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We analyze a recently proposed physical implementation of a quantum computer based on polar molecules
with “switchable” dipoles, i.e., dipole moments that can be switched “on” and “off”. Conditional dipole-dipole
interaction is an efficient tool for realizing two-qubit quantum gates necessary to construct universal gates. A
set of general requirements for a molecular system is presented, which would provide an optimal combination
of quantum gate times, coherence times, number of operations, high gate accuracy, and experimental feasibil-
ity. We proceed with an analysis of a two-qubit phase gate realization based on switchable dipole-dipole
interactions between polar molecules in an optical lattice architecture. We consider one of the schemes pro-
posed in our previous work �Phys. Rev. A 74, 050301�R� �2006��, using specific molecules, such as CO and
NF. We suggest suitable electronic states and transitions, and investigate requirements for the laser pulses
driving them. Finally, we analyze possible sources of decoherence and list practical difficulties of the scheme.
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I. INTRODUCTION

Information processing relying on quantum mechanical
rather than classical systems holds the promise for a dramatic
speedup of such operations as factoring large numbers,
searches of unstructured databases, and simulation of the dy-
namics of quantum mechanical systems �1�. Communication
devices using optical fields with single photons would pro-
vide a level of security impossible with classical communi-
cation techniques �2�. Recent years have witnessed remark-
able advances in both the theoretical and experimental
development of quantum computing technologies, including
demonstrations of basic building blocks necessary for quan-
tum computing and quantum networking. Various ap-
proaches have been explored, including those based on
trapped ions and neutral atoms �3,4�, cavity QED �5�, liquid
NMR �6�, and solid-state systems �7�. Recently, dipolar mol-
ecules were proposed as a system with characteristics opti-
mal for physical implementation of quantum computing
schemes �8�. Polar molecules combine the advantages of
neutral atoms and ions �such as long coherence times, rich
level structure, strong optical and microwave transitions, and
well-developed techniques of coherent manipulation with
optical and microwave pulses� and of quantum dots and su-
perconducting circuits �easy control with electrostatic fields�.
Polar molecules are thus compatible with various architec-
tures, including optical lattices, microwave, static and ac
electric and magnetic traps and solid-state systems. An im-
portant aspect of these systems is the existence of electronic
states which exhibit a large permanent dipole moment. The
molecules can then be used for fast conditional dipole-dipole
interactions resulting in two-qubit operations, necessary for
construction of a universal set of qubit gates.

A number of specific implementations of quantum com-
puting schemes with polar molecules have been suggested
�8–15�. Recently we proposed a model of controllable
dipole-dipole interaction between polar molecules �14�, al-
lowing one to implement a universal two-qubit gate, such as
a phase gate. In this scheme, the state used to store a qubit

and the additional state to turn the interaction “on” and “off”
have permanent dipole moments of significantly different
magnitude. The turning on and off mechanism can be called
“switching” of the interaction, and the additional state used
to perform it can be called a “switch” state. Ideally, one of
the states has a zero moment, while the other one has a large
dipole moment of several Debye, so that two molecules in
this state will exhibit strong dipole-dipole interaction and
acquire a � phase shift. Provided that the molecules can be
excited only from one of the qubit states, for example, �1�,
only the �11� state of the two-qubit system will acquire a
phase, resulting in a phase gate. In this approach only two
selected molecules interact, which greatly simplifies the two-
qubit gate compared to the case when all molecules interact
at the same time.

Three realizations of the phase gate with polar molecules
were proposed in our previous work �14�. Here we focus on
one of these: the direct phase gate. It uses the molecular
ground electronic state with a zero permanent dipole moment
to store a qubit. To perform the gate operation, the molecules
are then excited to an electronic state with a large dipole
moment �see Fig. 1�. The scheme, utilizing electronic mo-
lecular transitions in the visible or uv range, can be most
naturally implemented with cold molecules in optical lattices
�3�. It can also be realized with molecules doped into solid-
state matrices �16�. In the present work we analyze the ex-
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FIG. 1. �Color online� Schematic showing the direct variant of
the phase gate based on controllable dipole-dipole interaction of
polar molecules.
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perimental feasibility of the proposed approach: identify can-
didate molecules, find an optimized realization of quantum
gates �using the two-qubit phase gate as an example� result-
ing in small gate error, estimate parameters of gates, and
analyze the sources of decoherence.

The organization of the paper is as follows. Section II
presents a set of requirements which would provide the op-
timal performance for the implementation of quantum com-
puting with polar molecules. In Sec. III we analyze the
dipole-dipole interaction between two molecules and calcu-
late the phase shift a two-qubit state acquires during the in-
teraction time. We also analyze in detail the application of
the dipole-blockade mechanism which would allow the gate
operation to be independent of the distance between the in-
teracting molecules and their relative orientation. In Sec. IV
we investigate this direct dipole control scheme for the spe-
cific case of the CO molecule. Decoherence mechanisms are
discussed in Sec. V, and our conclusions are presented in
Sec. VI.

II. REQUIREMENTS FOR A POLAR MOLECULE
QUBIT SYSTEM

In order to provide an optimal combination of long coher-
ence times, short gate times �resulting in maximal number of
operations�, small gate errors, and experimental feasibility, a
set of general requirements for a polar molecular system can
be formulated.

�1� Choice of qubit states. Long-lived states are required
to store a qubit. These should be well isolated from the en-
vironment, i.e., only weakly perturbed by electric and mag-
netic fields and various interactions, such as dipole-dipole,
spin-spin, or black-body radiation. Good candidates are hy-
perfine and rotational states of a ground electronic molecular
state having a negligible permanent dipole moment. To en-
code a qubit in hyperfine states, a ground electronic state
with a nonzero electronic orbital and/or spin angular momen-
tum is preferable in order to maximize the splitting between
hyperfine sublevels.

�2� Coupling strengths. Fast one and two-qubit gates re-
quire the corresponding interaction strengths to be large. The
storage states need long lifetimes. This means that the tran-
sition between the qubit states �0� and �1� should be forbid-
den and thus Raman transitions via an intermediate state
could be used to perform one-qubit gates. An alternative ap-
proach is to map the qubit to some states coupled by a one-
photon allowed transition. In both cases, the resulting transi-
tion coupling has to be strong. Choosing electric dipole-
allowed transitions with dipole moments of a fraction of a
Debye for one-qubit operations, and sufficiently large Rabi
frequencies of the laser fields, one qubit gate times can be as
short as femtosecond laser pulse durations.

