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We characterize all coexistent pairs of qubit effects. This gives an exhaustive description of all pairs of
events allowed, in principle, to occur in a single qubit measurement. The characterization consists of three
disjoint conditions, which are easy to check for a given pair of effects. Known special cases are shown to
follow from our general characterization theorem.
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I. INTRODUCTION

Optimal solutions for quantum information processing
tasks typically require observables that cannot be described
by single self-adjoint operators but are formalized as
positive-operator-valued measures �POVMs�. Generally, an
element of an observable, called an effect, can be any posi-
tive operator bounded by the identity operator. For instance,
an optimal observable for unambiguous discrimination of
two nonorthogonal pure states has three elements and none
of them is a projection �1�. Another example is provided by
informationally complete observables, which do not have
any nontrivial projections as their elements �2�.

It is well known that two projections can be elements of a
single observable if and only if they commute. This condi-
tion for effects to be part of a single observable is called
coexistence �3,4�. Coexistence can be therefore viewed as a
kind of natural generalization of commutativity. It is remark-
able that two effects can be coexistent even if they do not
commute, but a general criterion of coexistence is not
known. This problem of characterizing coexistent effects,
called the coexistence problem, is the topic of this paper.

The coexistence of effects is connected to the theoretical
limitations built inside the quantum theory, and the concept
of coexistence provides a unifying framework for these kinds
of issues. Indeed, many theoretical limitations, related both
to the foundations and to quantum information processing
tasks, can be seen as a consequence of �non�coexistence of
the relevant effects. For instance, the security of Bennett-
Brassard 1984 �BB84� protocol �5� relies on the noncoexist-
ence of the corresponding effects. Moreover, assuming that
the Bell inequality is violated, the coexistence of certain ef-
fects would lead to the possibility of superluminal commu-
nication �6�.

Coexistence �contrary to commutativity� also explains the
possibility of unsharp joint measurements of complementary
pairs of physical quantities, such as orthogonal spin compo-
nents or path and interference of an atomic beam. A joint
measurement of such pairs is possible only if an increased
unsharpness is accepted, and a relevant coexistence condi-
tion can be then interpreted as a trade-off relation between
the imprecisions of the corresponding measurements. Some
recent investigations on this issue are reported, for instance,
in �7–10�.

In this work we give a complete characterization of the
previously stated coexistence problem in the case of two qu-
bit effects. In Sec. II we recall the coexistence problem in a
precise formulation. In Sec. III we present the main result of
this paper—a characterization theorem of coexistent pairs of
qubit effects. We also show that the already known special
cases are easily recovered from our theorem. A detailed proof
of the characterization theorem is given in the appendixes. In
Appendix A we recall some general facts on coexistence
which are needed in our investigation. Appendix B then con-
centrates on the details of the proof.

II. COEXISTENCE PROBLEM

Let H be a complex separable Hilbert space. An operator
A on H is an effect if

0 � ���A�� � 1

for all ��H. In terms of operator inequalities this reads

O � A � I ,

where O and I are the zero operator and the identity operator,
respectively. We denote by E�H� the set of effects.

An observable G is a normalized-effect-valued measure,
also called a positive-operator-valued measure �POVM�. It is
defined on a measurable space �� ,F�, where � is the set of
measurement outcomes and F�2� is the � algebra of pos-
sible events. For each event X, the observable G attaches an
effect G�X�. If the system is in a vector state ��H and a
measurement of G is performed, the probability of getting a
measurement outcome � belonging to an event X, is
�� �G�X���. Detailed explanations and many examples of
this generalized description of quantum observables can be
found in �11–14�.

For a singleton set ��	��, we denote G�
G���	�. If
the set of measurement outcomes � is countable, then G is
determined by the set of effects G�, ���. Namely, a gen-
eral effect G�X� corresponding to an event X is recovered by
formula

G�X� = �
��X

G�.

In particular, an observable G with a finite number of mea-
surement outcomes �say n� can be described as a list
�G�1

, . . . ,G�n
�. The POVM normalization condition then
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�
i=1

n

G�i
= I .

We can also look on the structure of observables from the
other side: given a collection of effects, we can ask whether
they originate in a single observable. This concept, called
coexistence, was first studied by Ludwig �3�.

Definition 1. Effects A ,B ,C , . . . �E�H� are coexistent if
there exists an observable G : F→E�H� and events
X ,Y ,Z , . . . �F such that

A = G�X�, B = G�Y�, C = G�Z�, . . . . �1�

If two effects A and B are coexistent, we denote A��B.
It is essential to note that in Definition 1 the events

X ,Y ,Z , . . . need not be disjoint.
As an example, let F be the symmetric informationally

complete qubit observable consisting of four effects

F1 =
1

4�I +
1
3

��x + �y + �z�� ,

F2 =
1

4�I +
1
3

�− �x − �y + �z�� ,

F3 =
1

4�I +
1
3

�− �x + �y − �z�� ,

F4 =
1

4�I +
1
3

��x − �y − �z�� .

