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We consider the problem of finding a desired item out of N items arranged on the sites of a two-dimensional
lattice of size �N��N. The previous quantum-walk based algorithms take O��N ln N� steps to solve this
problem, and it is an open question whether the performance can be improved. We present an algorithm which
solves the problem in O��N ln N� steps, thus giving an O��ln N� improvement over the known algorithms. The
improvement is achieved by controlling the quantum walk on the lattice using an ancilla qubit.
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I. INTRODUCTION

Suppose we have N items arranged on a two-dimensional
lattice of size �N��N. Let the sites be labeled by their x and
y coordinates as �x ,y� for x ,y� �0, . . . ,�N−1�. In the quan-
tum scenario, the coordinates label the basis states of an
N-dimensional Hilbert space. Let f�x ,y� be a binary function
which is 1 if the item placed on the �x ,y� site satisfies certain
properties �i.e., is a marked item m�, otherwise it is 0. We
assume that there is a unique marked item and let �m�
= �x ,y� f�x,y�=1 denote the corresponding site or basis state. The
two-dimensional spatial search problem is to find �m� using
minimum time steps, with the constraints that in one time
step we can either examine the current site �i.e., compute
f�x ,y� for the current site using an oracle query	 or move to
a neighboring site.

The straightforward application of Grover’s search
algorithm �1	 cannot be used to solve the problem faster than
classical search as pointed out by Benioff �2	. Although it
can find �m� using O��N� oracle queries, between successive
queries, it needs to perform a reflection about a superposition
of all sites. This reflection takes O��N� time steps, as in one
time step we can only move to a neighboring site and we
must move across �N sites in each direction of the lattice to
perform a reflection. Note that in the standard search prob-
lem, there is no restriction on the movement on the lattice,
and hence this reflection is not a hurdle. But for 2d spatial
search, the total complexity becomes O��N��N�=O�N�
time steps, no better than brute-force searching.

Aaronson and Ambainis have shown that using a cleverly
designed recursion of the quantum search algorithm, the
2d spatial search problem can be solved in O��N ln2 N� time
steps �3	. A better alternative is provided by the quantum-
walk search algorithms. They have been constructed for spa-
tial search in any number of dimensions �see, for example,
Refs. �4–7	�. For the 2d spatial search problem, the discrete
time algorithm by Ambainis, Kempe, and Rivosh �AKR� �6	
and the continuous time algorithm by Childs and Goldstone
�CG� �7	 can do the job in O��N ln N� time steps. It is
an open question whether the algorithms can be further im-
proved, particularly whether the lower bound of ���N� �8	
can be achieved. Here, we give a positive answer to this
question by presenting an improved algorithm that can solve

the two-dimensional spatial search problem in O��N ln N�
time steps, thus giving an O�� ln N� improvement over the
best known algorithms.

We present our results in the context of AKR’s discrete
time quantum-walk algorithm, but the same can be applied
to the continuous time quantum-walk algorithm of CG.
These quantum-walk algorithms start with a uniform super-
position of all sites and achieve a particular state, denoted by
��+� here, in O��N ln N� time steps. The overlap of ��+� with
the �m� state is ��1 /�ln N�, so that O��ln N� rounds of quan-
tum amplitude amplification �9	 can be used to get the �m�
state with constant probability. Hence, the total complexity
of the algorithms is O��N ln N��ln N�=O��N ln N�. In the
case of AKR’s algorithm, the quantum-walk search is ana-
lyzed by reducing it to an instance of the abstract search
algorithm, which is a generalization of Grover’s search algo-
rithm.

We modify the quantum-walk algorithms in a particular
way so that the ��+� state, obtained after O��N ln N� walk
steps on the uniform superposition, has a significant overlap
with the �m� state. Hence no rounds of quantum amplitude
amplification are required by our algorithm, and the time
complexity remains O��N ln N�. As we show, this improve-
ment is possible by controlling the quantum walk on the
lattice in a clever way using an ancilla qubit. Our algorithm
applies to any instance of abstract search algorithm, so it can
also be used for improving the spatial search in higher di-
mensions. But there the improvement is only by a constant
factor.