�3� Robust dipole-dipole interactions. For an efficient
phase gate, strong and robust dipole-dipole interactions are
required. To maximize the strength of the interaction, one
must choose the excited electronic state with a dipole mo-
ment as large as possible. Robustness of the interaction as-
sumes that the phase error accumulated during the interac-
tion time can be kept below an acceptable threshold value.

�4� Cooling and trapping. In order to fulfill the require-
ments of �1� and �3�, a molecule has to be cooled down to
sub-Kelvin temperatures �typical rotational transition fre-
quencies �10 GHz, giving the condition T�1 K to avoid
populating higher-energy rotational states� and trapped. To
initialize qubits encoded in hyperfine sublevels with split-
tings of tens—hundreds kHz, molecules will have to be
cooled to temperatures of the order of 100 nK to 1 �K �17�.
Cooling to the translational ground state of an optical lattice
potential is necessary to minimize decoherence.

�5� Decoherence. Provided that a qubit is encoded in hy-
perfine or rotational sublevels with typical lifetimes of the
order of hours and typical optical lattice decoherence times
on the order of seconds, the main decoherence mechanisms
are �i� spontaneous emission of the electronically excited
states; �ii� spatial dependence of the dipole-dipole interac-
tion; and �iii� finite laser-linewidth and other light-induced
decoherence. Excited electronic states with a life-time long
compared to the gate time are necessary to minimize �i�.
Thus we need to consider metastable excited states, which do
not couple to lower energy states by electric dipole- allowed
transitions. Spatial dependence of the dipole-dipole interac-
tion can result in undesirable excitation of high-energy trans-
lational states of the lattice potential. To avoid it, the inter-
action should be switched on and off adiabatically with
respect to the potential oscillation frequency. Decoherence
times stemming from finite laser linewidth of the order of ms
are expected using phase-stabilized lasers �18�.

III. CALCULATION OF THE PHASE AND MINIMIZATION
OF PHASE ERROR

A. Dipole-dipole interaction strength

We consider the dependence of the accumulated phase on
the separation and orientation of the molecular dipoles. We
explore how the error per gate can be reduced below a
threshold value at which fault-tolerant quantum computing
can be realized. A typically cited desirable error threshold is
0.01%, while errors per gate demonstrated experimentally to
date are �3% �19�. Error-correction codes have therefore
been developed that would allow fault-tolerant quantum
computing with error per gate as high as 1% �20�. In our
analysis we use the 1% threshold value, as an acceptable
error tolerance.

We analyze the phase error assuming that two molecules,
with positions r1 and r2 and intermolecular distance defined
as �R�= �r2−r1� are in a state ��1,2�, having a large dipole-

dipole interaction matrix element ��1,2�V̂dip-dip��1,2�
���1,2��̂1 · �̂2 / �R�3��1,2�. While the interaction is switched
on a � phase shift accumulates. The state ��1,2� can be a
product �e1��e2�	�e1e2� of the states of two molecules, each
having a large dipole moment. This can be realized if �ei� is
a superposition of rotational states of a molecular electronic
state produced by a dc electric field. It should be noted that a
pure rotational state has a zero dipole moment in the labora-
tory frame, and it is the transition between J and J�1 rota-
tional states that manifests a dipole moment, which is called
the permanent dipole moment of a molecule. Therefore, for a
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state to have a nonzero dipole moment it should be mixed
with other rotational states. Another possibility to have a
nonzero dipole-dipole interaction matrix element u

	�V̂dip-dip� is to use an entangled state composed of two
rotational states of interacting molecules, for example,
��1,2�= ��J1=J ,J2=J+1�� �J1=J+1,J2=J�� /
2, where we
use the notation �J1 ,J2� with J1, J2 being rotational states of
the first and second molecule, respectively. The entangled
state is produced by the dipole-dipole interaction, mixing the
initially degenerate �J1=J+1,J2=J� and �J1=J ,J2=J+1�
states, thus lifting the degeneracy. In the rest of the paper we
will use a short notation ��1,2�= ��J ,J+1�� �J+1,J�� /
2 for
the entangled state.

To analyze the phase dependence on the relative distance
�R� and orientation of the dipole moments, we assume that
each molecule is in a ground translational state �g� of a two-
dimensional �2D� optical lattice potential. We also assume
that molecules are confined in the third dimension. We there-
fore approximate the potential which each molecule experi-
ences as an isotropic 3D harmonic potential. The phase ac-
cumulated during a period T is given by the expression �

= ��̂�=T��1,2 ;g1g2�V̂dip-dip��1,2 ;g1g2� /� in first order of per-
turbation theory. Here �g1,2� are the translational ground
states of molecules 1 and 2 in the lattice potential.

We can thus write

� = −
T

�
��1,2;g1g2�� �̂1 · �̂2

�R�3
−

3��̂1 · R���̂2 · R�
�R�5 �

���1,2;g1g2� . �1�

In what follows we assume that the spatial extent of the
translational ground-state wave function a is much less than
the separation between molecules as shown in Fig. 2. In the
Appendix we derive, in detail, an expression for the phase
taking into account the deviation of r1 and r2 from the mini-
mum of the lattice potential. Using a translational ground
state wave function of the 3D isotropic harmonic potential,
as shown in the Appendix, the matrix element �1� is obtained
as

�  −
T

�
��1 · �2

L3 �1 +
15a2

L2 + O� a4

L4��
−

3��1 · L���2 · L�
L5 �1 +

35a2

L2 + O� a4

L4��� , �2�

where L denotes the vector connecting lattice potential
minima, occupied by molecules 1 and 2 �see Fig. 2�, and L
= �L�. In Eq. �2� we also performed averaging over the large
dipole moment state ��1,2� and denoted average dipole mo-
ments as ��̂1,2�	�1,2. In the case of ��1,2�= �e1e2� the cor-
responding matrix element is given by �i= �ei��̂i�ei�; in the
case of the entangled state ��1,2�= ��J ,J+1�� �J+1,J�� /
2,
the first term in Eq. �2� is �1 ·�2= �Re��1J,J+1 ·�2J,J+1

� � and
the second one is ��1 ·L���2 ·L�= � �Re��1J,J+1 ·L�
���2J,J+1

� ·L��, where �iJ,J+1= �J ,M��̂i�J+1,M��.
For a simple estimate of the mean distance a molecule

travels in the ground state of an optical lattice potential, we
make a harmonic approximation of the potential
�i=1

3 V0 sin2�kxi�V0k2�ixi
2, with the frequency 	

=k
2V0 /m and the corresponding translational ground-state
wave function width a=
� /m	. A typical potential depth
experienced by a molecule in a lattice is V0=
ER
=
�2k2 /2m, where m is the molecular mass, ER is the mo-
lecular recoil energy and 
 is the dimensionless potential
depth appropriate for a molecule �
=20–100�. The width a
can be then related to the lattice field wavelength � and the
lattice depth 
 as a= �2
�−1/4� /2�. For molecules in neigh-
boring lattice sites L=� /2, and the ratio a /L�0.1, so that
the terms �O�a4 /L4� can be neglected when the phase is
calculated at the error per gate of 1% considered in this
work.