The fact that F is an observable implies that the effects 1
2 �I

+ 1
3

� j�, j=x ,y ,z are coexistent. Indeed, we get

F��1,4	� = F1 + F4 =
1

2�I +
1
3

�x� ,

and similarly for the other two effects. Actually, this reason-
ing leads also to a proof of the informational completeness of
F as we can conclude that a measurement of F provides the
same information as three separate measurements of the or-
thogonal spin components. This example should be com-
pared with the fact that any two projections 1

2 �I+n ·�� and
1
2 �I+m ·�� with n� �m do not commute and hence are not
coexistent.

In this paper we concentrate on the following coexistence
problem. Given an effect A, characterize all effects B which
are coexistent with it.

The following simple observation shows that when we are
studying the coexistence of two effects �as in this paper�, we
can restrict ourselves to four outcome observables.

Proposition 1. Effects A and B are coexistent if and only
if there exists an observable G with four outcomes �1,2,3,4	
such that

A = G1 + G2, B = G1 + G3. �2�

Proof. By definition, if a four outcome observable G sat-
isfying Eq. �2� exists, then A and B are coexistent. Assume
then that A and B are coexistent and let G : F→E�H�

be an observable such that A=G�X� ,B=G�Y� for some
X ,Y �F. We denote X�=� \X and Y�=� \Y, and we set

G̃1=G�X�Y�, G̃2=G�X�Y��, G̃3=G�X��Y�, and G̃4

=G�X��Y��. This defines an observable G̃ with the required
properties. �

If A is a projection �i.e., A=A2�, then the answer to the
coexistence problem is simple and well known: an effect B is
coexistent with A exactly when AB=BA. Generally, however,
a characterization of coexistent effects is not known. In the
next section we present a full solution to the coexistence
problem in the case of a qubit system, i.e., two dimensional
Hilbert space H=C2.

III. QUBIT EFFECTS AND THEIR COEXISTENCE

Qubit effects A and B can be parametrized by vectors
�� ,a� , �	 ,b��R4 in the following way:

A =
1

2
��I + a · ��, a � � � 2 − a , �3a�

B =
1

2
�	I + b · ��, b � 	 � 2 − b . �3b�

Here �
��1 ,�2 ,�3� is the vector of Pauli matrices, and we
have denoted a
�a�, b
�b�. Note that from Eqs. �3a� and
�3b� it follows that a ,b�1.

We are now considering A to be fixed and we are looking
for all effects B �hence all parameters 	 and b�, which are
coexistent with A. In order to formulate the characterization
theorem, we first introduce the following function S from
E�H� to �0,1�,

S�A� 
 S��,a� ª
1

2
�a2 + ��2 − ��

− ��2 − a2���2 − ��2 − a2�� . �4�

The following properties of S are easy to confirm: �a� S is
continuous; �b� S�I−A�=S�A�; �c� S�UAU��=S�A� for ev-
ery unitary operator U; �d� S�A�=1 iff A is a nontrivial
projection �i.e., A2=A and O�A� I�; �e� S�A�=0 if and
only if A is a trivial effect �i.e., A=
I for some 0�
�1�.

Due to these properties, we interpret the number S�A� as
a quantification of the sharpness of A. Naturally, 1−S�A� is
then related to the unsharpness of A.

For simplicity, we formulate the main theorem below in
the case of 0���1 and 0�	�1. We note that if A is
defined by parameters � and a, then I−A corresponds to
2−� and −a. As shown in Proposition 2 in Appendix A, the
coexistence of A and B is equivalent to the coexistence of
I−A and B. Therefore, the cases when ��1 or 	�1 can be
recovered easily from the main theorem.

It is useful to note that for effects A satisfying 0���1,
we have

S�a,�� � S��,�� = � , �5�

and the inequality is strict whenever a��. Therefore, the
value of the parameter � gives an upper bound for the sharp-
ness of A.
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It follows from Proposition 3 in Appendix A that only the
relative angle between a and b is relevant for the coexistence
of A and B—not their absolute directions. In the following it
is thus convenient to denote by b� the component of b in the
direction of a, and b� the length of the projection of b in the
plane perpendicular to a. For a given A, the coexistence of B
with A then depends on parameters b�, b�, and 	.