The paper is organized as follows: In Sec. II, we review
the abstract search algorithm, presented by AKR, with the
example of two-dimensional spatial search. Although our
analysis follows AKR’s paper, we use different notation for
convenience. In Sec. III, we present the controlled quantum-
walk algorithm. We conclude the paper with some discus-
sions in Sec. IV. In the Appendix, we present analysis of the
abstract search algorithm, which closely follows AKR’s
analysis �see Sec. 7 of �6	� and uses the results presented
there. The difference is a minor modification which is re-
quired for our algorithm.

II. BACKGROUND

Grover’s search algorithm starts with an initial state �s�,
normally chosen to be uniform superposition of all the basis
states. The algorithm drives it to the target state �t� by suc-*tulsi9@gmail.com
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cessively applying the reflection operators, Rt=2�t�
t�− IN and
Rs=2�s�
s�− IN, where IN is the N-dimensional identity opera-
tor. The �t� ��s�� state is an eigenstate of reflection operator Rt
�Rs� with eigenvalue 1, and all the states orthogonal to �t�
��s�� have eigenvalue −1. It has been shown that applying the
operator UG=RsRt on �s� rotates it in the two-dimensional
subspace spanned by �s� and �t�, and after O�1 / �
t �s��� itera-
tions of UG we come very close to the �t� state.

The abstract quantum search algorithm is a generalization
of Grover’s search algorithm, where the operator Rt remains
the same but Rs gets replaced by a more general operator U.
The �s� state is still required to be an eigenstate of U with
eigenvalue 1, but the states orthogonal to �s� need not be its
eigenstates with eigenvalue −1 as in the case of Rs. Also, U
is required to be a real operator �not necessarily a reflection
operator� and not to have any other eigenstate with eigen-
value 1 apart from �s�. The abstract search algorithm iterates
the operator UA=URt to get to the target state �t�.

To quantify the number of iterations of UA needed to
get to the �t� state, we note that since U is a real unitary
matrix, its non-�1 eigenvalues come in pairs of complex
conjugate numbers e�i�. The eigenstate corresponding to ei-
genvalue 1 ��=0� is �s�, also denoted as ��0� here. Let the
eigenstates corresponding to eigenvalue −1 ��=�� be de-
noted by ��k�, k=1, . . . ,M. Let �� j

�� denote all other eigen-
vectors with non-�1 eigenvalues e�i�j. Then �� j

+�= �� j
−�� as

U is real. Let aj
�= 
� j

� � t�, a0= 
�0 � t�, and ak= 
�k � t� be the
expansion coefficients of �t� in the eigenbasis of U. Since �t�
is a real vector, aj

+= �aj
−��, and up to a global phase, �� j

�� can
be chosen such that aj

+=aj
−=aj. Similarly up to a global

phase ��0� and ��k� can be chosen such that a0 ,ak are real.
Thus

�t� = a0��0� + �
j

aj��� j
+� + �� j

−�� + �
k

ak��k� . �1�

To analyze the iteration of operator UA=URt on ��0�, its
eigenspectrum was determined by AKR. Though they have
not explicitly considered the possibility when U has an
eigenspace with eigenvalue −1, their analysis can be easily
generalized to that case. As it is crucial for our algorithm, we
have done this analysis in the Appendix for completeness.
For particular cases �spatial search is one of them�, only two
eigenvectors ���� of UA with the eigenvalues e�i� are im-
portant, with the starting state ��0� almost completely
spanned by them. Here � depends upon the eigenspectrum of
U as

� = �� a0

��
j

aj
2

1 − cos � j
+

Ak
2

4 
 , �2�

where Ak=��k=1
M ak

2 is the projection of �t� on the −1 eigen-
space. As shown by AKR, ��0� is close to ��−�= −i

