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We examine the thermal pairwise entanglement in a symmetric system of n spins fully connected through
anisotropic XYZ-type couplings embedded in a transverse magnetic field. We consider both the exact evalua-
tion together with that obtained with the static path+random phase approximation �RPA� and the ensuing mean
field+RPA. The latter is shown to provide an accurate analytic description of both the parallel and antiparallel
thermal concurrence in large systems. We also analyze the limit temperature for pairwise entanglement, which
is shown to increase for large fields and to decrease logarithmically with increasing n. Special finite-size effects
are also discussed.
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I. INTRODUCTION

Quantum entanglement, one of the most fundamental and
intriguing features of quantum mechanics, is well recognized
as an essential resource for quantum-information processing
and transmission �1–3�. It has recently acquired an important
role also in many-body and condensed matter physics �4–7�,
where it provides a new perspective for analyzing quantum
correlations and quantum phase transitions, as well as in
other fields like the foundations of statistical mechanics �8�.
The study of entanglement in interacting spin models has in
particular attracted much interest �4–7,9–17�, since they pro-
vide a basic scalable qubit representation suitable for imple-
menting quantum-processing tasks and are at the same time
able to capture the main features of diverse physical systems.
Some of these models can in addition be exactly solved for
any size, hence providing a suitable scenario for testing the
accuracy of approximate descriptions.

An example is that of a symmetric array of n fully con-
nected spins �simplex� with anisotropic XYZ-type couplings
embedded in a uniform transverse magnetic field. This is a
solvable yet nontrivial model which exhibits a quantum
phase transition at T=0, whose Hamiltonian is formally
equivalent to that of the well-known Lipkin-Meshkov-Glick
�LMG� model �18�. It has attracted renewed interest in recent
years, having been used to describe diverse physical systems
such as Josephson junction arrays �19� and two-mode Bose-
Einstein condensates �20�. Its zero-temperature entanglement
properties were analyzed in detail in Refs. �12–15�, where it
was shown in particular that the pairwise concurrence, a
measure of the entanglement between two spins �21�, exhib-
ited a rich behavior when properly scaled, with a cusplike
maximum at the critical field in the ferromagnetic case and a
smooth decrease for large fields �14�.

In this work we will examine the thermal pairwise en-
tanglement in this system, together with its description in the
framework of the mean field+random phase approximation
�RPA� derived from the path integral representation of the
partition function �22,23�. Our aim is twofold. First, we want
to determine its thermal behavior and stability, a relevant
aspect in physical realizations. Second, given the complexity
of determining the entanglement properties in general inter-

acting many-body systems at finite temperature, we want to
examine the extent to which its main features can be cap-
tured by a general tractable method like the RPA, which
takes into account just small-amplitude quantum fluctuations
around the mean field. We will show that the present RPA
treatment provides, for anisotropic couplings, an accurate
analytic description of both the parallel and antiparallel ther-
mal pairwise entanglement in large systems, generalizing the
results of �23� for the XXZ case �where entanglement is just
antiparallel�. The limit temperature will be shown to de-
crease only logarithmically with increasing n at all fields, for
the standard 1 /n scaling of coupling strengths, and to exhibit
a different field dependence in the parallel and antiparallel
sectors. In particular, it increases for large increasing fields,
despite the decrease of the T=0 concurrence �and at variance
with the behavior in the XXZ case �23��, entailing just a finite
separable field window at any temperature.

Section II describes the model and its exact partition func-
tion and concurrence, together with their evaluation in the
static path and mean field+RPA treatments and the
asymptotic expressions. Section III discusses in detail the
exact numerical and approximate results in finite systems.
Finally, conclusions are drawn in Sec. IV.

II. FORMALISM

A. Exact partition function and concurrence

We will consider n qubits or spins 1/2 coupled through an
anisotropic full-range XYZ Heisenberg interaction in a trans-
verse magnetic field b. The Hamiltonian reads

H = b�
i=1

n

si
z −

1

n
�
i�j

n

�vxsx
i sx

j + vysy
i sy

j + vzsz
isz

j�

= bSz −
1

n
�

�=x,y,z
v��S�

2 −
n

4
� , �1�

where s�
i denotes the spin component at site i �in units of ��

and S�=�i=1
n s�

i the total spin components. The 1 /n scaling of
coupling strengths ensures that all intensive energies remain
finite for n→� and finite v�. For T�0 the total spin S2
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=��S�
2 is no longer fixed, so that all terms in �1� are inde-

pendent. Nonetheless, without loss of generality we can as-
sume �vy�� �vx� and b�0. We will consider here the attrac-
tive case vx�0 �with �vy��vx� where the ground state will
have maximum spin S=n /2.

