q̃2 , q̃3, and q̃4 in the
ground state of both the original and reduced-locality Hamil-
tonian. Degeneracy and overlap of lines in the spectra in Fig.
7 make it difficult to graphically convey that both spectra in
Fig. 7 indeed have 16 states for 0� eigenenergies �4. In
Fig. 7�b� we plotted the first 19 eigenstates out of the 26

eigenstates corresponding to Ĥtoy,reduced. At t /�=1, states
with energy greater than 4 correspond to states which violate

TABLE IV. Truth table for the energy function Htoy,reduced�q̃�=1+ q̃1− q̃2+ q̃3+ q̃4− q̃5q̃3+ q̃5q̃6+��3q̃5

+ q̃1q̃2−2q̃1q̃5−2q̃2q̃5�+��3q̃6+ q̃3q̃4−2q̃3q̃6−2q̃4q̃6�. The top of the table shows the 16 nonpenalized states
that satisfy q̃5= q̃1∧ q̃2 and q̃6= q̃3∧ q̃4. These 16 states map one to one to the states in Table II. A sample of
the remaining 48 penalized states are shown in the second part of this table. The ellipses represent omitted
rows.

q̃6 q̃5 q̃4 q̃3 q̃2 q̃1 H��q̃1 , q̃2 , q̃3 , q̃4 , q̃5 , q̃6�

0 0 0 0 1 0 0

0 0 0 0 0 0 1

0 1 0 0 1 1 1

0 0 0 1 1 0 1

0 0 0 1 1 1 1

0 0 1 0 1 0 1

0 0 0 0 0 1 2

0 0 0 1 0 0 2

0 0 1 0 0 0 2

0 1 1 0 1 1 2

1 0 1 1 1 0 2

0 0 0 1 0 1 3

0 0 1 0 0 1 3

1 0 1 1 0 0 3

1 1 1 1 1 1 3

1 0 1 1 0 1 4

0 1 0 0 1 0 �

0 1 0 1 1 0 �

0 0 0 0 1 1 1+�

0 1 1 0 1 0 1+�

0 1 1 0 1 0 1+�

1 0 0 1 1 0 1+�

1 0 1 0 1 0 1+�

0 0 0 1 1 1 2+�

0 0 1 0 1 1 2+�

] ] ] ] ] ] ]

1 1 1 1 0 0 3+3�

1 0 0 0 1 1 1+4�

1 1 0 0 1 0 1+4�

1 1 0 1 0 0 2+4�

1 1 0 0 0 1 3+4�

1 1 1 0 0 0 3+4�

1 1 0 0 0 0 2+6�
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the AND condition introduced by the reduction process. No-
tice that there are two eigenstates with eigenvalue 5 in agree-
ment with Table IV after substituting �=5, and one state
which corresponds to the one of the four-degenerate mani-
fold with E=6.

VI. RESOURCES NEEDED FOR A 2-LOCAL
HAMILTONIAN EXPRESSION IN PROTEIN FOLDING

For any k-local energy function, e.g., h=q1q2¯qk, the
reduction can be carried out iteratively, adding the penalty
function H∧�qi ,qj , q̃n� for every substitution of the form
qiqj→ q̃n. For a k-local term, �k−2� substitutions are required
for the reduction to 2-local, and therefore require �k−2� an-
cillary bits.

In the particular case of the protein Hamiltonian the re-
duction procedure needs to be repeated �N−2��ND

−D log2 N−1� times, as described below. All of the terms in
the HP Hamiltonian includes at most interactions between
two amino acids, which results in a maximum locality of
2D log2 N. In the following discussion, the cluster notation
�k��l� specifies the contributions of a particular �k+ l�-local
term into k variable coming from an amino acid with index i
and l variables from an amino acid with index j. Since all of
the terms are of this form, to obtain a 2-local Hamiltonian,
all products corresponding to each �k� and �l� of each cluster
must be converted to 1-local terms. We reduce terms for
variables describing each amino acid in turn, for a total of
D log2 N variables. All possible combinations of two vari-
ables from the D log2 N variables for an amino acid are sub-
stituted. The number of ancillary bits required for this sub-
stitution is �

D log2 N
2 �. These substitutions convert all terms of

the form �3��0� and �2��1� to 2-local. To convert terms of the
form �4��0� or �3��1� to 2-local we need to consider �

D log2 N
3 �

terms originally containing three variables from one amino
acid. After employing an additional ancillary bit per term and
applying the previous reduction step, all of these terms col-
lapse to 1-local with respect to the ith amino acid, i.e., these

terms will assume the form �1��l�. Iterating over the
D log2 N variables for a specific amino acid in order of in-
creasing locality will give us the number of substitutions or
ancilla bits needed per amino acid in order to reduce a par-
ticular cluster �k� to �1� or 1-local. The total number of sub-
stitutions per amino acid corresponds to 	k=2

D log2 N�
Dlog2N

k �
=ND−D log2 N−1. To carry out the procedure for all �N
−2� amino acids the number of ancilla qubits required is
�N−2��ND−D log2 N−1�. The number of qubits needed to
represent a 2-local Hamiltonian version of the protein Hamil-
tonian is given by adding the number of ancillary qubits to
the number of original �N−2�D log2 N quantum bits,

number of total qubits for a 2-local expression

= �N − 2��ND − D log2 N − 1� + �N − 2�D log2 N

= �N − 2��ND − 1� . �54�

Equation �54� provides a closed formula for the number of
qubits needed to find the lowest-energy conformations for a
protein with N amino acids in D dimensions in our encoding.
In particular, for the case of a four amino acid peptide HPPH
in two dimensions considered in Sec. VI requires 30 qubits.

VII. CONCLUSIONS

We constructed the essential elements of an adiabatic
quantum algorithm to find the lowest-energy conformations
of a protein in a lattice model. The number of binary vari-
ables needed to represent N amino acids on an N�N lattice
is �N−2�D log2 N. The maximum locality of the final Hamil-
tonian, as determined by the interaction between pairs of
amino acids using the mapping defined here, is 2D log2 N.

General strategies to construct energy functions to map
into other quantum-mechanical Hamiltonians used for adia-
batic quantum computing were presented. The strategies
used in the construction of the Hamiltonian for the HP model
can be used as general building blocks for Hamiltonians as-
sociated with physical systems where onsite energies and/or
pairwise potentials are present.

FIG. 7. �Color online� Spectrum comparison of the instantaneous energy eigenvalues for the 4-local toy Hamiltonian Ĥtoy �left-hand side�
and its corresponding 2-local version Ĥtoy,reduced �right-hand side�. �Left-hand side� Full spectrum of the 24 instantaneous eigenvalues for

Ĥtoy�q̃,q̃2 , q̃3 , q̃4�. �Right-hand side� First 19 instantaneous eigenvalues for the 2-local version of Ĥtoy, denoted as Ĥtoy,reduced in the text. The

value used for � is 5. The first 24 levels, 0� eigenvalues �4, are associated to the original levels from Ĥtoy. The three remaining states with
eigenvalues greater than 4 are penalized states which violate the conditions q̃n= q̃i∧ q̃j �see Table IV for details�.
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We also demonstrated an application of the Boolean
scheme for converting a k-local Hamiltonian into a 2-local
Hamiltonian, aiming toward an experimental implementation
in quantum devices. The resulting couplings, although
2-local, do not necessarily represent couplings among
nearest-neighbor quantum bits in a two-dimensional geom-
etry. It is however known that the number of ancillary physi-
cal qubits required to embed an arbitrary N variable problem
is upper-bounded by N2 / �C−2�, where C is the number of
couplers allowed per physical qubit.

The most important question remaining to be explored in
future work is the scaling of run time � with respect to the
number of amino acids N. Run time � is dependent on the
particular instance of the problem—in our case, to different
protein sequences. It has been proposed that proteins have
evolved toward a many-dimensional funnel-like potential en-
ergy surface �7�. The sequences that show a funnel-like
structure might be easier to study using adiabatic quantum
computation, because the funnel structure may facilitate an-

nealing of the quantum wave function toward low-energy
conformations.
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APPENDIX: EXTENSION OF THE PAIRWISE
INTERACTION TO THREE DIMENSIONS AND N AMINO

ACIDS, N=2M and M�3

This extension follows the principles presented in Sec.
III B 3 and extends the terms of the Hamiltonian to the case
of a three-dimensional lattice protein. The pairwise term for
the three-dimensional case is