�2
����

− �−���. Quantitatively

�
�0��−�� 	 1 − ���4�
j

aj
2

a0
2

1

�1 − cos � j�2� − ��Ak
2�4

a0
2 � . �3�

After iterating the operator UA for T= �� /2�� times on
��−�, we come very close to the state ��+�=−i�ei�/2���
−e−i�/2�−��� /�2= ����+ �−��� /�2. As shown by AKR, the
quantity �
t ��+�� depends upon the eigenspectrum of U as

�
t��+�� = ��min� 1

��
j

aj
2 cot2

� j

4

,1
� . �4�

Consequently, any operator U can be used in place of Rs for
quantum search if it satisfies the conditions for the abstract
search algorithm, i.e., it is a real operator with the initial state
�s� as its unique eigenstate of eigenvalue 1. Sometimes this
flexibility is very useful. In the case of spatial search, there is
a restriction that in one time step, we can move only to
neighboring lattice sites. In this case, U can be chosen such
that it can be implemented in only one time step, whereas Rs

takes ���N� steps. For any U, we need to find its eigenspec-
trum, and the expansion coefficients of the target state in its
eigenbasis, in order to analyze the algorithm using Eqs.
�1�–�4�.

Two-dimensional spatial search. We illustrate the abstract
search algorithm with the specific example of two-
dimensional spatial search. AKR’s algorithm attaches a
four-dimensional coin space Hc to the Hilbert space HN
associated with N lattice sites, and works in the joint Hilbert
space HJ=Hc � HN. The four basis states d=0,1 ,2 ,3 of
Hc represent the four possible directions of movements on
a two-dimensional lattice, i.e., �→ � , �← � , �↑ � , �↓ �. Let �uc�
= 1

2�d�d� be their uniform superposition and let �uN�
=�x,y�x ,y� /�N be the uniform superposition of all lattice
sites. The initial state ��0� of AKR’s algorithm is ��0�AKR
= �uc��uN� which can be prepared in 2�N time steps. �For
preparing �uN�, the idea is to start with a site �0,0�, first
spread the amplitude along x axis in �N steps, and then re-
peat the process for y axis in another �N steps �6	.�

The algorithm then iteratively applies the operator

UW=WR̄uc,m to ��0�. The operator R̄uc,m=−Ruc,m= I4N
−2�uc ,m�
uc ,m� is the negative of the reflection about the
�uc��m� state. It can be implemented in one time step by
examining the lattice sites �in quantum superposition� using

an oracle, and then applying R̄uc=−Ruc= I4−2�uc�
uc� if and
only if the site is the marked site �m�. The walk operator W is
a product of two operators, coin flip Ruc � IN and the moving
step S. The coin flip acts only on the coin space but the
moving step S acts jointly on coin and lattice space as

S: � → � � �x,y� → � ← � � �x + 1,y� ,

� ← � � �x,y� → � → � � �x − 1,y� ,

�↑� � �x,y� → �↓� � �x,y + 1� ,

�↓� � �x,y� → �↑� � �x,y − 1� . �5�

As S involves movement only between neighboring sites,
�x�→ �x�1� and �y�→ �y�1�, it can be implemented in one
time step. Hence UW can be implemented in two time steps,

one for W=S�Ruc � IN� and another for R̄uc,m.
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AKR have shown that their algorithm is an instance of the
abstract search algorithm. The operator UW is equivalent to
WRuc,m up to a sign, making �uc��m� the effective target state
�t�. The walk operator W satisfies the required properties for
the abstract search algorithm, within a particular subspace
that is preserved by UW. It is easy to check that ��0� is an
eigenvector of W with eigenvalue 1. The other eigenvectors
of W are

��pq� = �vpq��
p��
q�, p,q � �0, . . . ,�N − 1� , �6�

where

�
p� = �x=0

�N−1 ei2�p·x/�N�x�/N1/4

and

�
q� = �y=0

�N−1 ei2�q·y/�N�y�/N1/4

form the Fourier basis. For each p and q, there are four
eigenvalues 1 , −1, and e�i�pq with

cos �pq =
1

2�cos
2�p
�N

+ cos
2�q
�N

� , �7�

corresponding to four different vectors �vpq
1 �, �vpq

−1�, and �vpq
� �

of the coin space. W satisfies the conditions of the abstract
search algorithm within the subspace H0 spanned by the
eigenstates ��pq

� �= �vpq
� ��
p��
q�, �p ,q�� �0,0�, and ��0�, and

��0� is a unique eigenstate with eigenvalue 1 within this
subspace. AKR have shown that the operator UW preserves
this subspace.