Since H is completely symmetric and commutes with
both S2 and the Sz parity P=exp�i��Sz+n /2�� �global phase
flip� the partition function at temperature T=�−1 �we set the
Boltzmann constant k=1� can be written as

Z = Tr exp�− �H� = �
S=	n

n/2

Y�S� �

=�,k

e−�ESk
, �2�

where Y�S�= � n
n/2−S �− � n

n/2−S−1 �, with Y�n /2�=1, is the multi-
plicity of states with total spin S, such that �S=	n

n/2 Y�S��2S

+1�=2n �	n=0 � 1
2 � for n even �odd�� and ESk
 are the eigen-

values of H with total spin S and parity PS=ei��Sz+S�=
 �k
=0, . . . ,S− 1

2 +
� 1
2 −	n��. It should be noticed that, in the fer-

mionic realization �18�, the multiplicities Y�S� would be dif-
ferent �the total number of states in the half-filled fermionic
system is � 2n

n � instead of 2n�.
The pairwise entanglement at T�0 is determined by the

reduced two-spin density matrix �ij =Trn−	ij
� �i� j�, where
�=Z−1 exp�−�H� is the global thermal density. �ij will be
entangled if it cannot be written as a convex combination of
product densities �24�, i.e., if �ij��q�i


� � j

, with q�0,
being separable otherwise. The amount of pairwise entangle-
ment can be measured through the entanglement of forma-
tion Eij �25�, which in the case of two qubits can be evalu-
ated as �21� Eij =−�
=�q
 log2 q
, with q�= 1

2 �1��1−Cij
2 �

and Cij the concurrence �21�, itself an entanglement measure
�26�. Since Eij is in this case just an increasing function of
Cij, with Cij =Eij =1 �0� for a maximally entangled �sepa-
rable� pair, it is equivalent to use Cij as the measure.

In the present system �ij will be the same for any pair and
will commute with the reduced parity exp�i��sz

i +sz
j +1�� and

total spin ���s�
i +s�

j �2, being in the standard basis of the form

�ij =�
p+ 0 0 +

0 p0 − 0

0 − p0 0

+ 0 0 p−

, � = �s+
i s�

j � = x � y ,

p� = 1
4 + z � �sz�, p0 = 1

4 − z,

where s�
i =sx

i � isy
i and ��=x ,y ,z�

� � �s�
i s�

j � =
T

n − 1

� ln Z

�v�

�i � j� , �3�

�sz� � �sz
i� = −

T

n

� ln Z

�b
. �4�

Note that − 1
4�n−1� ���

1
4 as �S�

2 �= n
4 +n�n−1��. The ensu-

ing concurrence C�Cij can be expressed as C
=Max�C+ ,C− ,0�, with

C+ = 2��+� − p0� = 2�x − y + z − 1
4� , �5�

C− = 2��−� − �p+p−� = 2�x + y − �� 1
4 + z�2

− �sz�2� .

�6�

Here C+ �C−� denotes a concurrence of parallel �antiparallel�
type �27�, as in Bell states �↑↑�� �↓↓� ��↑↓�� �↓↑��. Just one
can be positive for a given �ij. In the final expressions �5�
and �6� we have assumed ��0, valid for the present attrac-
tive case vx� �vy�. Since all pairs are equally entangled, the
maximum value that can be attained by C in the present
system is 2 /n �28� �reached, for instance, in the W state
�SM�= � n

2 , n
2 −1�� implying that only the scaled concurrence

c=nC can remain finite in the thermodynamic limit n→�.

B. Static path+RPA

The auxiliary field path integral representation of the par-
tition function �2� can be written as �22�

Z =� D�r�Tr�T̂ exp�− �
0

�

H�r����d��� , �7�

H�r� = bSz − r · S +
1

4�
�

�n
r�

2

v�

+ v�� , �8�

where r= �x ,y ,z�, T̂ denotes �imaginary� time ordering, and
H�r� represents a linearized Hamiltonian. The normalization

