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For a system composed of nine qubits, we show that natural interactions among the qubits induce the time
evolution that can be regarded, at discrete times, as the Rabi oscillation of a logical qubit. Neither fine tuning
of the parameters nor switching of the interactions is necessary. Although the straightforward application of
quantum error correction fails, we propose a protocol by which the logical Rabi oscillation is protected against
all single-qubit errors. The present method thus opens a simple and realistic way of protecting the unitary time
evolution against noise.
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I. INTRODUCTION

Decoherence of quantum states has been attracting much
attention for many years �1�. Many methods have been pro-
posed for defeating the decoherence. As compared with other
methods �2–5�, quantum error correction �QEC� �6–10� has a
great advantage of protecting against arbitrary errors if they
only affect a single qubit �two-level system� in each logical
qubit �8�. Although QEC has been developed in the context
of quantum computation, it is interesting and useful to apply
QEC to protection of the unitary time evolution �Hamil-
tonian evolution� against noise.

When trying to realize this, however, one encounters
many physical problems, which are usually disregarded in
discussions on the computational complexity �8�. For ex-
ample, one physical process may be much more difficult to
realize than another, even if the number of necessary steps
for them differs “only by polynomial steps” �8�. Further-
more, fabrication of a controlled-NOT gate, which is one of
the elementary quantum gates, is very difficult because it
requires fine tuning of the coupling constants of the interac-
tions and high-precision switching of them, even if one em-
ploys the excellent ideas of Refs. �11,12�. Assembling a
quantum circuit from the elementary gates is even more dif-
ficult, particularly when the circuit is large and complicated.
Unfortunately, the circuit indeed becomes large and compli-
cated when one tries to apply QEC to the Hamiltonian evo-
lution, even for the simplest case such as the Rabi oscillation
�10�. The largest and most complicated part of the circuit is
the one that induces the encoded Hamiltonian evolution
�such as the Rabi oscillation of a logical qubit� in a fault-
tolerant manner �8,9�. Although a non-fault-tolerant circuit
can be much simpler, such a circuit is too fragile to errors. It
is therefore important to explore new methods, which are
physically more feasible and natural, for inducing the en-
coded Hamiltonian evolution and thereby making QEC ap-
plicable.

In this paper, we propose such a new method, choosing
the Rabi oscillation as the Hamiltonian evolution to be pro-
tected. The method utilizes effective interactions that arise

naturally among physical qubits. We show that the values of
the parameters in the interactions are to a great extent arbi-
trary. Furthermore, switching of the interactions is unneces-
sary. Therefore, a system of a logical qubit with such inter-
actions can be prepared easily by placing several two-level
systems close to each other. Once such a system is prepared,
it is driven spontaneously and flawlessly by the Schrödinger
equation. This is much easier than to drive the system by a
fault-tolerant quantum circuit. On the other hand, we argue
physically that it is highly probable that unwanted interac-
tions should also exist in such a system. While some of them
are shown to be irrelevant, the others invalidate straightfor-
ward application of QEC. As a resolution we present a pro-
tocol, which we call the error-correction sequence. One can
realize the protected Rabi oscillation by using the natural
interactions �to induce the logical Rabi oscillation� and a
quantum circuit for the error-correction sequence. This is
much easier than realizing it wholly with a quantum circuit,
because a fault-tolerant quantum circuit for inducing the
logical Rabi oscillation, which is the largest and most com-
plicated part of the full circuit, is unnecessary.

II. NATURAL HAMILTONIAN FOR LOGICAL
RABI OSCILLATION

We employ a two-level system as a basic element, which
we call a qubit or physical qubit. We represent operators
acting on a qubit in terms of the Pauli operators X ,Y ,Z �i.e.,
�1 ,�2 ,�3�, which are not necessarily those for a physical
spin. To apply QEC to the Rabi oscillation,

ei�Xt�0� = cos��t��0� + i sin��t��1� , �1�

we replace a single qubit with a logical qubit which is com-
posed of several qubits. The basis states �0� , �1� �+1 and −1
eigenstate of Z, respectively� of a qubit correspond to
�0L� , �1L� of a logical qubit. The subspace �of the logical qu-
bit� that is spanned by the latter is called the code space. For
the reasons that will be described in Sec. VII, we here take
the Shor code �6�, in which a logical qubit is composed of
nine qubits and

�0L� =
��000� + �111����000� + �111����000� + �111��
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�1L� =
��000� − �111����000� − �111����000� − �111��

23/2 . �3�

We have to induce the logical Rabi oscillation,

ei�XLt�0L� = cos��t��0L� + i sin��t��1L� , �4�

where XL is a logical Pauli operator; XL�0L�= �1L� and
XL�1L�= �0L�. Obviously, it can be induced if the Hamiltonian
is −�XL. �Here and after, we take �=1.� This is an interac-
tion among three or more qubits, for any code that can cor-
rect all single-qubit errors �Appendix A�. For the Shor code,
XL can be represented in various ways, e.g., as XL=Z3Z6Z9 or
�i=1