The fidelity of the phase gate, which is directly related to
a phase error during the gate operation, could possibly be
affected by the uncertainty in the relative distance of the
molecules, misalignment of their dipole moments, and the
stability of the optical excitation pulses. Dipole-dipole inter-
action between molecules in the large dipole moment state
can result in an energy shift and broadening of the molecular
levels. While the shift is not important and can always be
experimentally measured, leading to a rescaling of the en-
ergy levels, broadening will lead to uncertainty in the accu-
mulated phase, and, therefore, to a phase error. To minimize
the phase error, broadening has to be avoided.

First, we note that the ��1,2g1g2� state is not an eigenstate
of the total Hamiltonian, which is a sum of internal molecu-
lar electronic, vibrational, and rotational terms, plus transla-
tional and dipole-dipole interaction terms. The dipole-dipole
interaction will admix higher-energy translational states of a
lattice potential as well as higher-energy rotational states.
However, if the molecules are transferred to the large dipole
moment state adiabatically, i.e., slow enough with respect to
a typical separation between the total Hamiltonian eigenen-
ergies, the ��1,2g1g2� state will adiabatically evolve into one
of the eigenstates. Then the accumulated phase will be given
by �=�T /�, where � is the corresponding eigenenergy. As
we show in the Appendix, in this case the phase can be
approximated by Eq. �2� with an acceptable error 1%. Al-
ternatively, the energy shift associated with the eigenstate

L

R

1
r

2
r

a a

1 2

FIG. 2. �Color online� Definition of the relative position of two
interacting molecules. The first and the second molecule are labeled
1 and 2, respectively.
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can be directly measured experimentally for any pair of mol-
ecules in the lattice, giving a precise value of �. We con-
clude, therefore, that it is possible to realize the direct phase
gate with an error per gate below a threshold value 1% set in
this work, provided that the dipole-dipole interaction is
switched on adiabatically.

We demonstrate in the Appendix that, for a typical polar
molecule in an optical lattice, mixing of translational states
due to dipole-dipole interaction will be small. This mixing
will result in energy shifts of the translational states less than
1% of their unperturbed energy spacing. Similarly, mixing of
rotational states, because of the larger energy splitting be-
tween adjacent rotational levels, will be even smaller. The
separation of the eigenvalues of the total Hamiltonian is of
the order of the translational energy spacing �	. Thus, in the
direct phase gate, adiabatic excitation requires that the dura-
tion of optical pulses transferring molecules from the qubit
state �1� to the large dipole moment state ��1,2g1g2�, be much
larger that 	−1. Nonadiabatic, fast transfer of molecules to
the large dipole moment state ��1,2g1g2� will excite several
eigenstates having contributions from higher translational
states. Excitation of these states will result in a phase error
�a /L, significantly exceeding the 1% threshold value.

In the case when the large dipole moment state is the
entangled state, the orientation of the dipole moments is cho-
sen by selection rules between different components of rota-
tional states and therefore there is no uncertainty in the ori-
entation of the dipoles and, thus, the accumulated phase. If
the large dipole moment state is a tensorial product of dc
electric field induced “pendular” states of each molecule,
there is no uncertainty provided that the electric field is
switched on adiabatically. In this case the system evolves
into an eigenstate of the total Hamiltonian, including the
−� ·E term.

The phase gate operation time is the sum of the duration
of the optical pulses exciting and deexciting the molecules,
plus the period of time when the dipole-dipole interaction is
switched on. This time will depend on the spatial separation
between the two molecules, resulting in different gate times
for each pair. Experimentally it can be cumbersome. To make
the operation time independent of the molecular distance,
and in general to make the gate more robust against all types
of errors, a dipole blockade mechanism can be used, which
we discuss below.

B. Dipole-blockade mechanism for the direct phase gate

The dipole blockade mechanism was introduced for quan-
tum information processing with Rydberg atoms in Ref. �21�.
A variant of the dipole blockade based on the strong van der
Waals interactions between Rydberg atoms �vdW blockade�
has been explored experimentally in Ref. �22�. The underly-
ing principle is that because of the strong interaction between
Rydberg atoms, the doubly excited states corresponding to
the excitation of two atoms can be shifted out of resonance
with the excitation laser, in effect blockading the transition of
the second atom to the Rydberg level. Thus, one atom can be
resonantly excited into a Rydberg state, but additional Ryd-
berg excitations of neighboring atoms are prevented by the
large energy shift.

The same general idea can be applied to polar molecules.
An important advantage of the dipole blockade mechanism is
its insensitivity to the exact position of the interacting mol-
ecules, which makes the gate duration equal for all molecular
qubits regardless of their relative separation. We will first
describe how the dipole-blockade effect can be used for the
direct phase gate assuming that ��1,2�= �e1e2� and then show
how it can be realized with ��1,2���J ,J+1�� �J+1,J�.