�D�r�exp�−�0
���

nr�
2 ���

4v�
d��=1 is assumed. Starting from a

Fourier expansion r���=�k=−�
� rke

i�k�, �k=2�k /�, with D�r�
��kd

3rk, the static path+random phase approximation
�29–31� �to be denoted as correlated SPA �CSPA�� preserves
the full integral over the static components r�r0 but inte-
grates over rk, k�0, in the saddle point approximation, for
each value of the running static variables. This procedure
thus takes into account large-amplitude static fluctuations,
relevant in critical regions, together with small-amplitude
quantum fluctuations, and is feasible above a low breakdown
temperature T�. The final result for the present spin-1/2 sys-
tem can be cast as

ZCSPA =��
�

n�

4�v�
�

−�

�

Z�r�
��r�sinh� 1

2���r��
��r�sinh� 1

2���r��d3r , �9�

where, defining �=r−b= �x ,y ,z−b�,

Z�r� = Tr exp�− �H�r��

= exp�−
1

4
��

�
�n

r�
2

v�

+ v����2 cosh
1

2
���r��n

,

�10�

��r� = ��
�

��
2 �1/2, �11�

��r� = ��
�

��
2 �1 − f����1 − f����

1/2, �12�
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f� = v� tanh�1

2
���r��/��r� , �13�

with ����� and �� ,����. In �9� Z�r� is a Hartree-like
partition function while the remaining factor accounts for the
small-amplitude quantum corrections, with ��r� the single
collective thermal RPA energy existing in the present system.
It can be obtained from the equation

Det�	��� − 2v� �

=�

s�

 s��

−
 p−
 − p


�
 − �−
 − �� = 0, �14�

with s�

 ��
�s��−
�, p
=e−��
 /�
e−��
, and �
�,�
 the eigen-

states and eigenvalues of � ·s. If v��0, the corresponding
integral should be done along the imaginary axes and can be
evaluated in the saddle point approximation �31�. The ele-
ments �3� and �4� become

� =
1

2�n − 1�� nr�
2

2v�
2 −

1

�v�

−
1

2
+ � 2

��
− coth

1

2
��� ��

�v�
�

and �sz�= 1
2 �z� /vz, where �¯� denotes a CSPA average.

C. Mean field+RPA

For sufficiently large n and away from the critical region,
we may integrate all variables rk, including r0, in the saddle
point approximation around the minimum of the free energy
potential −T ln Z�r�, determined by the self-consistent equa-
tions

r� = f��r� − b��, � = x,y,z . �15�

This leads to the mean-field+RPA �MF+RPA�. For an iso-
lated minimum at r=r0, we obtain

ZMF+RPA =
Z�r0�
�1 − �

sinh1
2��

sinh1
2��

, �16�

where

� = 1 − �2

�2 Det�−
2v�

n�

�2 ln Z�r�
�r��r��

�r=r0

accounts for the Gaussian static fluctuations and ����r0�,
����r0�. In �16�, Z�r0� is the MF partition function while
the last factor is the proper RPA correction, which represents
the ratio of two independent boson partition functions: that
of bosons of energy � to that of bosons of energy �.

For the present Hamiltonian Eqs. �15� imply either r�=0
or f�=1 for �=x ,y. For �vy��vx and vz�vx, we then obtain
the following minima.

�a� If �b��bc and T�Tc�b�, where

bc = vx − vz, Tc�b� =
vxb/bc

ln
1+b/bc

1−b/bc

, �17�

the minimum corresponds to the degenerate parity-breaking
solution r= ��x ,0 ,z�, with x�0. In this case � is determined
by the equation fx=1, i.e.,

� = vx tanh
1

2
�� , �18�

which depends just on vx and T ��=vx at T=0�, while z=
−vzb /bc �independent of T� and x=��2−vx

2b2 /bc
2, the con-

straint ��vxb /bc leading to Eq. �17�. At this solution, the
RPA energy �12� becomes

� = x��1 − fy��1 − fz� , �19�

with f�=v� /vx, while �= 1
2�vx /cosh2 1

2��. Note that �→0
for T→Tc�b� �as x→0� or vy→vx �as fy→1�, implying the
divergence of �16� in these limits �see �23� for the correct
MF+RPA treatment in the continuously degenerate XXZ
case�.

�b� For �b��bc or T�Tc�b�, the minimum corresponds to
the normal solution r= �0,0 ,z�. In this case �=b−z is the
positive root of the equation

� = b + vz tanh�1

2
��� �20�

with �=b+vz at T=0. The RPA energy becomes

� = ���1 − fx��1 − fy� . �21�

with f�= �1−b /��v� /vz, while �= 1
2�vz /cosh2 1

2��. Here �
→0 for T→Tc�b� �as fx→1� but remains finite for vy→vx.
This is also the only solution for vz�vx.