9 Zi, where Zi acts on qubit i. In the following, we take

XL = Z1Z4Z7. �5�

Suppose that nine qubits �such as atoms, quantum dots,
and so on� composing a logical qubit are placed close to
each other as shown in Fig. 1. Then, as will be discussed
in Sec. VI, a three-qubit interaction proportional to XL
�=Z1Z4Z7� would be generated as an effective interaction.
�Similar three-qubit interactions were also discussed in Refs.
�13,14�.� Unfortunately, however, if this interaction is strong
enough unwanted two-qubit interactions proportional to
Z1Z4 ,Z4Z7 ,Z7Z1 should also be strong, because otherwise the
following unphysical conclusion would be drawn; if one of
qubits 1,4,7 is removed the other two qubits would have no
interactions. Furthermore, interactions between other pairs of
qubits, such as Z1Z2 ,Z2Z3 , . . ., would also exist in general.
Therefore, a natural and simple Hamiltonian for the system
of Fig. 1 is

H = HD + HS, �6�

where

HD = − �Z1Z4Z7 − J�k1Z1Z4 + k4Z4Z7 + k7Z7Z1� , �7�

HS = �
s=2,3,5,6,8,9

gsZs−1Zs. �8�

Here, �, J, kr’s, and gs’s are real parameters. Since the signs
of these parameters are irrelevant to the following discus-
sions, we assume without loss of generality that they are
positive. Furthermore, since three-qubit interactions are

generally weaker than two-qubit interactions �see Sec. VI�,
we assume naturally that

0 � � � J . �9�

Although single-qubit terms may also exist, we can forget
them because, as discussed in Appendix B, they are irrel-
evant to the following discussions.

Note that the operators Zs−1Zs in HS do not change �0L� or
�1L�, i.e., they are elements of the stabilizer �9� of the Shor
code. Using this fact, we will show later by explicit calcula-
tions that the values of gs’s are irrelevant. On the other hand,
the two-qubit interactions in HD are not elements of the sta-
bilizer, and hence drive the state out of the code space. Nev-
ertheless, we will show in Sec. V that the values of J and kr’s
are fairly arbitrary as long as ��J. The value of � is also
unimportant because changing � is just equivalent to chang-
ing the time scale. Therefore, the values �including signs� of
all the parameters in H �hence the distances between the
qubits� are to a great extent arbitrary. This makes our scheme
robust to fabrication errors. Once the system is thus fabri-
cated, the law of nature drives it flawlessly if noise is absent.

III. DIFFICULTIES AND RESOLUTIONS

We now discuss the effects of noise. There are two diffi-
culties in applying QEC straightforwardly to the system
driven by H. We now explain them and resolutions. For sim-
plicity, we explain the case where k1=k4=k7=1. More gen-
eral cases will be discussed in Sec. V.

We study the first difficulty by investigating the time evo-
lution in the absence of noise, i.e., we calculate ���t��
�e−iHt��L

0�, where ��L
0� is a vector in the code space. We note

that all terms in H commute with each other, and that HS
does not change ��L

0� because all terms in HS are elements of
the stabilizer. Using these facts and the relations Z1Z4
=Z7XL ,Z4Z7=Z1XL ,Z7Z1=Z4XL, we find

���t�� = 	cos3�Jt� − i sin3�Jt�
ei�tXL��L
0�

+
i

2 �
r=1,4,7

eiJt sin�2Jt�ZrXLei�tXL��L
0� . �10�

When sin�2Jt��0, this state is out of the code space because
of the last term. Therefore, we cannot perform QEC for
phase errors at an arbitrary time, because the syndrome mea-
surement �8� to identify the errors misidentifies the last term
as a wrong term generated by a phase-flip noise; if QEC for
phase errors were performed with some intervals � the time
evolution would be affected as shown in Fig. 2, even when
noise is absent.

However, if we focus on the discrete times

tm � m	 �m = 0,1,2, . . .� , �11�

then ���tm�� is in the code space, where

	 � 
/2J . �12�

Therefore, we can perform QEC at t= tm, for both phase and
bit-flip errors. Furthermore, since

3
2

1

4
5

6

7

8 9

FIG. 1. An example of the configuration of qubits that have the
proposed Hamiltonian. The distances between the qubits are to a
large extent arbitrary. We label the qubits inside and outside the
central triangle by r �=1,4 ,7� and s �=2,3 ,5 ,6 ,8 ,9�, respectively.
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���tm�� = ei�tmXL��L
0� = �cos��tm� + i sin��tm�XL���L

0� ,

�13�

apart from an irrelevant phase factor, the logical Rabi oscil-
lation is realized at these discrete times, which we call the
discrete logical Rabi oscillation. Since � /J�1, the intervals
	 of the discrete times are much shorter than the period
2
 /� of the Rabi oscillation. Hence, the discrete logical
Rabi oscillation 	���tm��
m=0,1,2,. . . is quasicontinuous as
shown by the dots in Fig. 3.