As shown by AKR, the vectors �vpq
� � are such that apq

= 
�pq
� �uc ,m�=1 /�2N. We also have a0= 
�0 �uc ,m�

= 
uc �uc�
uN �m�=1 /�N. Using these values and Eq. �7� for
�pq, AKR have shown that the sums in Eqs. �2�–�4� are

�
p,q

apq
2

1 − cos �pq
= ��ln N� , �8�

�
p,q

�4

a0
2

apq
2

�1 − cos �pq�2 = �� 1

ln2 N
� , �9�

�
p,q

apq
2 cot2

�pq

4
= ��ln N� . �10�

Since the eigenstates �vpq
−1��
p��
q� are orthogonal to H0, they

do not matter for the algorithm and do not contribute to Ak.
For even �N, there are two eigenstates ���N/2,�N/2

� � of W hav-
ing eigenvalue −1 within H0. Since the projection of the
target state on these eigenstates is O�1 /�N�, their contribu-
tion to Ak is negligible.

Setting the above values in Eqs. �2�–�4�, we obtain

� = ��1/�N ln N� , �11�

�
�0��−�� 	 1 − �� 1

ln2N
� , �12�

�
uc,m��+�� = �� 1
�ln N

� . �13�

Hence, we have ��0�= ��−�+ ���, with ���=��1 / ln N�. After
�� /2��=O��N ln N� quantum-walk steps, the state becomes
��+�+ ����, with ����=��1 / ln N�. Since �
�+ �uc ,m�� is
��1 /�ln N� and �
�� �uc ,m�� is of lower order O�1 / ln N�, the
overlap of the final state with �uc ,m� is ��1 /�ln N�. Thus we
can obtain the �uc ,m� state, or the �m� state, using O��ln N�
rounds of quantum amplitude amplification. The total num-
ber of time steps becomes O��N ln N��ln N�=O��Nln N�.

In the Sec. III, we show that by controlling the quantum
step using an ancilla qubit, the coefficients apq, a0, and Ak
can be manipulated in such a way that no rounds of quantum
amplitude amplification are required and the �m� state can be
obtained in O��N ln N� time steps.

III. CONTROLLED QUANTUM-WALK ALGORITHM

The algorithm attaches an ancilla qubit �b� to the system,
which controls the operations in the joint Hilbert space.
The algorithm works in the 8N-dimensional Hilbert space
H=Hb � Hc � HN, where Hb is the two-dimensional Hilbert
space of the ancilla qubit. We use the subscripts b and J,
respectively, for denoting the states or operations within the
ancilla qubit space Hb and the joint Hilbert space HJ=Hc
� HN. �Note that HJ is the working space of AKR’s algo-
rithm.�

The circuit diagram of the algorithm is shown in Fig. 1.
The initial state is ��0�cqw= �1��uc��uN�= �1� � ��0�AKR, and it
can be prepared in O��N� time steps. The controlled
quantum-walk algorithm then iteratively applies the operator

UC = �Z̄�b�c1W��X�
†�b�c1R̄uc,m��X��b �14�

to ��0�cqw. Note that in the figure, the operations are per-
formed sequentially from left to right, while in equations

they are performed from right to left. X� and Z̄ are the single-
qubit gates given by

X� = � cos � sin �

− sin � cos �
�, Z̄ = �− 1 0

0 1
� . �15�

Let the mutually orthogonal qubit states be

��0� = X�
†�0� = cos ��0� + sin ��1� ,

��1� = X�
†�1� = − sin ��0� + cos ��1� . �16�

FIG. 1. Circuit diagram for the controlled quantum-walk search
algorithm. The reflect and walk boxes denote the reflection operator