Theorem 1. An effect B is coexistent with A if and only if
it falls into one of the following three disjoint cases:

�C1� if 	�1−S�A�, then A��B irrespectively of b;
�C2� if 	�1−S�A� and �b� −b0�w, then A��B;
�C3� if 	�1−S�A� and �b� −b0��w, then A��B if and

only if

b� � b�
max. �6�

Here we have denoted

b�
max =

1

2a
��2 − ��2 − a2��a2 − �a�b� − b0� + �1 − 	��2	

+
1

2a
��2 − a2��a2 − �a�b� − b0� − �1 − 	��2	 , �7�

b0 =
1

a
�1 − ���1 − 	� , �8�

w =
1

a
�1 − ��2 − 	��1 − ��2 + 1 − a2� + 	2. �9�

Among the three different situations �C1�–�C3�, only in the
last one does the coexistence of A and B impose a nontrivial
�18� restriction on the length of vector b. Namely, the con-
dition �b� −b0��w implies that

b2 = b�
2 + b�

2 � �b�
max�2 + b�

2 � 	2. �10�

The last inequality in Eq. �10� is proved at the end of Ap-
pendix B, where we also show that the direction of b in
which the length of b is most restricted is determined by the
condition b� =b0.

The division of the coexistence condition to the three dis-
joint cases �C1�–�C3� can be intuitively understood in the
following way. The first class �C1� consists of those effects B
for which 	 �and consequently, the sharpness S�B�� is so
small that with any choice of b, the coexistence of A and B is
attained. If 	 is above the given threshold 1−S�A� �the un-
sharpness of A�, then for some angles between a and b, the
length of b is restricted if B is to coexist with A. Namely,
there exists an interval for b�, in which cases the length of b
is limited. The center of the interval is b0, which represents
the most strict restriction, and the width of the interval is 2w.
The second class �C2� then consists of those effects B for
which b� is outside the interval and which are coexistent with
A even if their sharpness would be the highest possible �i.e.,
S�B�=	�. The third class �C3� represents effects for which
their sharpness is nontrivially restricted if they are to coexist
with A.

In Fig. 1 we present four illustrative examples. Figure
1�a� demonstrates the case �C1� where 	�1−S�A�, and
hence all effects with this 	 coexist with A. In Fig. 1�b� we

keep the parameters � and a unchanged while 	 is enlarged
such that 	�1−S�A�. The interval with nontrivial restric-
tion on the length of vectors b appears—for b� outside this
interval �C2� applies, while for b� inside, �C3� applies. Note
that the center of the interval is not zero. In Fig. 1�c� we have
	=1 and now the interval is centered at zero, meaning that
the restriction on the sharpness of B is most strict if a and b
are orthogonal. Furthermore, w=1 and thus �C3� covers all
the possible cases. In Fig. 1�d� we have a=�, which means
that A is a multiple of a projection. Nonzero b0 results in a
clearly visible asymmetry in the picture.

In the following examples we demonstrate that the known
special cases of coexistence conditions follow easily from
Theorem 1.

Example 1. Assume that �=	=1. Using property �e� of
S�A�, we see that the coexistence condition �C1� holds if and
only if a=0. Whenever a�0, we have to look at the extra
conditions in �C2� and �C3�. We get b0=0, w=1, and there-
fore �C2� occurs only whenever �b��=1. On the other hand,
�C3� is satisfied when �b���1 and

b�
2 � �1 − a2��1 − b�

2� . �11�

Putting a=0 in Eq. �11� we see that this inequality describes
the correct solution also for the case a=0. The case b� =1 is
also recovered from Eq. �11� as b� =1 implies that b�=0. In
conclusion, the inequality �11� covers all the cases and we
can write it in the symmetric form

a2 + b2 � 1 + �a · b�2. �12�

This result has been first derived by Busch �15� in an equiva-
lent form

FIG. 1. �Color online� Examples of the specification of effects
B, which coexist with a given effect A. On each figure, parameters
�, a, and 	 are fixed, while the b vector components b� and b� are
on x and y axis, respectively. The thick red line denotes the
boundary—A and B coexist if and only if the vector b is inside the
shaded region. The thin black circle represents the condition on B to
be an effect b�	. The blue vector represents the shortest vector b
lying on the boundary—its projection to the x axis equals b0. The
interval �b0−w ,b0+w�, where a nontrivial restriction on the length
of the allowed vectors b exists, is denoted by the vertical dot-
dashed lines and a black arrow on the x axis. The following param-
eters are used in the pictures: �=0.6 in every figure and
�a� a=0.5, 	=0.6; �b� a=0.5, 	=0.9; �c� a=0.5, 	=1; and
�d� a=0.6, 	=0.9.
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�a + b� + �a − b� � 2. �13�

Other derivations of this condition have been recently given
in �7� and �9�.

Example 2. Assume that 	=1 and a�b. The first coex-
istence condition �C1� holds if and only if a=0. Since a�b,
we have b� =0 and b�=b, while b0=0 and w=1 due to 	
=1. Therefore �C2� does not occur and a�0 leads to the case
�C3� which now reads

b �
1

2
�2 − ��2 − a2 +

1

2
�2 − a2. �14�

Putting a=0 in Eq. �14� we notice that this condition also
covers the case a=0. This result has been derived by Liu et
al. �10�.