To discuss the second difficulty, let us study the time evo-
lution in the presence of noise. Suppose, e.g., that the system
has evolved freely from noise for t� t�, where tm−1� t�� tm,
until a bit-flip noise X1 acts on qubit 1 at t�. Then the state at
tm is evaluated as

e−iH�tm−t��X1e−iHt���L
0�

= e−i�g2�2t�−tm�+�s�2gstm�X1eiJ�2t�−tm��Z1Z4+Z7Z1�

��iZ4Z7�mei��2t�−tm�XL��L
0� . �14�

The terms proportional to gs’s are irrelevant because they
contribute only to an overall phase factor. Therefore, gs’s
may take arbitrary values. The problem is that the above

state is different from the correctable state X1���tm��, not
only in the term generated by Z1Z4+Z7Z1 and �iZ4Z7�m, but
also in the wrong phase of the oscillation ��2t�− tm�. That is,
extra errors occur because the bit-flip error in qubit 1 �or 4 or
7� is “propagated” by H to other qubits �15�. As a result,
QEC at tm cannot recover the correct state.

To overcome this difficulty, we note that the syndrome
measurement for bit-flip errors �unlike that for phase errors�
does not misidentify the state of Eq. �10� as a wrong state.
Hence, one can successfully perform QEC for bit-flip errors
frequently �i.e., with intervals �, which are much shorter than
	� in the interval between tm−1 and tm for all m. As will be
confirmed in the next section, this reduces the probability of
errors small enough.

Our prescription is summarized as follows: Perform QEC
for both phase and bit-flip errors at all tm’s �i.e., with inter-
vals 	�, and perform QEC for bit-flip errors repeatedly with
intervals � ��	�. The latter intervals � are not required to be
regular. We call this protocol the error-correction sequence.

IV. EFFECTS OF THE ERROR-CORRECTION
SEQUENCE

To see how well the error-correction sequence protects the
discrete logical Rabi oscillation against noise, let us calculate
the time evolution for t0� t t1, i.e., for 0� t	, quantita-
tively.

We divide the interval �0, t� into N subintervals;
�0,�t� , ��t ,2�t� , �2�t ,3�t� , . . ., where �t� t /N. We model
noise by the product of depolarizing channels �8� �i=1

9 E�t
�i�,

where E�t
�i� acts on qubit i at the end of every subinterval as

E�t
�i���� � �1 − ��t�� +

��t

3 �
�=1

3

��
�i����

�i�. �15�

Here, � denotes an input state, and � is a small positive
parameter representing the strength of the interaction with
the environment. The initial state at t=0 is denoted by �L

0,
which is assumed to be in the code space. We study its time
evolution up to the first orders in �	 and �	, assuming that

�	 � 1 and �	 � 1, �16�

where the latter comes from condition �9�.
If noise and QEC were absent, �L

0 would evolve into

�H�t� � e−iHt�L
0eiHt = e−iHDt�L

0eiHDt. �17�

When noise is present but QEC is not performed, on the
other hand, �i=1

9 E�t
�i� acts at the end of every subinterval.

When N=2, for example, �L
0 evolves into

�
i=1

9

E�t
�i��e−iH�t�

i=1

9

E�t
�i���H��t��eiH�t �18�

=�1 − 9�t��H�t�

+
�

3�
j=1

2

�te−iH�t−j�t��
i=1

9

�
�=1

3

��
�i��H�j�t���

�i�eiH�t−j�t�.

�19�

FIG. 3. Probability of finding �0L� plotted against time, for the
logical Rabi oscillation �chain line� and the Hamiltonian evolution
by H �solid line�. For clarity, we take � /J ��1� not so small;
� /J=0.1. The dots represent the discrete logical Rabi oscillation.

FIG. 2. Probability of finding �0L� plotted against time, for the
logical Rabi oscillation �chain line�, the Hamiltonian evolution by
H �dashed line�, that affected by QEC for phase errors �solid line�,
which is performed repeatedly with some intervals �.
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By taking N→�, we obtain the state at t without QEC as

��t,�L
0� � �1 − 9�t��H�t�

+
�

3
�

0

t

dt�e−iH�t−t���
i=1

9

�
�=1

3

��
�i��H�t����

�i�eiH�t−t��.

�20�

We calculate how this state is corrected by the error-
correction sequence, in which bit-flip errors are corrected
with intervals � and both bit-flip and phase errors are cor-
rected at t=	. Although the intervals � are not required to be
regular, and

n � 	/� �21�

is not required to take an integral value, we here assume for
simplicity that � is regular and n is an integer. We label
qubits in and outside the central triangle of Fig. 1 by r ,r�
�=1,4 ,7� and s �=2,3 ,5 ,6 ,8 ,9�, respectively.

At t=�, QEC for bit-flip errors is performed. The premea-
surement state of the syndrome measurement is ��� ,�L

0�. The
postmeasurement state ����� depends on the outcome of the
syndrome measurement. For example, when the bit-flip error
in qubit s is detected �which happens with probability
2�� /3�,

����� =
1

2
Xs�H���Xs +

1

2
Ys�H���Ys. �22�

By the recovery operation, ����� is changed into

����� � Xs�����Xs =
1

2
�H��� +

1

2
Zs�H���Zs, �23�

which is a mixture of the correct state �H��� and Zs�H���Zs,
the state with a phase error in qubit s. At this stage, QEC for
phase error is not performed because �H��� is out of the code
space.