The ensuing expressions for the elements �3� and �4� are

� =
1

2�n − 1�� nr�
2

2v�
2 −

1

2
+ 	v�

�, �sz� =
1

2n
�nz

vz
− 	b� ,

	� �
��

��
coth

1

2
�� −

��

��
coth

1

2
�� +

T

1 − �

��

��
,

with �=v� , b. The first term in �, �sz� is the O�1� Hartree
contribution, whereas 	� provides the O�1 /n� RPA correc-
tions, essential for describing entanglement.

D. Asymptotic expressions for the concurrence

Full expressions for the MF+RPA concurrence are rather
long and are given in the Appendix. However, up to O�1 /n�
terms and for sufficiently low T, we obtain

C+ �
1

n − 1
�1 −

�

vx − vy
coth

1

2
��� − 2e−�vx, �22�

C− �
1

n − 1
�1 −

vx − vy

�
coth

1

2
��� − 2e−�vx �23�

in the symmetry-breaking phase ��b��bc�, where

�

vx − vy
=�1 − �b/bc�2

1 − �
, � =

vy − vz

vx − vz
, �24�

whereas in the normal phase �b�bc�, C−�0, and

C+ =
1

n − 1
�1 −

�

b + vz − vy
coth

1

2
��� − 2e−��b+vz�, �25�

with
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�

b + vz − vy
=�b/bc − 1

b/bc − �
. �26�

We have used in �22�–�26� the T=0 values for � and �, as
the ensuing thermal corrections will be of order e−��

=O�1 /n� for temperatures where �22�, �23�, and �25� are
positive, leading then to O�1 /n2� terms in C. Equations
�22�–�25� become increasingly accurate as n increases �coin-
ciding for T→0 and vz=0 with the expressions of Ref. �14��
and can be summarized as

C� �
1 − � �

�−vy
��1 coth1

2��

n − 1
− 2e−��, �27�

with �=vx, �=��1−b2 /bc
2���−vy���−vz� for �b��bc and �

=b+vz, �=���−vx���−vy� for b�bc, the result for b�bc
applying just for C+.

For T→0 �e−��→0, coth1
2��→1� C� is then fully deter-

mined for large n by the scaled field b /bc and the anisotropy
�. For 0���1 �i.e., vz�vy �vx�, C− �C+� will be positive
for �b��bs ��bs�, where

bs = bc
�� �28�

is the factorizing field �14,32�, where the system possesses a
separable ground state. Accordingly, at T=0 both C� vanish
at b=bs, C being antiparallel for �b��bs and parallel for �b�
�bs. On the other hand, if ��0 �vy �vz�vx� or ��1 �vy
�vx�vz, in which case there is no symmetry-breaking
phase� C is always parallel at T=0. It is also seen from �25�
and �26� that, at T=0, C+ remains positive for arbitrarily
large fields, with �n−1�C+� 1

2 �1−��bc /b for b�bc.

1. Thermal effects

Away from bc and the XXZ limit, the main thermal effect
in Eqs. �22�–�25� will arise from the exponential term
−2e−��, which stems in the MF+RPA from the Hartree con-
tribution to � and �sz� �� 1

4r�
2 /v�

2 and 1
2z /vz; if just this

contribution is kept, Eqs. �5� and �6� lead to C�

= 1
2 �tanh2 1

2��−1��−2e−�� for ���1��. It represents the ef-
fect of the temperature-induced decrease of the total spin
average �S2�� 1

4n2 tanh2 �� /2. In the exact result it arises
from the lowest state of the S=n /2−1 multiplet, which has
excitation energy �� �see Fig. 4 in the next section� and
multiplicity n−1 in Eq. �2�.

The RPA thermal factor coth1
2�� cannot, however, be ne-

glected �i.e., replaced by 1� in �22�–�25�, particularly for b
close to bc or � close to 1, as � is lower than � �for v��0�
and vanishes for b→bc or vy→vx. In the exact result it rep-
resents essentially the effect of the excited states within the
S=n /2 multiplet, whose excitation energies have an approxi-
mate harmonic behavior �i.e., �E�k�, k=0,1 , . . .; see Fig.
4�. With this factor, Eq. �23� correctly reduces for vy→vx
and up to O�1 /n� terms, to the asymptotic result for the XXZ
case �23�,

C− �
1

n − 1
�1 −

2T/bc

1 − �b/bc�2� − 2e−�vx �vx = vy� , �29�

while for b→bc Eqs. �22� and �25� converge to

C+ �
1

n − 1
�1 −

2T

vx − vy
� − 2e−�vx �b = bc� . �30�

Hence, in these regions the concurrence will initially exhibit
an almost linear decrease with increasing T before the expo-
nential term becomes appreciable, as a consequence of the
low excitation energy of the S=n /2 states.