R̄uc,m and the walk operator W, respectively, as defined in the text.
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The operator c1R̄uc,m= I8N−2�1,uc ,m�
1,uc ,m� is the nega-
tive of the reflection about the �1��uc��m� state. It is imple-

mented by applying R̄uc,m in the joint space if and only if the

ancilla qubit is in the �1� state. As R̄uc,m can be implemented

in one step, c1R̄uc,m also takes one step. Similarly, the con-
trolled walk operator c1W performs a quantum walk W in the
joint space if and only if the ancilla qubit is in the �1� state.
Thus, UC takes two time steps for implementation, one for

c1R̄uc,m and another for c1W.
For �=0, the ancilla qubit is redundant and our algorithm

reduces to AKR’s algorithm. The optimal algorithm is ob-
tained if we choose � such that cos �=���1 / ln N�. Then
measurement of the lattice state, after O��N ln N� iterations
of the operator UC, gives the desired state �m� with constant
probability. The total complexity of algorithm is therefore
O��N ln N�.

To analyze the algorithm, we first show that the controlled
quantum-walk algorithm is an instance of the abstract search

algorithm. We have �X�
†�b�c1R̄uc,m��X��b=c�1R̄uc,m, where

c�1R̄uc,m applies R̄uc,m in the joint space if and only if the
ancilla qubit is in the ��1� state. Equation �14� then implies
that

UC = C�c�1R̄uc,m�, C = �Z̄�b�c1W� . �17�

Since c�1R̄uc,m= I8N−2��1 ,uc ,m�
�1 ,uc ,m� is equivalent to
R�1,uc,m=2��1 ,uc ,m�
�1 ,uc ,m�− I8N up to a sign, the effective
target state of the algorithm is

�t�� = ��1��uc��m� . �18�

We need to find the eigenspectrum of C and the expansion
coefficients of �t�� in its eigenbasis. If ���J is an eigenvector
of the walk operator W with eigenvalue ei� then it is easy to
check that �1�b���J is an eigenstate of the operator C with the
same eigenvalue ei�. Explicitly,

�1�b���J→
c1W

ei��1�b���J→
Z̄

ei��1�b���J. �19�

Similarly, �0�b���J is an eigenvector of C with the eigenvalue

−1 due to the Z̄ operator. Hence the subspace spanned by the
states �0�b�
�J is the −1 eigenspace of C. Having determined
the eigenspectrum of C in terms of that of W, we can easily
infer that C satisfies the required conditions for the abstract
search algorithm within the subspace Hb � H0. Moreover,
this subspace is preserved by the operator UC.

To quantify the dynamics of the algorithm, we now cal-
culate the quantities given by Eqs. �1�–�4�. Let a0���, apq���,
and ak��� denote the expansion coefficients of the target state
�t�� in the eigenbasis of C. We have

apq��� = 
�1,uc,m�1,�pq� = apqcos � . �20�

where apq are the expansion coefficients of �uc ,m� in
the eigenbasis of W, discussed in the preceding section.
Similarly, we obtain a0���=a0cos �. Apart from these,
the projection Ak of �t�� on the −1 eigenspace of C is non-
zero. It corresponds to the ancilla qubit being in �0� state, so

Ak���= �
�1 �0��= �sin ��. This projection was not significant in
AKR’s algorithm, but it is crucial for our algorithm.

Using these values, and Eqs. �8�–�10� for the sums occur-
ring in Eqs. �1�–�4�, we find that the two relevant eigenvec-
tors of UC are ����� with the eigenvalues e�i��, with

�� = �� 1

�N�ln N +
tan2�

4
�
 . �21�

The overlap of the initial state ��0�cqw with ���
−� is

�
��
−��0�cqw� 	 1 − �� 1

ln2 N
� − ��N��

4 tan2 �� . �22�

After T= � �
4��

� iterations of UC, we obtain the state ���
+�. Its

overlap with the ��1 ,uc ,m� state is

�
�1,uc,m���
+�� = min��� 1

cos ��ln N
�,1� . �23�

We consider the special case when cos �=���1 / ln N�. In
this case, the ���

+� state has a constant overlap with the de-
sired �m� state, and hence measuring the state will give �m�
with constant probability. Using tan2 �=��ln N� in Eq. �21�,
we find that ��=��1 /�N ln N�. Setting it in Eq. �22�, we
obtain �
��

− ��0�cqw�=1−��1 / ln2 N� so the initial state is very
close to ���

−�. The required number of iterations to get the
state ���

+� is O�1 /���=O��N ln N�. Thus the time complexity
of the algorithm is O��N ln N�.

If we choose cos ���1 / ln N, then using Eq. �23�, we
find that the ���

+� state has still a constant overlap with the
desired �m� state, but tan2 �� ln N and the number of itera-
tions required to get the ���

+� state is much higher than
O��N ln N�. If we choose cos ���1 / ln N, then the number
of iterations required to get ���

+� state remains O��N ln N�,
but this state is no longer close to the desired state �m�
and quantum amplitude amplification is needed to get to
the desired state. The balance is achieved when cos �
=���1 / ln N�.

IV. DISCUSSION

We have presented a modification of the discrete time
quantum-walk search algorithm by Ambainis, Kempe, and
Rivosh for the problem of two-dimensional spatial search.
Our algorithm solves the problem in O��N ln N� time steps
and improves on AKR’s algorithm by a factor of O��ln N�.
It can be easily generalized to the continuous time quantum-
walk algorithm by Childs and Goldstone �7	. In the continu-
ous walk algorithm, the system is evolved under a time-
independent Hamiltonian and the restriction on the
Hamiltonian is that it should couple only neighboring sites.
To apply our algorithm, we just attach an ancilla qubit to the
Hilbert space and then evolve the whole system under a suit-
ably controlled Hamiltonian.

It is an open question that whether the performance of
algorithm can be further improved. As the problem has a
lower bound of ���N� time steps �8	, it will be interesting
to get an algorithm which can solve the problem in O��N�
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time steps or to show that no further improvement over
O��N ln N� complexity is possible. Within the framework
considered here, probably O��N ln N� complexity is the best
that can be achieved. The minimum eigenvalue gap of the
walk operator or the Hamiltonian is O�1 /�N ln N�, so the
adiabaticity condition demands a minimum evolution time
O��N ln N�. Even the algorithms of AKR and CG evolve the
system for O��N ln N� time, but their final states are not
close to the desired state. In our algorithm, we have intro-
duced extra eigenstates of the walk operator by attaching an
ancilla qubit. These extra eigenstates allow interference in
such a way that the final state gets close to the desired state.

The algorithm presented in this paper assumes a unique
marked item, but it can be easily generalized to the case of
multiple marked items with O�ln N� overhead in computa-
tional complexity �3	, making the total complexity of the
algorithm O��N ln3/2 N�. In their paper, AKR have extended
their algorithm to the case of two marked items �see Sec. 6.5
of �6	�, and they have shown that the algorithm succeeds in
only O��N ln N� time steps for this case. The same extension
applies to our algorithm which solves the same problem in
O��N ln N� time steps. Similarly, the extension of AKR’s
algorithm to the case of two-dimensional coin-space �see
Theorem 3 of �6	� also applies to our algorithm.

Finally, we point out that our algorithm can be applied to
any instance of the abstract search algorithm, but the im-
provement factor may not be significant. In the case of
higher-than-two-dimensional spatial search, AKR’s algo-
rithm solves the problem in c�N time steps where c is a
constant �see Theorem 4 of �6	�. By using our algorithm, we
can improve the performance only by a constant factor. It can
be shown that if c�1, then the performance can be improved
by a factor of �c, making the total complexity �cN �see Sec.
III.B of �10	�. For c=O�1�, there is not much improvement,
obviously because ���N� is the lower bound on any quan-
tum search algorithm.

