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Lorentz-invariant photon number density
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A Lorentz-invariant positive definite expression for photon number density is derived as the absolute square
of the invariant scalar product of a polarization-sensitive position eigenvector and the photon wave function. It
is found that this scalar product is independent of the form chosen for the wave function and that the normal-
ized positive frequency vector potential-electric field pair is a convenient choice of wave function in the
presence of matter. The number amplitude describing a localized state is a & function at the instant at which

localization and detection are seen as simultaneous.
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I. INTRODUCTION

The concept of photon number density arises in the inter-
pretation of experiments such as photon counting and the
creation of correlated photon pairs in a nonlinear material. In
spite of its relevance to experiment and the foundations of
quantum mechanics, no relativistically invariant positive
definite expression for photon number density exists at
present. Mandel [1] defined a coarse-grained number opera-
tor to count photons in a region large in comparison with the
wavelength of any occupied mode of the field. However,
photons can be counted, and hence localized, in a photode-
tector much smaller than this wavelength. Here I will show
that the absolute square of the Lorentz-invariant scalar prod-
uct of a localized state and the photon wave function is a
local positive definite number density.

In nonrelativistic quantum mechanics the one-particle
number density is the absolute square of the real space wave
function. The wave function can be obtained by projection of
the state vector onto a basis of simultaneous eigenvectors of
the position and spin operators. Although this was long
thought to be impossible for the photon, we recently con-
structed a photon position operator with commuting compo-
nents [2,3] and derived a photon wave function in this way
[4,5]. The Landau-Peierls (LP) wave function [6] and the
positive frequency vector potential—electric field (AE) wave
function pair were considered and a scalar product was de-
fined to complete the Hilbert space. It was proved that the
scalar product is invariant under the similarity transformation
relating the AE and LP forms of its integrand, implying that
they are equivalent when used for calculation of transition
amplitudes and expectation values.

Since position is an observable, the number amplitude to
detect a particle at position r with spin o equals the scalar
product of the corresponding position-spin eigenvector with
the particle’s wave function. In real space this number am-
plitude (r,o|W(1))=[dr ¢ (x')W,(r',1) is equal to the
wave function W (r,7) only if the position eigenvectors are
localized states of the form ¢ ,(r')=&(r’ —r). While this is
true for a nonrelativistic massive particle, it is not the case
for the photon. A transverse vector is not of the simple
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o-function form, and thus it is not the amplitude to detect a
photon at r. In addition, photons are often most conveniently
described in terms of potentials or fields because of their
simple relationship to the matter current density. The Fourier
components of the vector potential and electric field describ-
ing a localized state vary as w, ''> where k is the wave vector
and wy is the angular frequency. They are not & functions
even if their vector properties are ignored.

Since the boost operator just generates a change of point
of view that does not change the results of possible experi-
ments [7], the scalar product that predicts these results
should be a relativistic invariant. Newton and Wigner (NW)
defined an invariant scalar product and a position eigenvec-
tor at the origin that is invariant under rotation and inversion
[8]. This and the displaced single-particle states generated in
k space by the spatial translations exp(—ik-r) are orthonor-
mal. Philips defined a Lorentz-invariant localized wave func-
tion but lost the orthonormality condition [9]. The NW wave
functions themselves are not local in real space even in the
simplest spin-zero case since they vary as w,i/ 2. However, as
argued in the paragraph above, the number amplitude is not
in general equal to the real space wave function.

In this paper, the relationship between the photon wave
function and number density will be examined. In Sec. II,
our previous work on the photon position operator and wave
function will be summarized. In Sec. III a Lorentz-invariant
scalar product will be defined. The number amplitude for
arbitrary polarization, equal to the scalar product of a posi-
tion eigenvector and the wave function, will be found in Sec.
IV. In Sec. V, interaction with matter will be considered, and
the photon number density will be discussed in relation to
the recent and historical literature.

II. POSITION OPERATOR AND WAVE FUNCTION

The photon position operator with commuting compo-
nents and transverse eigenvectors can be written as [3]

#X = iD(wy)* V () D™ (1)

where V is the k-space gradient and D=exp(—iSyy)
Xexp(-iS,p)exp(-iS,0) is the rotation matrix with Euler
angles ¢, 0, x. The operator D rotates the unit vectors X, ¥,

and Z into the spherical polar unit vectors 3’ (;5 and k and
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then rotates @ and ¢ about k by y(k). Thus F*X rotates the
transverse and longitudinal unit vectors to the fixed direc-
tions X, ¥, and Z, eliminates the factor (wy)®, operates with
iV to extract the position information from the phase of the
wave function, and then reinserts the factor (w;)® and returns
the unit vectors to their original orientations. The eigenvec-
tors of (1) form a basis for the LP wave function if =0, and
for a wave function proportional to the vector potential if «
=—1/2 and its conjugate momentum if a=1/2.