Example 3. Assume that a=� and b=	, which means that
the effects A and B are scalar multiples of projections. We
now have b0= �1−���1−	� /� and w= ��+	−1� /�. Since
b=	, according to Eq. �10�, the effects A and B coexist if
either �C1� or �C2� is satisfied. The condition �C1� holds if
and only if �+	�1, while in the case �+	�1 the inequal-
ity in �C2� holds if either b� 	 or

a · b � 2 − 2� − 2	 + �	 . �15�

The first case b� 	 means that b� =b and thus b is parallel to
a. In the second case, we notice that a ·b�ab��	, and
hence �+	�1 implies Eq. �15�. Therefore, the inequality
�15� characterizes all the coexistent effects A and B having
nonparallel vectors a and b. This inequality is also easily
obtained from Lemma 2 of Molnár �16�.

IV. CONCLUSION

We have studied the coexistence problem of two qubit
effects, i.e., the question of when two effects can be parts of
a single observable. We have solved the problem by provid-
ing simple criteria �C1�–�C3�, which, taken together, are nec-
essary and sufficient to guarantee the coexistence. We have
shown that the known special cases follow straightforwardly
from our general coexistence theorem.

We expect that many theoretical limitations, related both
to the foundations and to quantum information processing
tasks, can be seen as resulting from �non�coexistence of ef-
fects. The concept of coexistence provides a natural unifying
framework for these kinds of questions. The consequences of
our main result, Theorem 1, are yet to be found out.

Finally, we remark that a paper by Busch and Schmidt
�17� was published recently on the arXiv. These authors
solve the same problem independently with a different
method �see also the following Note Added in Proof�. The
final results have yet to be compared .

Note Added in Proof: Recently, a third solution was pub-
lished by Yu et al. �19�. The connection between all these
three approaches will be elaborated in a later work.
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APPENDIX A: GENERAL OBSERVATIONS ON
COEXISTENCE

In this section we list some simple general observations
which are needed in the proof of Theorem 1.

Proposition 2. Let A ,B�E�H�. The following conditions
are equivalent: �i� A and B are coexistent; �ii� A and I−B are
coexistent; �iii� I−A and B are coexistent; and �iv� I−A and
I−B are coexistent.

Proof. It is enough to prove that �i� implies �ii�. The other
implications follow by applying this to different combina-
tions of A and I−A with B and I−B. Assume that A and B are
coexistent and that G is a four outcome observable satisfying

Eq. �2�. We define another four outcome observable G̃ by

G̃1 ª G2, G̃2: = G1, G̃3: = G4, G̃4: = G3.

Then

G̃1 + G̃2 = G2 + G1 = A ,

and

G̃1 + G̃3 = G2 + G4 = G2 + I − G1 − G2 − G3 = I − B .

Thus, A and I−B are coexistent. �
Proposition 3. Let A ,B�E�H� and U be a unitary opera-

tor on H. The following conditions are equivalent: �i� A and
B are coexistent and �ii� UAU� and UBU� are coexistent.

Proof. It is enough to prove that �i� implies �ii� as the
other implication is obtained from this by applying U� in-
stead of U. Assume that A and B are coexistent and that G is
a four outcome observable satisfying Eq. �2�. Then UG jU

� is
a four outcome observable, which satisfies a similar relation
for observables UAU� and UBU�. �

Proposition 4. Let A,B,C be effects such that A is coex-
istent with both B and C. Then for any 0�
�1, the effects
A and 
B+ �1−
�C are coexistent.

Proof. Let G1 be a four outcome observable satisfying the
condition �2� for A and B, and G2 another four outcome
observable satisfying a similar condition for A and C. Let G
be an observable defined as G j =
G j

1+ �1−
�G j
2 for

j=1,2 ,3 ,4. Then

G1 + G2 = 
�G1
1 + G2

1� + �1 − 
��G1
2 + G2

2� = 
A + �1 − 
�A

= A ,

and

G1 + G3 = 
�G1
1 + G3

1� + �1 − 
��G1
2 + G3

2� = 
B + �1 − 
�C .

Hence the effects A and 
B+ �1−
�C are coexistent. �
Proposition 5. Let A and B be coexistent effects. Then A

is coexistent with 
B for any 0�
�1.
Proof. Choose C=O in Proposition 4. �
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APPENDIX B: PROOF OF THE CHARACTERIZATION
THEOREM

In this section we give a detailed proof of Theorem 1. We
first formulate the question whether two effects given in Eqs.
�3a� and �3b� coexist as a geometric problem. We then char-
acterize its solution for particular boundary �i.e., limiting�
cases. In the last step we identify and analyze each possible
way of how a boundary case can occur. We find that a bound-
ary case can happen in only two ways: the first way leads to
�C1� and �C2� and the second leads to the �C3� condition.