Note added in proof. Recently, Professor Apoorva Patel
pointed out that similar improvement in algorithm complex-
ity can be obtained using the Dirac equation with a mass
term �11	. A nonzero value for the mass eliminates the infra-
red divergence, and provides the best performance when
scaled appropriately with the lattice size.
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APPENDIX: ABSTRACT SEARCH ALGORITHM

Here, we present the analysis of the abstract search algo-
rithm, which iterates the operator UA=URt on the state ��0�
that is a unique eigenstate of U with eigenvalue 1. Here Rt is
the reflection operator about the target state �t� and U is
required to be a real operator. The analysis closely follows
that of AKR �see Sec. 7 of �6	� with the difference that we
have considered the possibility that U may have an eigen-
space with eigenvalue −1, referred to as the −1 eigenspace
here. We will find the relevant features of the eigenspectrum

of UA, which are completely determined by the eigenspec-
trum of U and the expansion coefficients of �t� in the eigen-
basis of U. As discussed in Sec. II, the target state �t� can be
expanded in the eigenbasis of U as

�t� = a0��0� + �
j

aj��� j
+� + �� j

−�� + �
k

ak��k� .

For convenience, we use the notations al, ��l�, and �l
�l� �0, j ,k��, for denoting the expansion coefficients
a0 , aj , ak, the eigenvectors ��0� , �� j� , ��k�, and the ei-
genangles �0=0 , � j�” �0,�� , �k=�, respectively.

We define for real �, the unnormalized vector �w��, whose
expansion coefficients in the eigenbasis of U are given by

�l �w��=alF���l�, F���l�=cot�

�−�l

2 �. We state some relations
satisfied by function F�, which we will use later. These rela-
tions can be derived easily as is done in �6	,

ei��− 1 + iF����	 = ei��1 + iF����	 , �A1�

F���� + F��− �� =
2 sin �

cos � − cos �
, �A2�

F��0� = cot
�

2
, F���� = − tan

�

2
. �A3�

As shown by AKR, if �w�� is orthogonal to �t� then the un-
normalized vector ���= �t�+ i�w�� is an eigenvector of the op-
erator UA=URt with the eigenvalue ei�. It is because of the
special properties of the function F���l�. To see this, we note
that the expansion coefficients of ��� in the eigenbasis of U
are


�l��� = 
�l�t� + i
�l�w�� = al�1 + iF���l�	 . �A4�

We have Rt���=−�t�+ i�w�� as Rt does not alter �w��, orthogo-
nal to �t� by assumption. Hence we have


�l�Rt��� = − 
�l�t� + i
�l�w�� = al�− 1 + iF���l�	 .

�A5�

Since ��l� are eigenvectors of U, we have 
�l�URt���
=ei�l
�l�Rt���=ale

i�l�−1+ iF���l�	. Using Eqs. �A1� and �A4�
we find it to be equal to 
�l�UA���=ei�al�1+ iF���l�	
=ei�
�l ���. As this holds for all the basis vectors ��l�, we
find that ��� is an eigenvector of UA=URt with eigenvalue
ei�, if and only if �w�� is orthogonal to �t�. This condition is
equivalent to �lal

2F���l�=0. Expanding this sum for l=0, j,
and k, and using Eq. �A2� for the term F��� j�+F��−� j� oc-
curring in the sum, we find the condition to be

a0
2cot��/2�

sin �
= �

j

2aj
2

cos � − cos � j
+ Ak

2 tan��/2�
sin �

, �A6�

where Ak=��kak
2 is the projection of the �t� state on the −1

eigenspace of U. It is easy to check that if the above equation
is satisfied for � then it is also satisfied for −� and vice versa.