In the Schrodinger picture the simultaneous eigenvectors
of the position and helicity operators,
exp(=ik-r)
7€ (2)
(2m)
form a basis for the Hilbert space H. The transverse unit
vectors are

PV (K) = ()

1 . o
eW(k) = 75(a+ icd)exp(-ioy) (3)

AY

for circular polarizations o= *1 and the longitudinal unit
vector is ey=Kk. The real linear polarization unit vectors

1
el = =(ef +eY),
V2

1
e = (el ~elY) (4)
iV2

give eigenvectors of F®X but not the helicity operator. While
all x are needed to interpret an experiment that measures
polarization, only one basis is needed to describe the photon
state, and the y=0 definite helicity basis will be used here for
simplicity. In this basis, the probability amplitude for the
state with polarization efﬁ‘) incorporates the phase factor
exp(—ioy).

The wave function was obtained in [4] as the projection of
the quantum electrodynamic (QED) state vector onto a basis
of position-helicity eigenvectors. If the operator aj,(k) cre-
ates a photon with wave vector k and circular polarization
efﬁ)), the one-photon Kk-space basis states are
=a2(k)|0) where |0) is the vacuum state. Creation operators
for a photon at position r can be defined as

exp(—ik-r) (0)*

o (K)a) (k). (5)

I = ()
Any state vector can be expanded in Fock space as |W(z))
=3" c,/W,()), where the one-photon term |¥(7))
is completely described by the

probability amplitude
(k,o|P(1)) = c,(K)exp(— iwt). (6)

The projection onto the definite helicity-position eigenvec-
tors, W'Y (r,1)=(0| 12/£f’3|‘1’(t)), is a six-component wave func-
tion whose dynamics is described by a diagonal Hamiltonian
[4,6]. The expectation value can be evaluated using
[a,(Kk),a, (k')]=8, .5 (k=K'). Here the focus is on the

scalar product and polarization will be summed over to give
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the three-vector wave function W'®(r,7) where

exp(ik - T — iawyt)

W) = f e

V()= > W), (7)

o=*1
The k-space wave function will be defined as

W(K) = ¢, (k)e (k) (),

Wk = > WK, (8)

o==*1

III. INVARIANT SCALAR PRODUCT

To prove the invariance of the scalar product that com-
pletes H, four-vector notation and the Lorentz gauge will be
used. The contravariant energy-momentum four-vector is fik
where k=k"=(w/c,k) and the covariant four-vector is k,
=g,,k” where g is a diagonal tensor with go=-1 and g;
=1 for i=1-3. In addition to the transverse and longitudinal
eigenvectors, scalar position eigenvectors can be defined
[10] and the four-potential can be used as the wave function
[11]. In the Lorentz gauge the momentum conjugate to A*+#
is [I®~=e, AW~/ ot [12] where the superscript (+) denotes
the positive frequency part. This is equivalent to $!'/?
=i gy~ /gt that follows from (7). Since only positive fre-
quencies arise in the wave function, the invariant volume
integral can be written as

3
f d*k Sk, + k) O(wy) = ¢ ;l k 9)
Wy

where the Heaviside step function ®(wy) is invariant under
proper Lorentz transformations and xk=mc/h=0 for a free
photon.

The real space wave function satisfying W'2(x)
=\2¢€y/ ﬁA(+)(x) [4] is a four-vector. Use of (8) in (7) for «
=—1/2 gives

d*k exp(ikx
worng - [ R o

for physical states with exp(—iw;f) time dependence. This
implies that ‘I’f,” ?(k) must be a four-vector. Thus the scalar
product of |®,) and |¥,),

4’k .
(W) = J :qﬂ“”w(k)\pﬁj’”(k), (11)
k

is an invariant. This is the form normally used in field theory,
1ncorp0rat1ng the metric a)k . Alternatively, the integrand
DD () M” 2)(k)/co can be written as the product of LP
wave functions, OO (k)P /?)(k) or as the potential-
conjugate momentum product, ® 1Q”‘”(k)‘l’(” 2(k), to give
the invariant scalar product (11) as
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(D, W,) = J Pl D ()W (k). (12)

In the Lorentz gauge there are longitudinal and scalar pho-
tons in addition to the observable transverse photons. Scalar
and longitudinal photons can be dealt with by introducing an
indefinite metric [12]. However, the Lorentz gauge was only
needed to prove invariance and its further use here is not
required.