At t=2�, QEC for bit-flip errors is performed again. The
pre-measurement state is �(� ,�����), where ����� corre-
sponds to one of possible outcomes of the previous syn-
drome measurement at t=�. We can calculate ���2�� and
���2�� in the same way as we have calculated ����� and
�����. By repeating the arguments n times, we obtain the
probabilities of bit-flip errors during 0� t�	 and the corre-
sponding states ���	� that are obtained at t=n�=	 by correct-
ing the bit-flip errors. To the first orders in �	 and �	, they
are given by

�24�

where

�e
�r��	� � �

0

�

e2iJZrXLt��H�	 − 2t��e−2iJZrXLt�dt�

�
. �25�

Finally, at t=	, phase errors in ���	� are detected and cor-
rected. We denote the state after this QEC by ���	�. Since
���	� depends on which qubit has suffered from a bit-flip
error for 0� t�	, so does ���	�. If a bit-flip error has oc-
curred in no qubit or in qubit s, ���	� agrees with the correct
state �H�	�. If, on the other hand, a bit-flip error has occurred
in qubit r �with probability 2�	 /3, see above�, the condi-
tional probability of each outcome of the syndrome measure-
ment for phase errors and the corresponding ���	� are given
by �16�

�26�
Here, sinc x��sin x� /x, an

�� 3
16 + 1

16sinc4

n �

1
4sinc2


n , and
terms of O��	� and O��	� have been dropped because the
probability that a bit-flip error has occurred is already of
O��	�. By averaging ���	� over all possible branches, we
obtain the average state �c�	� under the error-correction se-
quence as

�c�	� = �H�	� − �	�1 − sinc
2


n
��H�	� − XL�H�	�XL� .

�27�

Therefore, �c�	� approaches the correct state �H�	� with in-
creasing n. This can be seen more clearly from their trace
distance �8�, which is calculated for n�1 as

1

2
tr��c�	� − �H�	�� � 2
2�	Lyz�	�/3n2. �28�

Here, Lyz�	� denotes the length of the projection onto the y -z
plane of the Bloch vector of �H�	� in the code space. Hence,
by taking

n � �1/��	�min	1,�/�
 , �29�

we can reduce the distance to about
6Lyz�	�max	��	�2 , ��	�2
. Since Lyz�	�=O�1�, this is of the
same order as the largest term that has been dropped in the
above calculations. That is, we have successfully recovered
the correct state at t=	 �=t1�, i.e., �c�t1�=�H�t1�
+O�max	��	�2 , ��	�2
�.

In a similar manner, we can evaluate �c�tm� by taking
�c�tm−1� as the initial state, and find that

�c�tm� = �H�tm� + O�max	��	�2,��	�2
� �30�

for all m. Therefore, the discrete logical Rabi oscillation is
protected, with only O�max	��	�2 , ��	�2
� probability of fail-
ure, if we take n as Eq. �29�. For example, we should take
n�102 when �	=�	=10−4. Figure 4 demonstrates how the
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error-correction sequence corrects errors, i.e., how the solid
line approaches the dashed line.

V. ARBITRARINESS OF THE PARAMETERS IN HD

It is clear from the results of Secs. III and IV that the
value of J is arbitrary as long as ��J. On the other hand, we
have assumed in those sections that k1=k4=k7=1. In this
section, we show that the error-correction sequence is suc-
cessful also when kr’s take other values.

Recall that the error-correction sequence consists of two
parts: QEC for both phase and bit-flip errors at all tm’s, and
QEC only for bit-flip errors with intervals �. The latter part is
successful even when kr’s are arbitrary real numbers, because
in general, a Hamiltonian which does not contain Xi’s and
Yi’s, such as the proposed H, cannot flip the bit of any physi-
cal qubit. Hence, the syndrome measurement for bit-flip er-
rors does not misidentify the state evolved by such a Hamil-
tonian as a wrong state.

Regarding the former part, we start with showing that kr’s
can be arbitrary integers. Note that QEC at tm’s works well
provided that the state of the qubits at tm would be in the
code space if noise were absent. As discussed in Sec. III, this
condition is satisfied when k1=k4=k7=1, because ���tm��
=ei�tmXL��L

0�, which is certainly in the code space. When kr’s
are odd integers, we obtain the same result,

���tm�� = e−iHDtm��L
0�

= ei�tmXLeim
�k1Z1Z4+k4Z4Z7+k7Z7Z1�/2��L
0�

= ei�tmXL �
r=1,4,7

�cos
mkr


2
+ i sin

mkr


2
ZrZr+3��L

0�

= ei�tmXL��L
0� , �31�

apart from irrelevant phase factors. Here, Z10�Z1, and we
have used �Z1Z4��Z4Z7��Z7Z1�=1. When kr’s are general in-
tegers �not necessarily odd�, on the other hand, we have to
add a certain procedure to the error correction sequence. We

explain this for the case where k1=1 and either one of k4 ,k7
is even. In this case, we find that

���tm�� = � ei�tmXL��L
0� for even m ,

ZrZr�e
i�tmXL��L

0� for odd m .
� �32�

Here, r and r� ��r� each is 1, 4, or 7 depending on k4 ,k7. For
example, when k4 is even and k7 is odd, ���tm��
=Z7Z1ei�tmXL��L

0� for odd m. Although this state is out of the
code space, we note that the evolution into this state is not a
stochastic process �such as evolution by noise� but a deter-
ministic process induced by the known Hamiltonian H �17�.
Hence, we can surely change this state to ei�tmXL��L

0� by ap-
plying Z7Z1 just before QEC at tm. By adding this procedure
to the error-correction sequence, we can successfully per-
form QEC at tm’s. Thus, the error-correction sequence,
supplemented with this additional procedure, works well
when kr’s are arbitrary integers.