In any case, for sufficiently large n, the concurrence will
decrease monotonically with increasing T, with C� vanish-
ing at a limit temperature TL

� that will decrease logarithmi-
cally with increasing n, as implied by Eq. �27�:

TL
� �

�

ln
2�n−1�

1−� �
�−vy

��1 coth1
2

��

, �31�

which is actually a transcendental equation for TL
�. Both TL

�

vanish �logarithmically� for b→bs
�, with TL

− decreasing and
TL

+ increasing with increasing field �and TL
+�b� developing a

slope discontinuity at bc�. The increase of TL
+ with increasing

b persists for b�bc, where

TL
+ �

b + vz

ln
4�n−1�b/bc

1−�

, �32�

implying that at any fixed T parallel entanglement can be
induced by increasing the field �for b�bc, � and � become
proportional to b, the system approaching then the entangled
ground state as b increases�. The same behavior was ob-
served in the limit temperatures for nonzero global negativi-
ties in small anisotropic systems �17�.

At fixed low T, the main thermal effect for 0���1 is
thus the appearance of a separable window bL

−� �b��bL
+ �in-

stead of a separable point� where C�=0, with

bL
� � bc

�1 − �1 − ���tanh
1

2
���1 − 2�n − 1�e−�vx���2

�33�

�valid for T�TL
+�bc� for bL

+ and T�TL
−�0� for bL

−�. Its width
increases then with increasing n or T, with bL

�

�bs�1�2��−1−1��n−1�e−�vx� for ne−�vx �1. For T�TL
−�0�

the separable window will extend through b=0 �C�=0 for
�b��bL

+�.

III. COMPARISON WITH EXACT RESULTS IN FINITE
SYSTEMS

Typical results for the magnetic behavior of the concur-
rence at finite temperatures are shown in Fig. 1 for the XY
case �vz=0� with n=100 spins and different anisotropies. It
is first seen that the MF+RPA results obtained with the
asymptotic expressions �22�–�25� are very accurate except in
the vicinity of the critical field, improving as T increases.
The full CSPA results further improve those of the MF
+RPA in the critical region for not too low T, being practi-
cally indistinguishable from the exact ones at the finite tem-
peratures considered.

The top panel corresponds to the Ising case vy =0, where
the concurrence is always parallel. At T=0 it smoothly in-
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creases from 0 as b increases, having a maximum near bc,
while for T�0 it becomes nonzero only above a threshold
field bL

+ �Eq. �33� for T�TL
+�bc��. In the central panel

��=0.5� we may appreciate the vanishing of the concurrence
at the factorizing field bs�0.71vx at T=0, where it changes
from antiparallel to parallel. This point evolves into a sepa-
rable window as T increases, which extends through b=0 for
T�TL

−�0��0.15vx.
The bottom panel depicts the behavior close to the XXZ

limit. In this case the exact T=0 concurrence C− displays an
oscillatory behavior as b→bs from below, as in the XXZ
chain �23�, which reflects the ground-state spin parity transi-
tions and which is not reproduced by the MF+RPA �see,
however, the discussion of Fig. 5 below�. Nonetheless, as T
increases the oscillations become rapidly washed out and the
asymptotic MF+RPA result again becomes accurate, cor-

rectly reproducing the exact concurrence at T /vx=0.07 and
0.14, including the reentry of the parallel concurrence that
takes place for high fields. The thermal RPA factor coth1

2��
is here essential for accuracy as �w is small �� /vx�0.14 for
b�bc�.

Let us mention that, for �� �0,1�, the ground state, which
has definite spin parity P= �1, exhibits n /2 transitions
�→� as b increases from 0, the last one at the factorizing
field bs. The ground-state concurrence changes from antipar-
allel to parallel just at this last transition. These transitions
are, however, appreciable only for � close to 1 �and hence bs
close to bc� or for small sizes, as otherwise the ground states
of both parity sectors are practically degenerate and the con-
currence is nearly the same in both states �see Fig. 4� as well
as in their mixture. Another consequence of parity conserva-
tion is that the exact side limits of C� at b=bs are actually
nonzero and different in finite chains �nC�→	 / �e	/2�1�,
with 	=n�1−�� �33��, being then appreciable for small finite
	. In the bottom panel we thus obtain the side limits nC−
�1.16, nC+�0.54 for the exact result at bs�0.99bc, with
C� being in fact maximum at b=bs.