1. Formulation of the coexistence condition as an intersection
requirement for four circles

We first shortly recall the formulation of the coexistence
condition as an intersection requirement for four circles
�9,15�. As shown in Proposition 1, the coexistence of A and
B is equivalent to the existence of a four outcome observable
G. This, in turn, is equivalent to the existence of a single
effect G1 satisfying the following operator inequalities �4�:

G1  O, G1 � A, G1 � B, I + G1  A + B . �B1�

We parametrize G1 in the same way as A and B in Eqs. �3a�
and �3b�,

G1 =
1

2
��I + g · ��, 0 � g � � � 2 − g . �B2�

With respect to a given parametrization, conditions �B1� can
be recast into the following four inequalities:

�g� � � , �B3�

�a − g� � � − � , �B4�

�b − g� � 	 − � , �B5�

�a + b − g� � 2 + � − � − 	 . �B6�

In conclusion, effects A and B are coexistent if and only if
there exist parameters � and g such that the inequalities
�B3�–�B6� are satisfied. �Note that the inequality in Eq. �B2�
is implied by these four inequalities, so we do not have to
include Eq. �B2� separately.�

In the three dimensional space, each inequality can be
viewed as a ball of allowed vectors g. These four balls are
centered in points 0, a, b, and a+b, respectively, with radii
given by the right-hand side of the corresponding inequality.
The effects A and B are therefore coexistent if and only if
there is a � such that the intersection of the four balls is
nonempty. Important here is that the radii change with �,
which is a free parameter. The intersection also shows the
freedom in choosing different vectors g—for each �, when
the intersection is nonempty, all points in the intersection can
be chosen as g. From this also follows that a unique effect
G1 satisfying Eq. �B2� exists if and only if there is only one
such � that the four balls intersect and for this particular �,
they intersect only in one point.

By Proposition 3 in Appendix A, the coexistence of A and
B depends only on the numbers � ,	 ,a ,b and on the relative

angle between a and b. Without any loss of generality, we
choose the coordinate system such that the vector a lies
along the x axis and vector b is in the x-y plane. Then, a
single point in the x-y plane with coordinates �x0 ,y0� repre-
sents a cone of three dimensional vectors b �parametrizing
effects B�, which all have the length along vector a equal to
b� =x0 and the length in the perpendicular plane equal to
b�=y0.

Then, if there is a point g in the intersection, its projection
to the x-y plane is also in the intersection, because the pro-
jection is closer than g to each of the centers of the four
balls. As we are interested in whether the intersection is
empty or not, it is thus enough to study the intersection in the
x-y plane only. Projecting on the x-y plane we obtain four
circles centered in the corners of a parallelogram with sides a
and b, which have the radii given in Eqs. �B3�–�B6�. This
geometrical formulation of the problem is summarized in
Fig. 2.

2. Restriction to the boundary cases

We will answer the question of whether A and B are co-
existent by fixing the parameters �, a, and 	 and specifying
the allowed region A in the two dimensional x-y plane—if a
vector b lies inside this allowed region, then the correspond-
ing effects A and B are coexistent.

It follows from Proposition 4 in Appendix A that if vector
b is in the allowed region A, then all the vectors 
b,
0�
�1, are in the allowed region A also. Namely, choos-
ing B= 1

2 �	I+b ·�� and C= 1
2	I in Proposition 4 we arrive at

this conclusion. In later steps of this proof we will find a
vector b in each direction of the x-y plane such that b is in
the allowed region A but there is no vector b��A having the
same direction as b but greater length. This set, which we
call the boundary of the allowed region A, thus characterizes
all vectors in A. The key property of the boundary which we
exploit in our investigation is the following.

Proposition 6. The boundary of the allowed region A is
formed by such vectors b that only such parameters � exist

1
p r =2 α − γ

r = β − γ4

r =1 γ

2 + γ − α − βr =3

4
p

p

2
p

3

b

a0

a b+

FIG. 2. The effects A and B are coexistent if and only if the
intersection of the four circles is nonempty. The four circles are
centered at the corners of a parallelogram with sides a and b. The
circles’ radii are given in the figure and depend on �. For the par-
ticular � used in the figure, the intersection is empty. Later we will
also need the common points of circles 1 and 2 denoted by p1 and
p2, and circles 3 and 4 denoted by p3 and p4.
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that the set of the intersection points of the four circles is
nonempty but has zero area.

Proof. Assume that for a vector b there is � such that the
intersection has positive area. The boundaries of the circles
move smoothly when changing vector b. Thus, there is
��0 such that for all vectors b� satisfying �b�−b���, the
change from b to b� does not make the intersection of the
circles disappear. In particular, there is b� having the same
direction as b, but greater length. Therefore, b is not in the
boundary of A. �

Two circles can intersect in a set with a positive area or in
a point. It follows that a nonempty zero area intersection of
any number of circles is a point �and not, e.g., a curve�.
Finally, we make an interesting observation �which is, how-
ever, not needed in the proof�. In the same way as previously,
we can deduce that if the intersection region has positive
area, there must be an interval of �’s leading to intersections.
This means that a unique � �such that G exists� implies a
single point intersection �and consequently unique g�. It is,
however, not true, that the existence of a single point inter-
section implies unique G—for example, there are cases
where there are only single point intersections, but � can be
chosen from an interval of positive length �and also vectors g
differ for different ��. This fact will become evident later in
the proof.