If the dipole-dipole interaction is strong enough so that
u	�Vdip-dip� is much larger than the bandwidth and the Rabi
frequency of an excitation laser, the doubly excited state
�e1e2� will be shifted out of resonance and never excited. If
we denote one molecule as the control molecule �c�, and the
other as the target molecule �t�, the state of the target mol-
ecule will depend on the state of the control, provided that
the molecules can be addressed individually. The ability to
drive a 2� transition on the target molecule therefore de-
pends on whether the control molecule is excited �see Fig.
3�. The phase gate is then implemented as shown in Fig. 3�a�.
At t1 we apply a �c pulse to the control �c� molecule and
populate the state �e2�. At t2 we apply a 2�t pulse to the
target molecule: if the control molecule is already in �e2�, the
dipole-dipole interaction shifts the state �e1� of the target
molecule and the photon is off resonance, so the target mol-
ecule is not excited. During the 2�t pulse the target molecule
acquires a phase shift ��=��2� /u�� provided that u
��2�, where �2� is the 2�t pulse Rabi frequency. If the
control molecule is not in �e2� �i.e., it was in the �0� state
before the first �c pulse� the target molecule acquires a �

|0�

|1�

|e�

t

|0�

|1�

|e�

c

�c

t1

|0�

|1�

|e�

t

|0�

|1�

|e�

c

�c

t3t2

|0�

|1�

|e�

c

shifted

|0�

|1�

|e�

t

2�t

shifted

(a)

|11�

|1,J�

|1,J+1�

|+�

|-�

�c �c

t1 t3

2�t

t2

(b)

FIG. 3. Principles of the dipole blockade mechanism for the
direct phase gate in the case of �a� the large dipole moment state
��1,2�= �e1e2�; �b� an entangled large dipole moment state ��1,2�
= �� �= ��J ,J+1�� �J+1,J�� /
2. The sequence of pulses applied to
the control and target molecules is illustrated.
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phase shift after the 2�t pulse, since in this case the �e1� state
is not shifted and the pulse is resonant. Finally, at t3 we
deexcite the control molecule with another �c pulse. The
corresponding phase gate can be summarized as

�00�→
�c

�00�→
2�t

�00�→
�c

�00� ,

�01�→
�c

i�0e�→
2�t

i�0e�→
�c

− �01� ,

�10�→
�c

�10�→
2�t

− �10�→
�c

− �10� ,

�11�→
�c

i�1e�→
2�t

iei���1e�→
�c

− ei���11� �3�

�here and throughout the paper the first state of a two-qubit
state refers to the target and the second to the control mol-
ecule�. This sequence of excitation pulses will entangle the
two molecules. The dipole-dipole blockade interaction plays
out as the suppressed change of i�1e� in the last line. If u
��2�, the residual phase �� can be neglected. All states
except �00� acquire a � phase, resulting in the phase gate.

We now analyze the dipole-blockade mechanism in the
case when ��1,2���J ,J+1�� �J+1,J�. When the dipole mo-
ment of the J→J+1 transition is large, the degeneracy of the
states �J ,J+1� and �J+1,J� is lifted by the dipole-dipole in-
teraction and the states are strongly mixed, forming the
eigenstates of the total Hamiltonian including the dipole-
dipole interaction term

� � � = ��J,J + 1� � �J + 1,J��/
2. �4�

The �� � states are shifted in energy from the original degen-
erate �J ,J+1�, �J+1,J� states by �u, respectively. The
dipole-blockade mechanism can now be implemented in the
same way as before �see Fig. 3�b��. First, a �c pulse at t1
excites a control molecule from the qubit state �1� into the
�J+1� rotational state of the large dipole moment electronic
state. Next, at t2 a 2�t pulse is applied to the target molecule,
resonant with the unshifted �1,J+1�→ �J ,J+1� transition. It
will then interact with both �+ � and �−� states, which are
shifted from resonance with the pulse due to the dipole-
dipole interaction. If the shift is much larger than the Rabi
frequency and the bandwidth of the 2�t pulse, the pulse will
be far-detuned from both states and the target molecule will
not be excited. In this case the 2�t pulse does not produce
any phase shift of the two-qubit state due to destructive in-
terference of transition probabilities from the �1,J+1� state
into the �+ � and �−� states, similar to the electromagnetically
induced transparency effect �23�. If the control molecule is
initially in the �0� state, i.e., it is not excited by the first �c
pulse, there is no dipole-dipole interaction and the 2�t pulse
applied to the target molecule is resonant with the �1,0�
→ �J ,0� transition, causing a � phase shift. The phase gate in
this case is described by the same Eq. �3�.

Since the exact value of the dipole-dipole interaction
strength and, therefore, the accumulated phase is not impor-
tant if the dipole blockade mechanism is used, the gate op-
eration time becomes independent of the molecular separa-
tion, resulting in a much simpler setup. In the next section,

we describe the direct scheme using the CO molecule as an
example.

IV. APPLICATION TO THE CO MOLECULE

Carbon monoxide �CO� has a small permanent dipole mo-
ment ��0.1D� in the vibrational level v=0 of the ground
electronic state X 1�+, which makes it suitable for our phase
gate implementation. If we choose an isotopic variant of CO,
the qubit can be encoded in hyperfine sublevels of the
ground rovibrational state, weakly coupled with other states
in the presence of static and nonresonant electromagnetic
fields. An excited metastable a 3�0 state of the CO molecule
has a reasonably large permanent electric dipole moment of
�1.37D �24�. As the large dipole moment state ��1,2� we can
then in principle choose either a product state of large dipole
moment states of two molecules or an entangled state. If we
choose the product state, a dc electric field mixing rotational
states has to be applied to induce a dipole moment in the
a 3�0 state of each molecule. We can estimate the magnitude
of the field required to induce the dipole moment of the order
of the permanent one as E�B� /��105 V /cm, where we
use the rotational constant of the a 3�0 state B=1.69 cm−1

and �=1.37D. This high electric field will lead to faster
qubit decoherence, since the dipole moment of the storage
X 1�+ state is not exactly zero. To minimize decoherence of
the qubit storage state and to simplify the setup, an entangled
electric field free superposition ��1,2�= ��J ,J+1�� �J
+1,J�� /
2 can be used as the large dipole moment state.
Since the phase gate with the CO molecule involves transi-
tions in the uv range, an optical lattice architecture would be
a natural choice for this setup. Ultracold CO molecules have
not yet been produced experimentally, but techniques of
cooling and trapping of neutral polar molecules are rapidly
developing �17,25�. Translationally cold CO molecules
��1 K� are produced in a supersonic expansion of a mo-
lecular beam, and can be further decelerated in multiple stage
pulsed electric fields. Velocities of CO molecules in a low-
field seeking component of the metastable a3�1 J=1 level
from 225 to 98 m /s have been demonstrated in an array of
63 pulsed electric field stages �26�. By increasing the number
of stages, the molecules can be brought to a standstill. There
is also the possibility of slowing molecules essentially down
to zero velocity using a far-detuned traveling optical lattice
�27�. Once at a standstill the molecules can be transferred
from the a 3�1 J=1 to the ground X 1�+ high-field seeking
J=0 state with an optical � pulse, and trapped in an ac
electric �28� or optical trap �29�. The ground state X 1�+ has
a small magnetic dipole moment originating from nuclear
spins of isotopic C and O, and therefore is not a good can-
didate for magnetic trapping. For molecules in a high-field
seeking state, further cooling to ultracold temperatures via
evaporative cooling may be possible. We start with an analy-
sis of the hyperfine structure of isotopic CO molecules in the
X 1�+ and a 3�0 states.