Hpairwise
3D �N� = − 	

i,j=1

N

GijHpairwise
ij,3D , �A1�

x+
ij,3D�N� = �1 − qf�i,1�+1�qf�j,1�+1 �

s=2

log2 N

�1 − qf�j,1�+s − qf�i,1�+s + 2qf�j,1�+sqf�i,1�+s� �
s=1

log2 N

�1 − qf�i,2�+s − qf�j,2�+s

+ 2qf�i,2�+sqf�j,2�+s� �
r=1

log2 N

�1 − qf�i,3�+r − qf�j,3�+r + 2qf�i,3�+rqf�j,3�+r� , �A2�

y+
ij,3D�N� = �1 − qf�i,2�+1�qf�j,2�+1 �

s=2

log2 N

�1 − qf�j,2�+s − qf�i,2�+s + 2qf�j,2�+sqf�i,2�+s� �
s=1

log2 N

�1 − qf�i,1�+s − qf�j,1�+s

+ 2qf�i,1�+sqf�j,1�+s� �
r=1

log2 N

�1 − qf�i,3�+r − qf�j,3�+r + 2qf�i,3�+rqf�j,3�+r� , �A3�

z+
ij,3D�N� = �1 − qf�i,3�+1�qf�j,3�+1 �

s=2

log2 N

�1 − qf�j,3�+s − qf�i,3�+s + 2qf�j,3�+sqf�i,3�+s� �
s=1

log2 N

�1 − qf�i,1�+s − qf�j,1�+s

+ 2qf�i,1�+sqf�j,1�+s� �
r=1

log2 N

�1 − qf�i,2�+r − qf�j,2�+r + 2qf�i,2�+rqf�j,2�+r� , �A4�

x−
ij,3D�N� = �1 − qf�i,1�+1�qf�j,1�+1�1 − �

k=1

log2 N

�1 − qf�i,1�+k���qf�j,1�+2 + qf�i,1�+2 − 2qf�j,1�+2qf�i,1�+2� �
r=3

log2 N �1 − �qf�j,1�+r + �
u=2

r−1

qf�j,1�+u

− 2�
u=2

r

qf�j,1�+u� − qf�i,1�+r + 2qf�i,1�+r�qf�j,1�+r + �
u=2

r−1

qf�j,1�+u − 2�
u=2

r

qf�j,1�+u�� �
s=1

log2 N

�1 − qf�i,2�+s − qf�j,2�+s

+ 2qf�i,2�+sqf�j,2�+s� �
r=1

log2 N

�1 − qf�i,3�+r − qf�j,3�+r + 2qf�i,3�+rqf�j,3�+r� , �A5�
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y−
ij,3D�N� = �1 − qf�i,2�+1�qf�j,2�+1�1 − �

k=1

log2 N

�1 − qf�i,2�+k���qf�j,2�+2 + qf�i,2�+2 − 2qf�j,2�+2qf�i,2�+2� �
r=3

log2 N �1 − �qf�j,2�+r + �
u=2

r−1

qf�j,2�+u

− 2�
u=2

r

qf�j,2�+u� − qf�i,2�+r + 2qf�i,2�+r�qf�j,2�+r + �
u=2

r−1

qf�j,2�+u − 2�
u=2

r

qf�j,2�+u�� �
s=1

log2 N

�1 − qf�i,1�+s − qf�j,1�+s

+ 2qf�i,1�+sqf�j,1�+s� �
r=1

log2 N

�1 − qf�i,3�+r − qf�j,3�+r + 2qf�i,3�+rqf�j,3�+r� , �A6�

z−
ij,3D�N� = �1 − qf�i,3�+1�qf�j,3�+1�1 − �

k=1

log2 N

�1 − qf�i,3�+k���qf�j,3�+2 + qf�i,3�+2 − 2qf�j,3�+2qf�i,3�+2� �
r=3

log2 N �1 − �qf�j,3�+r + �
u=2

r−1

qf�j,3�+u

− 2�
u=2

r

qf�j,3�+u� − qf�i,3�+r + 2qf�i,3�+r�qf�j,3�+r + �
u=2

r−1

qf�j,3�+u − 2�
u=2

r

qf�j,3�+u�� �
s=1

log2 N

�1 − qf�i,1�+s − qf�j,1�+s

+ 2qf�i,1�+sqf�j,1�+s� �
r=1

log2 N

�1 − qf�i,2�+r − qf�j,2�+r + 2qf�i,2�+rqf�j,2�+r� . �A7�
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