Figure 2 depicts the corresponding limit temperatures TL
�,

which, remarkably, are also accurately reproduced by the
asymptotic MF+RPA result obtained from Eq. �31�. TL van-
ishes at b=bs but increases ∀ b�bs, thus developing a sepa-
rable field window between the antiparallel and parallel con-
currences. The bottom panel shows the logarithmic decrease

0

0.5

1.0

nC

T�vx�0 0.14 0.2

Χ�0

Exact
MF�RPA

CSPA

0

0.5

1.0
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T�vx�0 0.14
0.14

0.2

Χ�0.5

0 0.5 1.0 1.5
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0

0.5

1.0

nC

T�vx�0

0.07

0.14

Χ�0.98

1.2 1.6 b� bc

0

0.05
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FIG. 1. �Color online� Scaled concurrence as a function of the
magnetic field b for n=100 spins coupled through a full-range XY
interaction with anisotropies �=vy /vx=0 �top�, 0.5 �center�, and
0.98 �bottom�, at different temperatures. Exact and asymptotic mean
field+RPA �Eqs. �22�–�25�� results are depicted, together with
those of the CSPA �Eq. �9�� for T�0 �almost indistinguishable from
the exact ones�. C is parallel �antiparallel� for b�bs ��bs�, with bs

the factorizing field �28�. The inset depicts the �parallel� concur-
rence reentry for b�bc at �=0.98.
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FIG. 2. �Color online� Top: Limit temperatures for pairwise en-
tanglement TL as a function of the magnetic field b for n=100 spins
at the same anisotropies of Fig. 1, according to exact and MF
+RPA results �Eq. �31��. They vanish at the factorizing field bs.
Regions below the limit temperature have finite pairwise entangle-
ment, of antiparallel �parallel� type if b�bs ��bs�. Bottom: Limit
temperatures for increasing numbers of spins at �=0.5 �n=10k, k
=2, . . . ,6�.
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of TL with increasing n in all regions. Let us also remark that
the behavior of TL bears no relation to that of the mean field
critical temperature, Eq. �17�, which does not depend on the
anisotropy � and vanishes for b�bc. For �b��bc it is essen-
tially higher than TL �except for very low n �17��, decreasing
monotonically from 1

2vx at b=0 to 0 at b=bc.
For �=0.98, the exact limit temperature TL

− actually ex-
hibits a small positive slope close to bs, as seen in the top
panel �not reproduced by the MF+RPA�. This entails that at
low finite T the antiparallel concurrence will persist in a
narrow region above bs, while at fixed b within this region,
the thermal behavior of the concurrence will be nonmono-
tonic, being first parallel, vanishing, and then becoming an-
tiparallel before being extinguished at the final TL

−, as de-
picted in the inset of Fig. 3. Roughly, for small b−bs�0, it is
possible to show that TL

��−1�b−bs�	e−	/2 / �1−e−	�, with
=ln coth 	 /4, this effect being then noticeable for finite 	
=n�1−��.

The different thermal response of C for fields below,
around, and above the critical field bc can be seen in the main
panel of Fig. 3 for �=0.5. The more rapid decrease with
increasing T for b�bc is in agreement with Eq. �30�, while
the results at b /bc=0.5 and 1.5 reflect the different decrease
rate �Eqs. �23�–�25��.

The origin of the distinct thermal factors in Eqs. �22�–�25�
can be seen in Fig. 4, which depicts the excitation energies of
the lowest levels �S ,k�� for �=0.5. For �b��bc, correspond-
ing levels of opposite parity are practically degenerate. The
nonvanishing excitation energies within the maximum spin
multiplet are nearly harmonic, the lowest one practically co-
inciding with the RPA energy �19�, whereas the excitation
energy of the lowest state with S=n /2−1 is almost b inde-
pendent and coincident with �=vx. The parity degeneracy
becomes broken at all levels as b approaches bc, where the
maximum spin excitations become low and give rise to in-
creased thermal sensitivity �Eq. �30��. For �b��bc the RPA
energy �21� represents again the lowest excitation energy in
the maximum spin multiplet, which now has negative parity,
whereas �=b+vz is again the excitation of the lowest S
=n /2−1 state, which has now positive parity PS.