3. Division of single point intersections into three cases

Four circles can intersect in one point in three distinct
ways:

�1� 2CI—two circles intersect in one point and this point
lies inside of the two remaining circles. We will see that one
of the possible 2CI intersections defines the boundary of A,
which is formed by vectors b of length 	, leading to condi-
tions �C1� and �C2�.

�2� 3CI—three circles intersect in one point, but out of
these three, no two circles intersect in one point and the point
lies strictly inside of the fourth circle. It will turn out that a
3CI case never defines a boundary point of A—a necessary
condition for a 3CI implies that one of these three circles
contains another one and therefore can be disregarded, forc-
ing the case to be a 2CI case.

�3� 4CI—there is a point laying on the boundary of all
four circles, but this point does not lead to 2CI. Such inter-
sections define the boundary formed by vectors b shorter
than 	, leading to condition �C3�.

These three cases are illustrated in Fig. 3. In the follow-
ing, we will put aside the case where a and b are �anti�par-
allel vectors and a=�. This assumption simplifies our inves-
tigation a bit and we will later in step 4 check that this case
is also covered by the final result.

a. Boundary of the allowed region in the 2CI case

If b is on the boundary of the allowed region and it is a
2CI case, then there is �0 such that two circles intersect in a
point that is inside the remaining two circles and there is no
� for which the intersection has a nonzero area. Then the two
circles making the single point intersection cannot be the
circles 1 and 3 as both these circles’ radii grow with �—we
could enlarge �0 by a small amount such that the circles 1
and 3 would intersect in a nonzero area and the two remain-
ing circles would not move enough to leave this area. We
would thus obtain a four circle intersection of a nonzero area,
which contradicts Proposition 6. Similarly, a boundary point
formed by 2CI cannot be due to the circles 2 and 4—they
both grow if we decrease �. Moreover, a boundary point can
arise neither from circles 1 and 2, since they do not change
with changing b, nor circles 3 and 4, which shift by the same
amount when b is changed. A single point intersection of
circles 2 and 3 implies equality b=2−	, which is never the
case since we have restricted ourselves to the case 	�1. The
only possibility is that a single point intersection is formed
by circles 1 and 4, leading to the condition b=	.

We will now specify when a vector b of length 	 is in the
allowed region A. In this case it is also on the boundary of A

since b cannot be larger than 	 according to Eq. �3�. Assume
that b=	. The radii of circles 1–4 are well defined �i.e.,
non-negative� when

0 � � � min��,	� . �B7�

For a given � satisfying Eq. �B7�, circles 1 and 4 touch in
one point �b /b. This point is inside of circle 2 if ��b /b
−a���−�. We can write this requirement in the form

� � �M ª

	

2

�2 − a2

�	 − a · b
. �B8�

Here the number �M is well defined and non-negative unless
a and b are parallel vectors and a=�, a case which will be
treated later.

Similarly, one finds that the point �b /b is inside circle 3
when

�  �m ª

	

2

�2 − � − 	�2 − �a + b�2

�	 − a · b − 2	
. �B9�

Again, the denominator in Eq. �B9� is zero only in the case
we have put aside. We conclude that the vector b is in the
allowed region if there exists � satisfying the inequalities
�B7� and

�m � � � �M . �B10�

We already noted that �M 0. It also holds �m�min�� ,	�.
Namely, putting for a ·b the largest possible value a	, we get
�m= 1

2 ��+a�− �1−	��min�� ,	�. Since �m is an increasing

a)

inside 3

1 2

inside 4

1

inside 3

2

4

b)

1 2

3
4

c)

FIG. 3. Three different cases where the intersection is one single
point. �a� Two circles touch in a single point, which is inside the
remaining two circles. �b� Three circles intersect in a single point; it
is not the case �a�, and the intersection is inside the fourth circle. �c�
Four circles intersect in a single point and it is not the case �a� or
�b�.
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function of a ·b �for all other parameters fixed�, we have
�m�min�� ,	� for all possible values of a ·b. From this fol-
lows that � fulfilling both Eqs. �B7� and �B10� exists �and
the vector b is in the allowed region A� if and only if
�M −�m0.

We now look at the difference �M −�m as a function of b�.
As we are only interested in the sign, we can equally well
study the expression

�� − a
b�

	
��2 − � + a

b�

	
���M − �m� , �B11�

since the first two terms are positive unless b� = �	 and a
=�. This expression is a quadratic polynomial of b�, with
roots

b�
� 
 b0 � w ª

1

a
��1 − ���1 − 	� � D� , �B12�

where

D ª �1 − ��2 − 	��1 − ��2 + 1 − a2� + 	2. �B13�

Here we obtained b0 and w used in Theorem 1. The coeffi-
cient at b�

2 of the quadratic polynomial �B11� is positive and
the polynomial is non-negative in the points b� = �	. There-
fore, there are three possible cases: �i� The discriminant D is
negative and the roots are complex—this means that the dif-
ference �M −�m is positive for all vectors b of length 	. �ii�
Both roots are outside the interval �−	 ,	�. Again, this means
that the difference �M −�m is positive for all b. �iii� Both
roots are in the interval �−	 ,	�. In this case the difference
�M −�m is negative in between the two roots b�

�, and these
solutions do not correspond to a vector b in A.