Note that if kr’s have a common factor K, one can redefine
kr’s and J as

J� = KJ, kr� = kr/K . �33�

The corresponding terms in HD are then rewritten as

J �
r=1,4,7

krZrZr+3 = J� �
r=1,4,7

kr�ZrZr+3. �34�

Hence, one can use J� instead of J, which means, e.g., that
	��
 /2J� is used instead of 	. The error-correction se-
quence has such flexibility.

We next consider a more general case where kr’s are ra-
tional numbers. Suppose, for example, that k1=1 , k4
=3 /2, k7=5 /3. Then, one can redefine kr’s and J as J�
=J /6, kr�=6kr, and the corresponding terms in HD are re-
written as

J �
r=1,4,7

krZrZr+3 = J��6Z1Z4 + 9Z4Z7 + 10Z7Z1� . �35�

Therefore, if one uses 	��
 /2J� instead of 	, the error-
correction sequence is successful. In general, if there exists a
real number � such that �kr’s are integers and

J� � J/� � � , �36�

then the error-correction sequence is successful if one uses
	��
 /2J� instead of 	.

Finally, we consider the case where kr’s are ir-
rational numbers. We note that an irrational number can
be well approximated by rational numbers. When k1=

�=3.141 59. . .�, for example, it can be approximated by 22/7
�=3.142 85. . .�, 333/106 �=3.141 50. . .�, and so on. Let k1� be
such a rational number. The difference k1−k1� is negligible if
J�k1−k1��t�1. Therefore, for the time interval t that satisfies

t � 1/J�k1 − k1�� , �37�

this case reduces to the one where kr’s are rational numbers.
If one takes k1� such that �k1−k1�� is smaller, the upper limit
of t given by Eq. �37� becomes longer, whereas condition
�36� becomes harder to satisfy because the denominator of
k1� becomes greater.

FIG. 4. Probability of finding �0L� plotted against time when
�L

0 = �0L��0L�, for the logical Rabi oscillation �chain line�, the Hamil-
tonian evolution by H �dashed line�, that affected by noise �dotted
line�, and that corrected by the error-correction sequence �solid
line�. The dots represent the discrete logical Rabi oscillation. Here,
� /J=0.1, �	=
 /100, and 	 /�=6. Inset: magnification around
t=�.
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To summarize this section, the error-correction sequence
works well for fairly arbitrary values of kr’s. Although it is
better that one can successfully fabricate the system in such a
way that kr’s are integers, one can also accept most systems
which have nonintegral values of kr’s �because of fabrication
errors�. This fact makes the preparation of the system easier.

VI. DERIVATION OF THE EFFECTIVE INTERACTIONS

The proposed Hamiltonian H consists of Ising-type inter-
actions and three-qubit interactions among physical qubits.
We here discuss how they are generated as effective interac-
tions from more fundamental interactions.

Many physical systems can be candidates for physical qu-
bits that have the proposed H. As an example, we here con-
sider quantum dots in a semiconductor �18,19�. To be more
concrete, we assume that the spin of an electron in a dot is
polarized by a high external magnetic field, so that we can
forget about the spin degrees of freedom. We also assume
that the potential barrier between the dots is high and thick
so that electron tunneling between the dots is negligible. This
and �possibly� the Coulomb interaction, by which states with
two electrons in a single dot have much higher energies than
states with a single electron, exclude double occupancy of a
dot. For single-electron states of a dot, we assume that only
the ground and the first excited states, denoted by �0� and �1�,
are relevant because higher states have much higher energies
and/or the transition matrix elements to them are small. As a
result, we can treat each dot as a system with two quantum
levels, �0� and �1�, i.e., as a qubit. For the reasons that will be
explained below, we also assume that all dots in a logical
qubit are asymmetric and different �in size and/or shape� so
that accidental degeneracy is lifted.

The effective Hamiltonian Heff for a set of such qubits
�dots� is the sum of single-qubit terms and the effective in-
teractions. The effective interactions are derived from more
elementary interactions V ,W , . . ., which are effective interac-
tions among conduction electrons in homogeneous bulk
semiconductors. On the other hand, V ,W , . . . are derived
from even more elementary interactions, such as the Cou-
lomb interactions between electrons in vacuum. Since two-
and three-body interactions have been studied in many
physical systems �see, e.g., Refs. �20,21��, we here consider a
two-body interaction V and a three-body interaction W. Gen-
erally, the latter is much weaker than the former �22�. Since
four- or more-body interactions are even weaker, we neglect
them.