A. Hyperfine structure of CO

There are three stable CO isotopomers with at least one
nucleus having a nonzero spin: 13CO �1% abundance�, C17O
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�0.038% abundance�, and 13C17O �3.8�10−4% abundance�.
The 13C and 17O nuclear spins are IC=1 /2 and IO=5 /2. For
the ground rotational state J=0 of the X 1�+ electronic state
the coupling with the nuclear spin is described by the Hamil-
tonian Hhfs=bJ ·I−eQqFCas�I ,J�, where FCas�I ,J�= �3C�C
+1� /4− I�I+1�J�J+1�� /2I�2I−1��2J−1��2J+3� is the Ca-
simir function �with C=F�F+1�− I�I+1�−J�J+1�� and F
=J+I. For J=0 �F= I�, the coupling term vanishes, resulting
in zero hyperfine splitting in the ground state for both 13CO
and C17O. A small hyperfine splitting is present in 13C17O
due to the interaction of the carbon and oxygen nuclear
spins. The level structure of the lowest rotational states of the
X 1�+ and a 3� states is shown in Fig. 4 �30�. When Zeeman
split by an external magnetic field, the �1 /2 nuclear spin
sublevels of 13CO can be used as �0� and �1� qubit states,
respectively. For the ��1,2� state, an entangled state of hyper-
fine substates of J=0 and J=1 rotational levels of the a 3�0
states of two molecules can be chosen. For example, the
states �J=0,F=1 /2,M = +1 /2� and �J=1,F=3 /2,M =
+1 /2� of the interacting molecules can form the �� � large
dipole moment entangled states �see Eq. �4��. The corre-
sponding dipole-dipole interaction matrix element for these
states is u= ����̂1�̂2 /�L3�� �= �4��J = 0,M =0��z�J=1,
M =0��2 /3�L3= �4�2 /9�L3. Taking �=1.37 D and two
values of L=� /2, e.g., L=100 and 500 nm, realizable with
commercially available lasers, we obtain the dipole-dipole
interaction strength u�8.3�105 s−1 for these two L values
�corresponding to u /2�=130 kHz and u /2�=1.6 kHz, re-
spectively� for molecules in neighboring lattice sites. Rota-
tional states of the metastable a 3�0 state are split into two
sublevels of opposite parity due to � doubling �31�. To meet
the selection rule that only states of opposite parity are
coupled by an electric-dipole allowed transition, we choose
the − component of the J=1 and the + component of the J
=0 states of a 3�0 for our scheme. With this choice the J
=0−J=1 transition in the metastable state is allowed as well
as the transition between the + parity J=0 ground rovibra-
tional level of the X 1�+ state and the − parity J=1 sublevel
of the a 3�0 state.

The Zeeman splitting in the ground electronic state is
small, scaling as �1 kHz /G, while in the excited state it
scales as �1 MHz /G due to the nonzero electronic angular
momentum of the a 3�0 state �32�. This means that magnetic
fields of �10 G will suffice to make the splitting of the
Zeeman levels of the a 3� rotational states resolvable and
much larger than the dipole-dipole interaction induced split-
ting. Selective excitation of �1� can then be realized with a �+

laser pulse resonant with the −1 /2→ +1 /2 transition be-
tween the ground and excited electronic states as shown in
Fig. 4�a�. Single qubit rotations can be performed with far-
detuned Raman pulses via sublevels of the �J=1,F=1 /2� or
�J=1,F=3 /2� hyperfine states.

In the case of 13C17O, the MF=2,3 states of hyperfine
sublevels F1=2 ,3 of the ground rovibrational state can be
utilized as the �0�, �1� qubit states, respectively. For the ��1,2�
state, the entangled state of �J=1,F1=4 ,MF1=4� and �J
=0,F1=3 ,MF1=3� of the excited electronic state of the two
interacting molecules can be used. Choosing the F1
=4 ,MF1=4 component ensures that it is mixed with only one
substate of the J=0 hyperfine manifold �F1=3 ,MF1=3�,

which simplifies the analysis. In this case the dipole-dipole
interaction matrix elements are

u = �� ��̂1 · �̂2/�L3 − 3��̂1 · L���̂2 · L�/�L5� � �

= � 4�i=x,y
��J = 0,M = 0��i�J = 1,M = 1��2/7�L3

= � 4�2/21�L3.
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FIG. 4. �Color online� Hyperfine structure and Zeeman splittings
of the lowest rotational states of the ground X 1�+ and excited
a 3�0 electronic states of two isotopomers of CO along with
schemes of selective excitation of the �1� qubit state. �a� Illustrates
the scheme with hyperfine levels for 13CO and �b� illustrates the
scheme for hyperfine levels appropriate for 13C17O.
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Taking the same � and the range of L as previously, we
obtain u��3.6�105−2�103� s−1 �60 kHz–300 Hz� for
two molecules in neighboring lattice sites.

Hyperfine splittings of �10–100 MHz are expected in
the a 3� state of 13C17O due to the strong electron-spin–
nuclear-spin interaction, so that the hyperfine structure in this
state is expected to be resolved with a narrow-band laser.
Selective excitation of �1� can then be realized using a �+

polarized laser pulse resonant with the �J=0,F=5 /2,F1
=3 ,MF1=3�→ �J=1,F=7 /2,F1=4 ,MF1=4� transition, as
shown in Fig. 4�b�. Single qubit manipulation can also be
performed via sublevels of this hyperfine state using polar-
ized laser pulses.