The corresponding concurrences are shown in the lower
panel. For �b��bc and �=0.5, C is nonzero just in the de-
generate ground states, being almost coincident except for b
close to bc and changing both from antiparallel to parallel at
bs. However, for b�bc, C is nonzero in all maximum spin
states, being parallel in the ground and highest states but
antiparallel in the rest. They are essentially the basic states
�S=n /2,Sz=M� plus perturbative corrections. For �M��n /2
they are already entangled and exhibit hence antiparallel
concurrence �23�, while for �M�=n /2 the concurrence arises
just from the corrections and is hence parallel. We also note
that the mixture of the n−1 states with lower spin S=n /2
−1 has zero concurrence at all fields �the same occurs with
lower-spin mixtures� so that it can only decrease the thermal
concurrence, which arises then essentially from the ground
state, except in anomalous regions �the antiparallel reentry in
the inset of Fig. 3 arises from the first excited state�.

Finally, Fig. 5 depicts results for a small system �n=10�,
where finite-size effects become exceedingly important. The
stepwise behavior of the exact concurrence at T=0 is already
visible for �=0.5 �top panel�, the side limits at the exact
factorizing field bs

ex= �1−n−1�bs being nonzero �33�. The
MF+RPA result is now less accurate at T=0, and leads to
the vanishing of C− at a field lower than bs �and closer to bs

ex�
if the full expression �A2� is used for C−. Nonetheless, the

0 0.1 0.2

T�vx

0

0.5nC
Χ�0.5

b�bc�0.5

1.5

0.99
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FIG. 3. �Color online� Thermal behavior of the concurrence for
�=0.5 and n=100 at the indicated fields. The inset depicts the non-
monotonic behavior just above bs for �=0.98 and n=100. Solid
lines depict exact results, dotted lines those from the MF+RPA,
Eqs. �22�–�25�.
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FIG. 4. �Color online� Top: Lowest excitation energies �ESk�

��ESk� −E0� /vx for �=0.5 and n=100 vs magnetic field b. ESk


denotes the energy of level k with total spin S and parity 
, while
E0=En/2,0+. Solid �dashed� lines depict levels of positive �negative�
parity PS, practically degenerate for b�bc. The dotted lines depict
the mean field and RPA energies � and �, respectively. Bottom: The
corresponding concurrences, including that in the ground state. For
b�bc C is antiparallel �parallel� for b�bs ��bs� in both states
�n /2,0��, whereas for b�bc, it is parallel in the ground state
�n /2,0+� but antiparallel in the other levels depicted.
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MF+RPA results rapidly improve as T increases, while the
CSPA, although no longer exact, again improves the results
in the vicinity of bc.

When the full square root in the evaluation of C− is kept
�Eq. �A2��, the MF+RPA is actually able to qualitatively
account for a finite jump in C for fields close to bs but only
if � is very close to 1, as seen in the bottom panel. In this
case, the MF+RPA result for C− at T=0 does not decrease as
b increases but rather increases, in agreement with the exact
result, terminating at a final field bf �bs

ex where it starts to be
complex �and is maximum�. For �=1−	 /n and fields just
below bc, i.e., �b /bc�2=1−� /n, we actually obtain, instead of
Eq. �23�, the asymptotic MF+RPA expression

C− � 1
n� 1

2� − �	
�coth1

2��� − 2e−�vx

− 1
n�2�	

�coth1
2�� + 1

4��� − 4��1/2 �34�

with �=��	�vx−vz� /n. While for ��n it reduces to Eq. �23�
up to O�1 /n�, for ��4 it becomes complex if 	 is suffi-
ciently small. At T=0, if 	�	c= 123

55 �0.55, Eq. �34� be-
comes complex for ��� f�	��2.4+ 5

3
�	c−	, with C−�bf�

� 1
8� f

2. Note that C−�bf��1 for 	�0.48, with C−�bf�→2 /n
for 	→0, which is the correct result for the XXZ limit �23�.
In the case depicted, 	=0.2.

Equation �34� implies as well that these effects, in particu-
lar, the increase of C− as b→bs for � close to 1, will disap-
pear for very low T���bc /n, which is confirmed in the
exact results. One may also appreciate in the bottom panel of

Fig. 5 the significant persistence of the antiparallel concur-
rence up to b�1.5bc at T /vx=0.14 �not reproduced by the
MF+RPA or CSPA�, which is just the same anomalous be-
havior discussed in Figs. 2 and 3, enhanced by the smaller
value of 	. Nonetheless, even in this extreme case there is a
weak but nonzero revival of the parallel concurrence for high
fields ∀ T �appreciable in the figure just for T=0� which is
correctly reproduced by the MF+RPA.