We can represent Heff as a polynomial of the Pauli opera-
tors. In general, it would have terms that include Xi
��0�ii�1�+ �1�ii�0� and Yi�−i�0�ii�1�+ i�1�ii�0�, where the sub-
script i �=1,2 , . . .� labels the qubits. Such terms are nondi-
agonal terms that are proportional to �n��m� �m�n�, where
�n� and �m� are the product states of �0�i’s and �1�i’s �such as
�i�0�i�. As discussed in Refs. �23� and �24� and in Appendix
C, contributions from the nondiagonal terms to the time evo-
lution are negligible if

� �n��V + W��m�
�Enm

� � 1 for every n,m��n� , �38�

where �Enm is the difference in energy of single-qubit terms
between �n� and �m�. �A more precise expression of this con-

dition is given in Appendix C, where �n�H��m� corresponds
to �n��V+W��m�.�

In typical situations, V and W are significant only between
adjacent dots �such as dots 1, 4, 7; dots 1, 2; dots 2, 3; and so
on, of Fig. 1� because V and W generally decrease as the
distance is increased. In such a case, one can make ��Enm�
larger than ��n��V+W��m�� by making the sizes and/or shapes
of adjacent dots different. One can also make ��Enm� larger
by modulating spatially the magnitude of the external mag-
netic field. If condition �38� is satisfied by these methods,
one can drop nondiagonal terms, and hence Heff reduces to
H, which consists only of Zi= �0�ii�0�− �1�ii�1�’s, when con-
sidering the time evolution.

On the conditions and assumptions mentioned above, H
can be derived simply by taking the diagonal matrix ele-
ments, between �n�’s, of the effective Hamiltonian for con-
duction electrons,

H0
el + V + W , �39�

where H0
el denotes the noninteracting part, which includes the

confining potential of the dots. We here present explicit re-
sults for the three qubits in the central triangle of Fig. 1.
Interactions between the other qubits can be derived more
easily in a similar manner.

Since the potential barrier is high, the wave functions
�r

0�r� and �r
1�r� of �0�r and �1�r, respectively, are well local-

ized within each dot. As a result, overlap of the wave func-
tions of different dots is negligibly small, i.e., �r

a�r��r�
b �r�

�0 for r�r� and for all a ,b �=0,1�. Using this fact, we find
that the effective Hamiltonian is given by

−
1

2 �
r=1,4,7

�rZr − �
r�r�

Jrr�ZrZr� − �Z1Z4Z7, �40�

where, for a ,b ,c=0,1,

�1 = �1
0 −

1

2�
a,b

�− 1�a�Va•b + Vab•� −
1

4 �
a,b,c

�− 1�aWabc,

�41�

J14 = −
1

4�
a,b

�− 1�a+bVab• −
1

8 �
a,b,c

�− 1�a+bWabc, �42�

� = −
1

8 �
a,b,c

�− 1�a+b+cWabc, �43�

and similarly for the other �r’s and Jrr�’s. Here, �r
0 is the

energy difference between �1�r and �0�r, and

Vab• �
/

��1
a�r��2V�r,r����4

b�r���2drdr�, �44�
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Wabc �� W�r,r�,r����1
a�r��2��4

b�r���2��7
c�r���2drdr�dr�,

�45�

and similarly for Va•b ,V•ab. In fact, one can easily verify that
all the diagonal matrix elements of Eq. �39�, between �n�’s,
agree with those of Eq. �40�.

It is seen that the single-dot energy �r is renormalized by
the interactions V and W, and the two-qubit effective inter-
actions are generated from V and W, whereas the three-qubit
effective interaction is generated from W. Regarding the
magnitudes of the effective coupling constants, � is much
smaller than Jrr�’s because the former is derived only from
the weaker interaction W. Note that � does not vanish by
accidental degeneracy because we have assumed that all dots
in a logical qubit are asymmetric and different.

Since we can forget about the single-qubit terms �i.e., the
first term of Eq. �40�� as discussed in Appendix B, Eq. �40�
agrees with the proposed HD, Eq. �7�, where Jrr� correspond
to krJ.

VII. DISCUSSIONS AND CONCLUSIONS

We have shown in Secs. III and IV that two-qubit inter-
actions in HD cause errors which are correctable not by the
straightforward application of QEC but by the error-
correction sequence. One might expect that such errors could
be corrected more easily by using more elaborate codes such
as the one in Ref. �25�. If such codes are used, however, XL
in HD becomes an interaction among three or more qubits.
Generally, if l qubits are crowded to induce an l-qubit inter-
action corresponding to XL, unwanted interactions among l�
��l� qubits are also induced, as we have discussed on H. For
any code that can correct all single-qubit errors, some of
such unwanted interactions are not elements of the stabilizer
�26�. If l��3 like the code of Ref. �25�, they cause errors
which cannot be corrected even by the error-correction se-
quence. If l��3 like the Shor code and the Steane code �7�,
they can be dealt with the error-correction sequence.

We have also shown that the values of gs’s in HS are
arbitrary. Such great flexibility would not be obtained if we
employed a nondegenerate code �8�, because its stabilizer
does not include twofold tensor products of the Pauli opera-
tors. For example, the Steane code is a nondegenerate code
and hence it has less flexibility. For these reasons, we have
employed in this paper the Shor code, which is a degenerate
code with l=3 �because we can take XL=Z1Z4Z7� and l�=2.