B. Phase gate operation time

1. Phase gate without the dipole blockade

As we discussed in Sec. III, if both molecules are excited
to the state ��1,2g1g2� slowly enough such that the dipole-
dipole interaction is switched on adiabatically, the molecules
are transferred into an eigenstate of the total Hamiltonian,
and the accumulated phase can be calculated using Eq. �2�.
The phase gate in this case is straightforward: if both mol-
ecules are in the qubit state �1� they are simultaneously ex-
cited to the large dipole moment state ��1,2g1g2�, experience
the dipole-dipole interaction during an interaction time T,
acquire a � phase shift and are, finally, deexcited. The phase
gate is then described by the equation

�00�→
�

�00� → �00�→
�

�00� ,

�01�→
�

i�0e� → i�0e�→
�

− �01� ,

�10�→
�

i�e0� → i�e0�→
�

− �10� ,

�11�→
�

− �ee� → �ee�→
�

− �11� , �5�

where � denotes an optical � pulse transferring both mol-
ecules to the large dipole moment state.

We can estimate the gate operation time for the CO mol-
ecule. For 12CO, choosing the ��1,2� as an entangled state of
�J=0,F=1 /2,M = +1 /2� and �J=1,F=3 /2,M = +1 /2� sub-
levels of the a 3�0 state, the corresponding dipole-dipole in-
teraction strength is in the range u=4�2 /9�L3�104−8.3
�105 s−1 for values of the intermolecular separation L
=� /2 between 500 and 100 nm. The time T, required to
accumulate the phase shift �, is therefore T=� /u�3.1
�10−4−3.7�10−6 s, respectively. Adiabatic excitation of
the large dipole moment state requires that the optical �
pulses be much longer than 	−1, where 	 is the energy split-
ting of the motional states in the optical lattice. Taking 	
�100 kHz and the pulse duration T� an order of magnitude
larger than 	−1, we can estimate the total gate operation time
as Tgate=2T�+T�3.4�10−4−3.6�10−5 s. For 13C17O
choosing the ��1,2� as an entangled state of the �J=1,F1
=4 ,MF1=4� and �J=0,F1=3 ,MF1=3� sublevels of the a 3�0

state, the dipole-dipole interaction strength is u
=4�2 /21�L3�2�103−3.6�105 s−1. In this case, the �
phase shift accumulation time is T=� /u�1.6�10−3−8.7
�10−6 s. Assuming the same duration of optical � pulses as
for the 13CO, we obtain an estimate of the total gate opera-
tion time Tgate�1.6�10−3−4�10−5 s.

2. Phase gate with the dipole blockade

The dipole blockade mechanism can be used to make the
gate operation time equal for all molecules regardless of the
relative intermolecular distance. For two molecules in neigh-
boring optical lattice sites with L=� /2=100 nm �assuming
that molecules are trapped by a lattice field near resonant
with the X 1�+−a 3� transition�, the shift of the �� � states
of 13CO due to dipole-dipole interactions is u=4�2 /9L3�
8.3�105 s−1 �130 kHz�.

To perform the phase gate, the pulse sequence described
in Sec. III B could be applied. Namely, the �c pulse first
resonantly transfers the control molecule from the �1� state
into the �J=1,F=3 /2,MF=1 /2� state as shown in Fig. 4�a�,
followed by the target 2�t pulse resonant with the unshifted
�1,J=1�→ �J=0,J=1� transition, where �1,J� denotes the
target molecule in the qubit state �1� and the control molecule
in the �J� rotational level of the excited electronic state. A
final control �c pulse resonantly deexcites the control mol-
ecule back into the �11� state. The resulting phase gate would
be given by Eq. �3�.

A complication arises, however, since the J=0→J=0
transition for the target molecule is forbidden. To circumvent
this limitation, the pulse sequence can be modified in the
following way. First, an optical �c pulse excites the control
molecule from the �1� state into the �e��= �J=1,F=3 /2,MF
=1 /2� sublevel of the a 3�0 state, followed by a microwave
� pulse which brings the control molecule into the �e�= �J
=0,F=1 /2,MF=1 /2� sublevel. Next, a 2�t pulse is applied
to the target molecule resonant with the unshifted �1,J=0�
− �J=1,J=0� transition. It is followed by a second micro-
wave � pulse applied to the control molecule transferring it
back into the �J=1,F=3 /2,MF=1 /2� state. Finally, the con-
trol molecule is deexcited into the �1� qubit state by an opti-
cal �c pulse. The result of this sequence is given by the sixth
column of Eq. �6�, which shows that the �10� state acquires a
minus sign. In order to realize a phase gate, an optical 2�
pulse can be applied to the target molecule resonant with the
�11�− �J=1,1� transition, which will add a � phase shift to
the �10� and �11� states. Finally, only the �11� two-qubit state
will have a � phase shift, which implements the phase gate.
The resulting gate has the form

�00�→
�c

�00� →
�mw

�00�→
2�t

�00� →
�mw

�00�→
�c

�00�→
2�t

�00� ,

�01�→
�c

i�0e�� →
�mw

− �0e�→
2�t

− �0e� →
�mw

− i�0e��→
�c

�01�→
2�t

�01� ,

�10�→
�c

�10� →
�mw

�10�→
2�t

− �10� →
�mw

− �10�→
�c

− �10�→
2�t

�10� ,
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�11�→
�c

i�1e�� →
�mw

− �1e�→
2�t

− ei���1e� →
�mw

− iei���1e��

→
�c

ei���10�→
2�t

− ei���10� . �6�

Choosing a Rabi frequency ��105 s−1 for both the �c and
2�t pulses �satisfying ��u� results in the gate time Tgate
=2� /��+2� /�2�126 �s. The additional microwave �
and optical 2� pulses, applied to the control and target mol-
ecules, respectively, can be much shorter, as their Rabi fre-
quencies are not limited by the requirement to be much
smaller than the dipole-dipole interaction strength. If the
molecules are separated by five lattice periods, for example,
the energy shift of the �� � states is u104 s−1

�1.6 kHz�, and the Rabi frequency has to be reduced to
fulfill u��. If we choose ��103 s−1, the gate time is
Tgate=2� /��+2� /�2�12.6 ms.

The spin-forbidden X 1�+→a 3� transition is weakly al-
lowed due to the mixing of the A 1�1 and a 3�1 states by
spin-orbit interaction and rotational mixing between the
a 3�1 and a 3�0 states �33�. The lifetime of the J=1 rota-
tional level of the a 3�0 state is 0.5 s �34�, giving the effec-
tive transition dipole moment of the optical transition �ind
�2�10−4 D. The Rabi frequency of the �c and 2�t pulses
���=�2�=105 s−1�, transferring population to the a 3�
state, corresponds to the electric field amplitude of the pulses
E�3�102 V /cm, with the intensity of the laser pulses I
=cE2 /4��250 W /cm2.