In any specific reference frame it is possible to make a
gauge transformation to the transverse (Coulomb) gauge.
Equation (12) then reduces to

(®)|W)) = f I’k ® (k) - W(k). (13)

The conjugate momentum is H(+)=—60E(f) for the minimal
coupling Hamiltonian (L denotes the transverse part), so the
a=*1/2 conjugate pair are the vector potential and the
electric field (AE). Since the (w;)™* factors cancel and the
dot product of like unit vectors is unity, Eq. (13) can also be
written as

(@, 0)= >

o=*1

&k d(K)cy(k), (14)

where the d’s are the coefficients in the expansion of |®,).
This is just the QED scalar product.

For any operator O describing an observable, O‘I’Ef‘)(k)

must be in H and the eigenvalues of O must be real. This is
obviously the case for the momentum and energy operators,
ik and fiwy;. For the position operator, using (8),

FONT D (k) = ()% (k)i V [c,(k, 1)explioy)], (15)

since (wk)“efr’()(k) is an eigenvector of F®X with eigenvalue
zero. Thus (15) is in H. Using the scalar product (11) the
wave function is just W(?%(k) and it can be proved as in
[13] that #>X) is Hermitian. If (13) is used, it can be proved
using (15) that (FCOXD | W )=(P,|[#@)W¥ ), which im-
plies that #©¥ is Hermitian and must have real eigenvalues
and orthonormal eigenvectors. This follows the usual rules of
operator algebra since D is unitary and iV is Hermitian. The
a==*1/2 basis is related to the a=0 basis by F®Y
= ()P Y (w,)~® This similarity transformation preserves
the scalar product and hence expectation values and the re-
ality of the position eigenvectors [4,14]. The wave functions
W2 and W form a biorthonormal pair and the position
operator satisfies #-1/20T =120 50 it can be called pseudo-
Hermitian [14].

In real space, the most convenient form for the scalar
product is not obvious. If (11) is transformed directly, the
metric factor w,?l must be replaced by the inverse of the
Hamiltonian operator, implying a nonlocal integrand [6].
Equation (13) transformed to real space is

(D,|¥)) = f &dr ®CV*(r,0) - W (r,7), (16)

as can be verified by substitution of (7) and integration over
d*r to give 5’ (k—k') and then (13). The integrand of (16) is

PHYSICAL REVIEW A 78, 012111 (2008)

local, making it a useful form of the scalar product.

It can be seen by inspection of Egs. (11)-(16) that the
scalar product is unaffected by the change of metric from
(11) to (12), and is invariant under the similarity transforma-
tions between the AE and LP forms of the wave function and
under the unitary transformation between r space and k
space. It is also invariant under the unitary transformations
exp(—iSkx) to x #0 bases. The AE form of the wave func-
tion is preferable in most applications, since the relationship
of the LP wave function to matter source terms is nonlocal
[15], but the choice is a matter of convenience.

IV. PHOTON NUMBER AMPLITUDE

The probability amplitude for a measured result is the
amplitude for a transition from the photon state described by
¢,(K) to a final state that is an eigenvector of the operators
representing the experiment. For a measurement of momen-
tum 7k and polarization efﬁ(), this final state is described by
dy1(k')=08, ,exp(-ioy) 8 (k' —k). Substitution in (14) gives
the probability amplitude c,(K)exp(ioy), where the factor
exp(ioy) rotates the polarization about k by —y. The helicity
is an invariant and a Lorentz transformation just changes y
[7], so the probability to detect a photon with definite helicity
and wave vector is invariant. For a measurement of the linear
polarization e%), given by (4), the momentum eigenvectors
are  d,(k')=exp(-iox)&(k’-K)/\2 and d,(k")=i(-1)"
Xexp(—ioy) & (k'—k)/\2 for j=1 and 2, respectively, so
(14) gives the probability amplitude to detect a photon with
wave vector k and this polarization direction as

cralkoy) = \,ia[cmk)exp(ix) + e (Wexp(= ix)].

cralko)) = \%[cl(k)ew(ix) — e (exp=iy)]. (17)

If x=0 the measured polarization directions are 6 and é&, and
cg) and cg, are the amplitudes for transverse magnetic and
transverse electric modes, respectively [16]. The probability
density is the absolute valued squared, so the probability to
detect a photon with definite helicity is y independent, but a
linear polarization measurement is sensitive to phase. For
c,cexp(—ioy’), cgy*cos Ay and cp,osin Ay, where Ay
=x' —x is the polarization angle of the photon relative to the
polarization measured by the apparatus.