Let �min be the smallest of � j. Then as shown by AKR, the
above equation has exactly two solutions, �=� and �=−�,
such that �����min /2. Moreover, the eigenvectors corre-
sponding to these eigenvalues are relevant as ��0� is almost
completely spanned by them, and hence iteration of UA on
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��0� can be analyzed by considering only these eigenvectors.
Typically �min is very small �in the case of two-dimensional
spatial search, it is O�1 /�N�, and therefore � is very small.
Writing the above equation up to first order in �, we obtain

a0
2

�2 = �
j

aj
2

cos � − cos � j
+

Ak
2

4
. �A7�

As shown by AKR, the first term on the right-hand side is

��� j
aj

2

1−cos � j
�, which leads to

� = �� a0

��
j

aj
2

1 − cos � j
+

Ak
2

4 
 . �A8�

Let ����= �t�+ i�w��� be the unnormalized eigenvectors
of UA corresponding to the eigenvalues e�i�. Let ��u

−�
= ���− �−��= i��w��− �w−��� be an unnormalized state and let
��−�= ��u

−� / ��u
−� be the corresponding normalized state. To

show that the initial state ��0� is spanned by the eigenvectors
����, we find the overlap of ��0� with the vector ��−�. The
expansion coefficients of the vector ��u

−� in the eigenbasis of
U are given by

�
�l��u
−�� = 
�l�w�� − 
�l�w−�� = al�F���l� − F−���l�	 .

�A9�

We have �
�0 ��−��=
�
�0��u

−��
��u

−� �. Setting l=0 in the above equa-

tion, we find �
�0 ��u
−��=a0�F��0�−F−��0�	=2a0 cot�

2 , and
hence we need to bound ��u

−� to bound �
�0 ��−��. Now

��u
−� = ��

l
�al�F���l� − F−���l�	�2. �A10�

In the summation over l, the term T0 corresponding to l=0 is
equal to T0= �
�0 ��u

−��2=4a0
2 cot2 �

2 =��a0
2 /�2�. Similarly the

term Tk corresponding to l�k is equal to 4Ak
2 tan2 �

2 =Ak
2�2.

The term Tj corresponding to l� j was calculated by AKR
and found to be Tj =O��2� jaj

2 / �1−cos � j�2	. Moreover,
in the case of spatial search, they have shown that Tj and
Tk are small compared to T0 for large N. Hence, using

��u
−�=�T0+Tj +Tk, we obtain �
�0 ��−��=�T0 / ��u

−�=1−
Tj+Tk

2T0
.

More explicitly

�
�0��−�� 	 1 − ���4�
j

aj
2

a0
2

1

�1 − cos � j�2� − ��Ak
2�4

a0
2 � .

�A11�

Thus the state ��0� is very close to ��−�=c����− �−���, where
c is the normalization factor. As ���� are the eigenvectors
of UA with eigenvalues e�i�, we have �UA�q��−�=c�eiq����
−e−iq��−���. After T= �� /2�� iterations of UA, we come very
close to the state ��+�=c����+ �−���.

The last part of the analysis is to calculate the overlap
between �t� and ��+� states. Let ��u

+�= ���+ �−�� be an unnor-
malized state. We have ��+�= ��u

+� / ��u
+� and hence �
t ��+��

=
�
t��u

+��
��u

+� . As ��u
+�=2�t�+ i��w��+ �w−��� and �w��� are ortho-

gonal to �t�, we find �
t ��u
+�� to be equal to 2. Similarly,

��u
+�2 = �2�t� + i��w�� + �w−����2 = 4 + �w� + w−��2.

�A12�

The expansion coefficients of the vector �w�+w−�� in the
eigenbasis of U are given by 
�l �w�+w−��=al�F���l�
+F−���l�	, and hence

�w� + w−��2 = �
l

�al�F���l� + F−���l�	�2. �A13�

For l� �0,k�, the term F���l�+F−���l� vanishes as �l is either
0 or � for such l’s and F���l�=−F−���l� for �l� �0,��. So,
all the nonvanishing terms in above sum correspond to l� j.
This sum has been computed by AKR and shown to be
��� jaj

2 cot2
� j

4 �. Setting it in Eq. �A12�, we obtain

�
t��+�� = �1 + ���
j

aj
2 cot2

� j

4 ��−1/2
, �A14�

or

�
t��+�� = ��min� 1

��
j

aj
2 cot2

� j

4

,1
� . �A15�

This completes the analysis of the abstract search algorithm.
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