In the case of 13C17O, the dipole-dipole interaction
strength is u=3.6�105 s−1 for an intermolecular separation
L=100 nm, so that choosing ��4�104 s−1 for both �c
and 2�t pulses, we obtain Tgate=2� /��+2� /�2�

�300 �s. For a separation of five lattice periods, the inter-
action strength reduces to u�2�103 s−1, and taking �
�2�102 s−1 we obtain the phase gate time Tgate�50 ms.

The lifetime of the v=0, J=1 state of a 3�0 is �0.5 s
and of the v=0, J=0 state is virtually infinite; with phase
gate operation times of �100 �s−1 ms, the decay of these
states during the gate operation will be negligible. Another
candidate for the direct phase gate is the NF molecule, which
has a small dipole moment �0.075D in the ground elec-
tronic X 1�− state and �0.75D in the excited metastable
b 1�+ state �35�. The NF molecule is paramagnetic and there-
fore can be buffer-gas cooled and magnetically trapped just
as has been demonstrated for the NH �X3�−� molecule �36�.
Alternatively, NF molecules in high-dipole moment meta-
stable states b 1�+ or a 1� can be Stark-decelerated and op-
tically transferred using the stimulated Raman adiabatic pas-
sage technique to the ground X 3�− state, amenable for
magnetic trapping �37�.

V. DECOHERENCE MECHANISMS

We consider here the most relevant decoherence mecha-
nisms for our proposed scheme.

Storage and switching state decoherence. In the proposed
scheme, qubits are stored in hyperfine sublevels of the
ground rovibrational electronic state, which makes them in-
sensitive �at least in first order� to local fluctuations of dc and

ac electric fields. The hyperfine sublevels are more sensitive
to magnetic field fluctuations, which should be minimized on
a time scale of a second, relevant to the lifetime of a mol-
ecule in an optical lattice. With nuclear Zeeman splitting
scaling as � kHz /G, magnetic field fluctuations need to be
below a mG. Magnetic-field insensitive M =0 hyperfine sub-
levels can also be chosen as qubit storage states to minimize
the related decoherence. The states used to switch on the
dipole-dipole interaction have to be long-lived to minimize
decoherence from spontaneous emission. With predicted gate
operation times of �100 �s and metastable excited state
lifetimes of several hundred ms, the decoherence due to
spontaneous emission will be small.

Interaction of molecules in the large dipole moment states
will give rise to mechanical forces between molecules, lead-
ing to motional decoherence. Excitation to the large dipole
moment states have, therefore, to be adiabatic. In the direct
scheme with the dipole blockade mechanism, molecules are
actually never transferred to the large dipole moment states
simultaneously, and motional decoherence is minimized. Us-
ing deep optical lattices will prevent excitation of higher
energy translational states due to optical � and 2� pulses. In
the schemes with the CO molecule, the pulses are adiabatic,
i.e., much longer �100 �s� than the translational oscillation
period �1 �s�, and motional excitation will be minimized.

Optical lattice related decoherence. Lifetimes of ultracold
molecules in a far-detuned optical lattice of 1 s have been
obtained by minimizing the scattering of lattice photons �38�.
Given that the lifetime of a nuclear spin state of a single
molecule, isolated from the environment, can be as long as
hours, the lifetime of a molecule in a lattice will be the major
decoherence mechanism. Excitation of higher energy trans-
lational states will result in unwanted decoherence from spa-
tial dependence of the optical � and 2� pulse Rabi frequen-
cies, as analyzed below. It is therefore desirable to load
molecules into the translational ground state of the lattice
potential.

Decoherence from optical � and 2� pulses. Finite width
of the translational ground state of a molecule in a lattice
potential also results in a spatially varying Rabi frequency of
optical � and 2� pulses experienced by the molecule. As
was shown in Sec. III, the ground state width a is related to
the wavelength of the trapping laser as a=� /2��2
�−1/4

�0.05–0.08�� for 
=10–50. We can roughly estimate the
error due to the deviation of the Rabi frequency from the
average Rabi frequency ���=�� exp�−r2 /a2�d3r� / �
�a�3.
For a laser beam with a Gaussian profile �=�0 exp�
−r2 /2�2�, where � is the half width of the laser beam spatial
intensity profile, the averaged Rabi frequency is ���
=�0 / �1+a2 /2�2�3/2. From this expression, one can see that
to minimize the error due to spatial variation of the area of
the optical pulses, a small ratio a /� is required. It means that
laser beams with transverse width ��a are necessary. If we
assume for an estimate that a laser beam is focused into �
=L=� /2, equal to the lattice period, we have a2 /�2�0.01.
The average Rabi frequency can then be approximated as
����0�1−3a2 /4�2�, giving an estimate of the phase error
�3a2 /4�2 during the pulse. Thus the error can be kept below
1% by using laser beams focused down to � /2, equal to the
separation of molecules in neighboring lattice sites. Tighter
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focusing though is needed to avoid excitation of molecules in
neighboring sites. One solution is to use a lattice laser wave-
length longer than the optical transition wavelength, at the
expense of a reduced dipole-dipole interaction strength. An-
other solution is to utilize the recently proposed technique
�39� based on electromagnetically induced transparency,
which pumps neighboring molecules into a dark state which
does not interact with optical pulses. If one does not use
these techniques there will be additional decoherence due to
undesirable excitation of molecules in neighboring lattice
sites.

In both phase gate implementations, with and without the
dipole blockade, the gate operation time is of the order of
several hundred �s. For the phase gate without the blockade,
the gate time is approximately two-three times smaller com-
pared to the case when the blockade is used. With overall
coherence times of the order of 1 s, the maximal number of
operations, which can in principle be performed with our
scheme, is �104.