As the last step, we take a look at D as a quadratic poly-
nomial of 	. First of all, it is non-negative at 	=0 and
	=1, and its two roots, labeled by 	1 and 	2 such that
	1�	2, belong to the interval �0,1�. For 	� �	1 ,	2�, the
discriminant D is negative and therefore all b are in the
allowed region as discussed earlier. The scaling property
from Proposition 5 says that all effects B having b=	�	1
will be coexistent with A as well. Therefore, whenever
	�	2, all vectors b of length 	 are in the allowed region.
What is left is to check the case 	�	2.

We assume that 	�	2 and we show that in this case the
solutions b�

� lie inside the interval �−	 ,	�. Let us look at the
expression ab�

− as a function of �, a, 	. We define a function
f by formula

f��,a,	� ª �1 − ���1 − 	�

− �1 − ��2 − 	��1 − ��2 + 1 − a2� + 	2,

and the domain of f is taken to be the region where
�� �0,1�, a� �0,��, and 	� �	2�a ,�� ,1�. Then f is a con-
tinuous function and its domain is a connected region in R3.
A direct calculation shows that the equation f�� ,a ,	�=a	
implies

0 = 	�1 − 	��� − a��2 − � + a� . �B14�

Thus f can take the value a	 only on the boundary of its
domain. From the continuity of f , and the connectedness of
its domain then follows, if for one point in the domain we

have f�� ,a ,	��a	, then f�� ,a ,	��a	 in the whole
domain. An analogous equation to Eq. �B14� allows
similar reasoning for the lower limit −a	. On the other hand,
we have f�2 /3,1 /2,4 /5��−0.18, which is inside the
interval �−a	 ,a	�= �−2 /5,2 /5�. We thus conclude that
b�

−� �−	 ,	�. The fact that b�
+� �−	 ,	� can be shown in a

similar way.
The fact that for 	�	2 all vectors b are in the allowed

region A leads us to the definition of sharpness for effects in
Eq. �4�—we define the sharpness as S�A�=1−	2. We then
conclude that

�1� if 	�1−S�A�, the whole boundary is formed by vec-
tors b of length 	—in other words, in this case the allowed
region is a circle with diameter 	 and the center at 0, corre-
sponding to �C1�;

�2� if 	�1−S�A�, the boundary is given by vectors b of
length 	 if and only if b� � �b�

− ,b�
+�, corresponding to �C2�.

b. Boundary of the allowed region in the 3CI case

Let us assume, for instance, that a 3CI case defining a
boundary point b is formed by the intersection of circles 1, 2,
and 4, i.e., the circles 1, 2 and 4 intersect in a single point
which is inside the circle 3 �see Fig. 3�. Looking at Fig. 2,
points common to circles 1 and 2 are p1 and p2. The first one
is not closer to circle 4 than the second one. Therefore, if
circles 1, 2, and 4 have a single common point, it must be p2.
Let us define the following function to compare the distance
of p2 from the center of circle 4 and its radius,

d��� ª �b − p2����2 − �	 − ��2. �B15�

If the point p2 lies on circle 4 for some �0, then d��0�=0.
Moreover, if the point p2 lies inside �outside� circle 4, then
d��0��0 �d��0��0�. If ���d�����0

�0, then there exists an
interval ��0 ,�1� where d����0. Since we have assumed that
the common point of circles 1, 2, and 4 is inside circle 3,
there exists �� ��0 ,�1� such that the four circles intersect in
a region with nonzero area. This is in contradiction with
Proposition 6. A similar reasoning rules out the case
���d�����0

�0. Therefore, a necessary condition for a 3CI
case is the set of equations d��0�=0 and ���d�����0

=0.
The coordinates for p2 are x=��2�−�� /2a+a /2 and y

=�2−x2. By making the substitution �= ��−a�� /2 we can
express the distance d as a function of the new variable � in
the form

d��� = c1�c2 − 1 − �2 + c3�� , �B16�

where c1=b�
�2−a2, c1c2=b2−a ·b+�	−	2, and c1c3

=b��−a	. Equation ���d�����0
=0 leads to a unique solution

�0=−c3 /1+c3
2. Putting this into equation d��0�=0, we get

c2
2−c3

2−1=0. Substituting back the definitions for c1, c2, and
c3, we finally obtain that a necessary condition for this par-
ticular 3CI is