The possibility of use of other codes is worth exploring. It
is also worth exploring the possibility of replacing a circuit
for the syndrome measurements with another natural interac-
tion. Our preliminary study indicates that this is basically
possible, and more detailed studies are in progress. Further-
more, it is interesting to apply the present idea to general
time evolutions �such as general SU�2� rotations� and/or to
general systems �such as systems composed of many logical
qubits�. A possible way of realizing this may be mixed use of
a Hamiltonian �such as the one of this paper� and simple
quantum circuits. This might also be applicable to quantum
simulations �27,28�. Since these subjects are beyond the

scope of the present paper, we leave them as the subjects of
future studies.

In conclusion, we have shown that the Rabi oscillation of
a logical qubit encoded by the Shor code can be induced by
a Hamiltonian that is composed of natural short-range inter-
actions among physical qubits �Sec. II�. The Hamiltonian
replaces the most complicated part of a quantum circuit that
would be necessary for inducing and protecting the logical
Rabi oscillation. More specifically, the state driven by the
proposed Hamiltonian agrees with the logical Rabi oscilla-
tion at discrete times tm=m	 �m=0,1 ,2 , . . .�, which is quasi-
continuous as shown in Fig. 3. We call it the discrete logical
Rabi oscillation �Sec. III�. To prepare a physical system that
has the proposed Hamiltonian, one has simply to place two-
level systems �which are used as physical qubits�, such as
asymmetric quantum dots �Sec. VI�, as shown in Fig. 1. The
parameters of this system, such as the positions and the sizes
of the dots, are to a great extent arbitrary because the pro-
posed Hamiltonian has great flexibility �Secs. II and V�. This
makes the fabrication of the system easier. Once the fabrica-
tion is finished, one can measure the coupling constants of
the effective interactions, and the important parameters such
as 	 can be calculated from them. To protect the discrete
logical Rabi oscillation against noise, the ordinary QEC can-
not be applied straightforwardly. However, we have shown
that it can be protected by a new protocol, which we call the
error-correction sequence �Secs. III and IV�. In this protocol,
QEC for both phase and bit-flip errors is performed at tm’s,
whereas QEC only for bit-flip errors is performed frequently
in the interval between tm−1 and tm for all m. The frequency
of the latter is determined by the strength of noise and the
parameters of the effective interactions �Sec. IV�. One can
realize the protected Rabi oscillation by using the natural
Hamiltonian �to induce the logical Rabi oscillation� and a
quantum circuit for the error-correction sequence. This is
much easier than realizing it wholly with a fault-tolerant
quantum circuit.
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APPENDIX A: XL IS AN INTERACTION
AMONG THREE OR MORE QUBITS

Let Pc be the projection operator onto the code space,

Pc = �0L��0L� + �1L��1L� . �A1�

An n-qubit code, which can correct all single-qubit errors,
satisfies the following condition �8�:

Pc��
�i���

�j�Pc = �i�,j�Pc �i, j = 1, . . . ,n; �,� = 0,1,2,3� .

�A2�

Here, ��
�i� denotes the identity ��=0� and Pauli ��=1,2 ,3�

operators acting on qubit i, and �i�,j� is an element of some
Hermitian matrix.

If XL were a Pauli operator or a twofold tensor product of
Pauli operators, Eq. �A2� could not be satisfied. For example,
if XL=X1X2 for some code the left-hand side of Eq. �A2�
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with ��
�i�=X1 , ��

�j�=X2 �i.e., i=1, j=2, �=�=1� reduces
to

PcX1X2Pc = PcXLPc = �0L��1L� + �1L��0L� . �A3�

Since this is neither vanishing nor proportional to Pc, Eq.
�A2� is not satisfied for any value of �11,21. This means that
such a code cannot correct all single-qubit errors.

Therefore, XL is a three- or morefold tensor product of the
Pauli operators �which corresponds to an interaction among
three or more qubits� for any code that can correct all single-
qubit errors.

APPENDIX B: IRRELEVANCE OF SINGLE-QUBIT TERMS

When two levels of a qubit have different energies, a
single-qubit term, which represents the energy difference,
arises in its effective Hamiltonian as discussed in Sec. VI.
All effects of such single-qubit terms can be canceled if we
do everything in the rotating frame �24�. Although this fact
seems to be known widely, we here explain it in order to
clarify its meaning in the context of QEC.

Let us investigate the time evolution of a state �+ by the
following Hamiltonian:

H+ = −
1

2�
i=1

9

�iZi + H = −
1

2�
i=1

9

�iZi + HD + HS, �B1�

where �i’s are real numbers. We can go to the rotating frame
�an interaction picture� by U0�exp� i

2�i=1
9 �iZit�, as �rot

=U0
†�+U0. It evolves according to

i
d

dt
�rot = �U0

†HU0,�rot� = �H,�rot� , �B2�

where we have used �H ,U0�=0. Therefore, �rot undergoes
the same unitary evolution as that of � of Sec. IV. Further-
more, it is easy to show that the depolarizing channel in the
rotating frame is also the same as the one in Sec. IV. Thus, in
the presence of noise, �rot evolves in the same manner as � of
Sec. IV. Therefore, the error-correction sequence will be suc-
cessful if we set the initial state �rot�0� in the code space and
perform QEC in the rotating frame.