VI. CONCLUSIONS

The analysis of quantum computation proposals with po-
lar molecules trapped in an optical lattice allows one to de-
fine a set of requirements for a molecular system optimizing
its performance in terms of a quantum gate time, number of
operations, coherence time, gate error, and experimental sim-
plicity. A scheme studied in detail in the present work utilizes
switchable dipole-dipole interaction between molecules,
which can be used to implement a universal two-qubit gate
such as a phase gate. It was demonstrated that the proposed
scheme to create a phase gate using polar molecules satisfies
the set of requirements presented in Sec. II, and is experi-
mentally feasible with current technologies. For the scheme
discussed here, molecules with properties similar to CO and
NF are suitable. Analysis of decoherence mechanisms
present in the system has shown that the phase error per gate
can be kept below a threshold value �set at 1% in this work�.

In order to make the gate operation insensitive to the rela-
tive distance between the molecules, the dipole blockade
mechanism has been proposed. Our phase gate can be imple-
mented in the electric field free configuration which makes it
highly robust for decoherence related to dipole-dipole inter-
action. An analysis of decoherence sources shows that the
major one will most probably be the loss of molecules from
the lattice due to scattering of lattice photons. With the cor-
responding coherence lifetimes of �1 s, several thousand
gate operations are expected to be possible. Finally, the
analysis demonstrates that the use of polar molecules in op-
tical lattices is a viable platform for quantum computing,
comparing well with neutral atoms in lattices and trapped
ions.
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APPENDIX: CALCULATION OF THE PHASE

The phase given by Eq. �1� can be calculated in the first
order of perturbation theory. Assuming that the translational

ground state wave function width a is much less than the
separation between molecules, molecular positions can be
written as r1,2=R1,2+�r1,2, where R1,2 is the position of the
minimum of a lattice potential and �r1,2 is the deviation of a
molecule from that position. We also introduce the vector
L=R2−R1 connecting the potential minima occupied by
molecules 1 and 2, as shown in Fig. 2�a�. A Taylor expansion
can be made in the vicinity of the minima positions

1

�r2 − r1�3


1

�L�3
�1 −

3��r2 − �r1� · L

L2 +
6��r2 − �r1�2

L2 � ,

�A1�

1

�r2 − r1�5


1

�L�5
�1 −

5��r2 − �r1� · L

L2 +
15��r2 − �r1�2

L2 � .

�A2�

We keep terms up to second order in �r1,2 since higher order
terms will result in much smaller error.

The matrix element �1� can now be calculated using a
translational ground state wave function of a 3D isotropic
harmonic potential �g=exp�−��r�2 /2a2� / �
�a�3/2, where a
is the width of the wave function. The wave function is sym-
metric, so that terms linear in �r1,2 will give zero after av-
eraging. Only ��r1,2�2, ��ri1,2�2 �i=x ,y ,z� terms will not av-
erage to zero with the corresponding matrix elements
�g1g2���r1�2+ ��r2�2�g1g2�=3a2, �g1g2���ri1�2+ ��ri�2�g1g2�
=a2, respectively.

The term �̂1 · �̂2 / �R�3 will thus give after averaging

��1,2;g1g2�
�̂1 · �̂2

�R�3
��1,2;g1g2�

=
�1 · �2

�L�3 �1 +
18a2

�L�2
+ O� a4

�L�4�� . �A3�

The term ��̂1 ·R���̂2 ·R� / �R�5 can be written as a sum of four
terms

��̂1 · R���̂2 · R�
�R�5

=
��̂1 · L���̂2 · L�

�R�5

+
��̂1 · L���̂2 · ��r2 − �r1��

�R�5

+
��̂1 · ��r2 − �r1����̂2 · L�

�R�5

+
��̂1 · ��r2 − �r1����̂2 · ��r2 − �r1��

�R�5
.

�A4�

After averaging, the first term in Eq. �A4� is given by

��1 · L���2 · L�
�L�5 �1 +

45a2

�L�2
+ O� a4

�L�4�� .

In the second term of Eq. �A4�, taking into account the ex-
pansion �A2�, only the term
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−
5��̂1 · L���̂2 · ��r2 − �r1���L · ��r2 − �r1��

�L�7

has to be kept, since all other terms are higher order in a.
In this expression one has to average a sum

�
i,j=x,y,z

�̂2i��r2i − �r1i��r2j
e − r1j

e ���r2j − �r1j� , �A5�

where i , j denote x ,y ,z projections of the vectors. Products
of the type �r2i�r1j, and �r2i�r2j, �r1i�r1j with i� j will
give zero after averaging. Only terms ��r2i�2, ��r1i�2 will
have a nonzero average given by �g1g2���r2i�2�g1g2�
= �g1g2���r1i�2�g1g2�=a2 /2. The result of the averaging of
Eq. �A5� is a2��2 ·L�. The contribution from the second term
in Eq. �A4� is therefore

−
5a2��1 · L���2 · L�

�L�7
. �A6�

Averaging of the third term in Eq. �A4� gives the same result
as in Eq. �A6�. Repeating the same steps the fourth term in
Eq. �A4� gives a2��1 ·�2� / �L�5.

Finally, the average of Eq. �A4� is given by the expression

��1 · L���2 · L�
�L�5 �1 +

35a2

�L�2
+ O� a4

�L�4��
+

a2��1 · �2�
�L�5 �1 + O� a2

�L�2�� . �A7�

Adding the expressions �A3� and �A7� one obtains Eq. �2�.
The validity of the phase calculation in the first

order of perturbation theory can now be analyzed. Terms
neglected in Eq. �1� are of the order of ��a0�V̂dip-dip�ai��2 / �Ei

−E0�, where �a0�= ��1,2 ;g1g2� and �a1�= ��̃1,2 ;n1n2�; ��̃1,2�
are higher-energy internal �e.g., rotational� states coupled to
��1,2� by the dipole-dipole interaction, �n1�, �n2� are higher-
energy translational states of a lattice potential. The latter are
the closest in energy to �a0�, separated by a harmonic poten-
tial oscillation frequency, which is in the range 	
�100 kHz−1 MHz for deep optical lattices. A contribution
from the first excited translational state to the phase �1�
will be �a2��a0�V̂dip-dip�a0��2 / �L2�Ei−E0���0.01��a0�V̂dip-dip�
�a0��2 / �Ei−E0�. The dipole-dipole interaction strength
��a0�V̂dip-dip�a0���100 kHz for molecules with a permanent
dipole moment of �1D and intermolecular distance 100–500
nm, will result in the second order contribution to the phase
�0.01��a0�V̂dip-dip�a0��. Neglecting this contribution gives a
phase error of 1%, which is acceptable in our analysis, and
therefore validates the first order approximation given by
Eq. �1�.
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