The physical states with circular polarization efﬁ() local-
ized at position r at fixed time ¢ have the k-space amplitudes

exp(—iox —iK -1+ iw)
(27T)3/2

dg.r(k,r,t,)()= 50./4,. (18)

This is the probability amplitude for a position eigenvector if
the phase y — y—oawyt in (1). The amplitude for a photon in
state ¢,(k) to make a transition to this state is given by
substitution of (18) into (14) as
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exp(iox + ik - r — iwt)

(277. 3/2

colr,t) = J &k co(k).  (19)
It equals the inverse Fourier transform of c¢ (k)exp(ioy
—iﬁ)kl).

As a consistency check, consider a photon with polariza-
tion efﬁ() localized at r' at time ¢'. The probability amplitude
for this state is c,(k)=d (k,r’,t',x) and (19) can be inte-
grated to give the number amplitude c,(r,7)=6, ,&(r-r’)
if r=¢', that is, if localization and measurement are seen as
simultaneous. All K’s are included with equal weight in (18),
and exact localization, which is limited by the Hegerfeldt
theorem [17], is possible only because of interference effects
between the converging and the diverging waves. Equation
(18) describes a situation where there is no physical detector
at r, so absorption is followed immediately by reemission.

V. CONCLUSION

The most widely accepted photon wave function in the
current literature is the Glauber photodetection amplitude
[18] E$)(r,1)=(0[E(r,7)|¥), where E(r,7) is the Heisenberg
picture (HP) electric field operator and E(f) is proportional to
W72 given by (7). This can be combined with W2 to
give a scalar product with a local integrand and a complete
description of photon quantum mechanics. Since the scalar
product is invariant under unitary and similarity transforma-
tions and the prediction of the experimental results requires
only the scalar product, the choice of wave function can be
based on convenience. If desired, the remaining fields
DW=gE®+P®, H®, and B®=uHY+M®™ can be de-
fined similarly [4,19], where |0) is the matter-field ground
state and P and M create and destroy matter excitations.
Since the HP field operators satisfy classical dynamical equa-
tions, the equations satisfied by these positive frequency
fields are identical in form to Maxwell’s equations and de-
scribe the dynamics of the one-polariton state.

Evaluation of the photon number amplitude (19) is
straightforward since it just requires integration of the scalar
QED probability amplitude. Polarization unit vectors as a
function of k can be selected for convenience, for example,
x=—¢ gives ef;¢)(ki)=()2+i0§)/\s’§ for a paraxial beam
propagating parallel to Z. The number amplitude itself has
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intrinsic physical significance. It is the number amplitude
that, after Schmidt diagonalization, was used as a photon
wave function by Chan, Law, and Eberly [21]. Also, the
number amplitude is proportional to E(f) to a good approxi-
mation. The positive frequency electric field of a localized
photon state drops off as r~"/2, where r is the distance from
the point of photon localization [20]. Thus the photon num-
ber density, equal to the absolute square of (19), is an excel-
lent approximation to the Glauber photodetection probability,
proportional to |E(7|2.

The number density may prove to be of fundamental im-
portance. Cook pointed out that the photon current density
cannot be made precise within the Glauber theory, so that it
fails to provide a complete description of photon transport
[15]. Calculation of the probability density to detect a photon
as the absolute square of the scalar product of the one-photon
wave function and a position eigenvector using (19) follows
the usual rules of quantum mechanics. There is no such con-
nection between Glauber photodetection theory and the basic
rules of quantum mechanics. It is an ongoing goal of this
author to thoroughly understand the relationship of photon
number density to photon fields, energy density, the interpre-
tation of photon counting experiments, and fundamental is-
sues relating to photon localizability.

In summary, the photon number amplitude in real space
was calculated as the invariant scalar product of a localized
state with definite polarization and the one-photon wave
function. It gives an excellent approximation to the Glauber
photodetection probability, with the advantage that the ortho-
normal position eigenvectors lead to mutually exclusive
probability densities and an integrated probability of unity.
When described in terms of this number amplitude, the lo-
calized basis states combine the orthonormality of the NW
states with the Lorentz invariance of Philips’ localized states
[8,9]. The positive frequency vector potential and electric
field provide a complete description of photon quantum me-
chanics, including interaction with matter. This should make
it possible to test the relevance of the photon number concept
to experiment.
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