For example, the observables for the syndrome
measurement in the rotating frame are Mb1

rot�Z1Z2,
Mp1

rot�X1X2X3X4X5X6, and so on. In the laboratory
frame �Schrödinger picture�, they are given by
Mb1

=U0Z1Z2U0
†=Z1Z2 and Mp1

=U0X1X2X3X4X5X6U0
†

=�i=1
6 exp� i

2�iZit�Xi exp�− i
2�iZit�, respectively.

APPENDIX C: IRRELEVANCE OF TERMS
INCLUDING X ,Y

It seems widely accepted by researchers of NMR that the
nondiagonal terms, which include Xi’s and/or Yi’s, in Heff are

irrelevant to the time evolution if condition �38� is satisfied
�see, e.g., Refs. �23� and �24��. For completeness, we here
show that this is indeed true under reasonable assumptions.

Let us decompose Heff as

Heff = H0 + H + H�, H0 � −
1

2�
i

�iZi, �C1�

where �i is the energy difference �that is renormalized, like
Eq. �41�, by interections among dots� between �1�i and �0�i, H
is a polynomial of Zi’s only, and H� consists of the other
terms �such as X1Y1, X1X2Z3, and so on� which include Xi’s
and/or Yi’s.

We denote a product state of �1�i’s and �0�i’s, such as
�i�1�i, by �n�. In terms of such product states, H0 and H are
diagonal, whereas H� gives the off-diagonal elements. To
characterize the magnitude of the latter, we define the param-
eter �nm by

�nm � ��n�H��m�
�Enm

if �n�H��m� � 0,

0 if �n�H��m� = 0,
� �C2�

where �Enm denotes the difference of the eigenvalues of H0
between �n� and �m�. We also define

�̄ � ��
n,m

��nm�2. �C3�

Consider the time evolution operator Ueff�t� generated by
Heff. We can write it as

Ueff�t� � exp�− iHefft� = U�t�e−iQ�t�, �C4�

where

U�t� � e−i�H0+H�t = e−iH0te−iHt, �C5�

and Q�t� is the Hermitian operator defined by e−iQ�t�

�U†�t�Ueff�t�. It is clear that

Q�t� = 0 when �̄ = 0. �C6�

If �̄ were large then Q�t� would be significant, particularly

when �Enm=0 for all n ,m, for which �̄=�. On the other

hand, if �̄ is small enough, �Q�t�� is expected to be small,
where � � denotes the operator norm. It is natural to assume
that

Assumption 1: Q�t� is continuous in �nm ’ s

in the neighborhood of �̄ = 0. �C7�

This assumption seems reasonable from the perturbation
expansion of the time evolution operator in the interaction
picture, which corresponds to eiH0tUeff�t�=e−iHte−iQ�t�;

1− it�
n

�n�H�n��n��n� − i�
n

�
m��n�

�
0

t

ei�Enmt�dt��n�H��m��n��m�+ ¯ = 1− it�
n

�n�H�n��n��n� −�
n

�
m��n�

�ei�Enmt −1��nm�n��m�+ ¯ ,

�C8�
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each term of which is continuous with respect to
�nm.

Assumption 1, together with Eq. �C6�, means that for any

small positive number � there exists a positive number �̄�,t
such that

�Q�t�� � � for all �̄ � �̄�,t. �C9�

In other words, for a given time period �0, t� we can neglect

Q�t�, i.e., we can regard Ueff�t�=U�t�, if �̄ is small enough.
This means that the time evolution by Heff takes place as if
�n�’s �which are eigenstates of H0+H� were its eigenstates.
That is, if we expand an initial state in terms of �n�’s as
�ncn�n�,

e−iHefft�
n

cn�n� � �
n

cne−i�n��H0+H��n�t�n� . �C10�

Note that the above argument is general in the sense that we
have not assumed any specific forms for H and H�. For ex-
ample, the argument in Appendix A of Ref. �23�, where spe-
cific forms have been assumed, is essentially a special case
of the present general argument.

In the above argument, we have not excluded the possi-

bility that �̄�,t increases with increasing t. This will not cause
difficulty when one sets an upper limit of t. To be more

complete, however, we here discuss the dependence of �̄�,t on
t. We note that the coefficients of the third term of Eq. �C8�
are upper bounded as

��ei�Enmt − 1��nm�  2��nm�  2�̄ �C11�

for all t. This is due to the fact that t appears only through the
oscillatory factor ei�Enmt. Since this is the case also for
higher-order terms, we expect that

Assumption 2: �̄�,t has an upper bound �̄�,

which is independent of t . �C12�

If this is true, then for any small positive number � and
for all t,

�Q�t�� � � for all �̄ � �̄�. �C13�

In other words, we can regard Ueff�t�=U�t� even for long t

if �̄ is small enough.
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