�b2 − 	2���a − b�2 − �� − 	�2� = 0. �B17�

If the expression in the first bracket is zero, we obtain the
condition for 2CI of circles 1 and 4. If the second bracket is
zero, circles 2 and 4 are one inside the other �if �	, then
circle 4 is inside circle 2, and it is the opposite if ��	�.
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Their intersection is then the whole smaller circle and this
fact does not depend on �. We can then disregard the larger
circle completely, because the intersection does not depend
on it in any respect. The 3CI is thus reduced to 2CI and
cannot therefore define boundary points different from those
found in the previous section dealing with 2CI. In the same
way, one finds out that the three other possible 3CI cases are
similar and always lead to boundary points defined by a 2CI
intersection. The resulting conditions, analogous to Eq.
�B17�, are summarized in Table I for all four possible 3CI.

c. Boundary of the allowed region in the 4CI case

Let us assume that the first two conditions in �C3� hold.
We show that then the right-hand side of Eq. �7� defines the
perpendicular component of vectors b forming the boundary
of the allowed region A.

A four point intersection can occur if one of the points p1
and p2 coincides with one of the points p3 and p4. Since
b�0, a single point intersection must be such that points p2
and p3 coincide. Putting their x coordinates to be equal we
obtain the solution for �,

� =
1

2
�a · b + �	 − 2�1 − ���1 − 	�� . �B18�

This solution represents the four circle intersection if the
intersection points p2 and p3 exist. Point p2 exists
if ��−a� /2��� ��+a� /2, while point p3 exists if
��−a� /2− �1−	���� ��+a� /2− �1−	�. Using these
conditions, we conclude that Eq. �B18� represents a case
p2=p3 if and only if the following condition is fulfilled:

�1 − ���1 − 	� − �a + 	 − 1�

� a · b � �1 − ���1 − 	� + �a + 	 − 1� . �B19�

Under the first two conditions in �C3�, these inequalities are
fulfilled. First of all, a straightforward calculation shows that
S�� ,a��a. Hence, the inequality 	�1−S�� ,a� guaran-
tees that a+	−1�0. It is then easy to verify that the
D�a+	−1. Therefore, if �b� −b0��w, then Eq. �B19�
holds.

Putting equal the y coordinates for the points p2 and p3,
we finally obtain the equation of the coordinate b� as a func-
tion of b�,

b� =
1

2a
��2 − a2��a2 − ��2 − ���1 − 	� + ab��2	

+
1

2a
��2 − ��2 − a2��a2 − ���1 − 	� + ab��2	 .

�B20�

This can be rewritten in the form given in Eq. �7�.

4. The case of parallel vectors a and b

Finally, we look at the situation where the vectors a and b
are parallel. In this case the effects A and B commute, and
this implies that they are coexistent. To check their coexist-
ence directly from Definition 1, one can use a four outcome
observable G defined as

G1 = AB, G2 = A�I − B�, G3 = �I − A�B ,

G4 = �I − A��I − B� .

On the other hand, the fact that a and b are parallel means
that b�=0. Clearly, the conditions �C1�–�C3� do not then
lead to any restrictions. This completes the proof of Theorem
1.

5. Proof of inequality (10)

We have seen in step 3 that for �b� −b0��w, condition
�B19� is fulfilled and therefore the expression in Eq. �B20�
determines a vector b in the allowed region A. We know
from the 2CI case that for �b� −b0��w, vector b of length 	
is not in the allowed region. From this follows that the length
of vector �b� ,b�

max� must be shorter than 	. We can also see
this directly from the expression for b�

max. If we denote
r2=b�

2+ �b�
max�2, we get after some algebraic manipulation

that �1� r=	 implies �b� −b0�=w, and �2� �b�
r=0 implies that

either �b� −b0�=w or �b� −b0�=0. The first point shows that the
vector �b� ,b�

max� does not reach the length of 	 anywhere
inside the interval b� � �b�

− ,b�
+� and therefore the inequality in

Eq. �10� holds. On the other hand, since r=	 in the two
points b� =b�

�, the continuity of r as a function of b� implies
that it reaches the minimum value somewhere inside the in-
terval. The second point shows that it happens at b� =b0.

TABLE I. Necessary conditions for all four possible three circle intersections. The three circles intersect-
ing in a single point are given in the first column. The necessary condition and its geometrical meaning for
a 3CI defining the boundary are in the second and third columns, respectively.

3CI Necessary condition Geometrical meaning

1, 2, and 3 �b2− �2−	�2���a+b�2− �2−�−	�2�=0 1 and 3 are one inside the other

1, 2, and 4 �b2−	2���a−b�2− ��−	�2�=0 1 and 4 are touching, or 2 and 4
are one inside the other

1, 3, and 4 �b2−	2���a+b�2− �2−�−	�2�=0 1 and 4 are touching, or 1 and 3
are one inside the other

2, 3, and 4 �b2− �2−	�2���a−b�2− ��−	�2�=0 2 and 4 are one inside the other
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