IV. CONCLUSIONS

We have analyzed the thermal behavior of the pairwise
concurrence in a fully connected spin system with aniso-
tropic couplings placed in a transverse field. For the usual
1 /n scaling of coupling strengths, the limit temperature de-
creases only logarithmically as the size n increases, and de-
creases �increases� for increasing field in the antiparallel
�parallel� sectors, the latter extending for arbitrarily large
fields. This behavior was previously observed for small n in
the temperatures limiting global negativities �17�, for which
the pairwise limit temperature provides a lower bound. An-
isotropic arrays then become strictly pairwise separable just
within a finite field window at any temperature, which col-
lapses into the factorizing field at T=0. Remarkably, all pre-
vious features of the pairwise entanglement can be captured
by a simple thermal MF+RPA treatment, consistently de-
rived from the path integral representation of the partition
function, which in the present case is able to provide a reli-
able analytic description of the concurrence and limit tem-
perature at all fields, exact in the large-n limit. We have also
discussed the special finite-size effects arising for small
anisotropies or sizes, whose main aspects can also be quali-
tatively reproduced by the MF+RPA or the full CSPA. These
results suggest the possibility of describing by simple means
at least the main features of the thermal pairwise entangle-
ment in more complex systems, although the actual accuracy
and scope of the RPA in such situations remains to be inves-
tigated.
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APPENDIX: MF+RPA CONCURRENCE

We provide here the expressions for the full MF+RPA
concurrence derived from Eqs. �3�–�5� and �16�. Setting vx

=1 and b̃�b /bc, in the symmetry-breaking phase we obtain

C+ = −
1 − �2

2
+

1

n − 1�1 −
�

1 − vy
coth

1

2
��

��1 +
�

1 − �

�1 − vy��2

�2 − b̃2 �
− � �

1 − ��2

�1 − �3 − ��T�� , �A1�
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Χ�0.5
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FIG. 5. �Color online� Magnetic behavior of the concurrence for
a system with n=10 spins at different temperatures, for anisotropies
�=0.5 �top� and 0.98 �bottom�. In the latter the antiparallel concur-
rence increases with increasing field at very low T, as in the XXZ
case �see text�.
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C− =
�2 − b̃2

2
+

1

n − 1
� 1 − b̃2

2
−

1 − vy

�
coth

1

2
����2 + b̃2

2

+
�

1 − �
�2�1 − vz�� −

�2

�1 − ��2 �1 − �3 − ��T��
− ��1 + b̃2

2
+

1

n − 1
�1 − vy

�
coth

1

2
��

�2 + b̃2

2

−
1 − b̃2

2
��2

− b̃2�1 +
1 − vy

n�
coth

1

2
���2�1/2

, �A2�

where �= 1
2��1−�2� and �=tanh1

2��. If b̃ is not close to 1,
we may expand Eq. �A2� up to O�1 /n� as

C− � −
1 − �2

2
+

1

n − 1�1 −
1 − vy

�
coth

1

2
����2 − b̃2

1 − b̃2

+
�

1 − �
�1 − vz��2� −

�2

�1 − ��2 �1 − �3 − ��T�� .

�A3�

For ���1, ��1−2e−��, with 1−�2�4e−��. Equations �22�

and �23� are then obtained from �A1� and �A3�, neglecting �
and setting �=1 in the O�1 /n� terms. This is correct up to
O�1 /n� terms for temperatures where C� are positive, as in
such a case e−�� must be O�1 /n�.

Similarly, in the normal phase we obtain

C+ = −
1 − tanh2 1

2��

2
+

1

n − 1�1 −
�fx

1 − fy
coth

1

2
��

+
1

2
� coth

1

2
�� �

�=x,y

�fx

1 − f�
�v�

vz
−

1

1 − �� −
�

�1 − ��
3T

vz
� ,

�A4�

where f�=v� tanh� 1
2��� /�, �= 1

2�vz�1−tanh2 1
2���, and � is

determined by Eq. �20�. For ���1, 1−tanh2 1
2���−4e−��.

Equation �A4� then leads to Eq. �25� up to O�1 /n� for tem-
peratures where C+�0, by neglecting � and setting �=b
+vz in the O�1 /n� terms.
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