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Given a real-valued phase-space function, it is a nontrivial task to determine whether it corresponds to a
Wigner distribution for a physically acceptable quantum state. This topic has been of fundamental interest for
a long time, and in a modern application, it can be related to the problem of entanglement detection for
multimode cases. In this paper, we present a hierarchy of complete conditions for a physically realizable
Wigner distribution. Our derivation is based on the normally ordered expansion, in terms of annihilation and
creation operators, of the quasidensity operator corresponding to the phase-space function in question. As a
by-product, it is shown that the phase-space distributions with elliptical symmetry can be readily diagonalized
in our representation, facilitating the test of physical realizability. We also illustrate how the current formula-
tion can be connected to the detection of bipartite entanglement for continuous variables.
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I. INTRODUCTION

The phase-space formulation of quantum mechanics has
continued to be of great interest ever since its first introduc-
tion by Wigner �1�. Remarkably, Moyal further elaborated on
the so-called Wigner-Weyl correspondence through an at-
tempt to interpret quantum mechanics as a general statistical
dynamics �2�. The phase-space treatment of quantum me-
chanics is particularly interesting in that it provides valuable
insight into the issue of quantum-classical correspondence
�3�. It exhibits both the similarities and the differences be-
tween the quantum and the classical descriptions of the
physical world. Although the original scheme was intended
to shed light on quantum mechanics from a classical perspec-
tive, the inverse problem, i.e., the description of classical
mechanics in Hilbert space from a quantum perspective, has
also attracted much interest �4–8�.

The most prominent difference between the quantum and
the classical theories may be characterized by the uncertainty
principle. According to this principle, every classically ad-
missible distribution in phase space is not always allowed by
quantum mechanics. In classical mechanics, any positive-
definite real-valued functions, which may be interpreted as
joint-probability densities for having definite values of both
the position and the momentum, are possible in phase space.
On the other hand, in quantum mechanics, due to the canoni-
cal commutation relation �x̂ , p̂�= i�, the uncertainty relation
�x�p�

�
2 must be at least satisfied by the distributions.

However, it is also known that the single uncertainty con-
dition �x�p�

�
2 alone does not guarantee that the phase-

space function corresponds to a quantum mechanically ac-
ceptable state �9–11�. In order to more deeply understand
how the quantum principles are reflected in phase space, it
may be of crucial importance to have complete conditions,
desirably in analytic form, by which to determine whether a
given real-valued phase-space function may describe a legiti-
mate quantum state or not. This actually defines a substan-
tially nontrivial task in contrast to the inverse problem:

When a certain quantum state described by a density opera-
tor � is given, it is now a well-known, standardized proce-
dure to obtain the phase-space distributions corresponding to
various operator orderings �12�. However, even the set of
classical phase-space distributions that are allowed by quan-
tum mechanics is not yet completely identified �13�.

In this paper, we derive a hierarchy of complete condi-
tions for a legitimate Wigner distribution of d degrees of
freedom. It is done by using the correspondence between a
given real-valued function in phase space and a Hermitian
operator �q in Hilbert space, which may be called a
quasidensity operator �6�. In particular, the quasidensity op-
erator �q is constructed as a power-series expansion of anni-
hilation and creation operators in normal ordering. We then
require that the quantum fidelity of the quasidensity operator
with an arbitrary pure state must be non-negative as a suffi-
cient and necessary condition for the positivity of �q. We
compare these conditions with the Kastler–Loupias–Miracle-
Sole �KLM� conditions �14,15�, the only systematic condi-
tions previously known, to the best of our knowledge, and
remark that some practical advantages may arise from our
approach. As a by-product, we show that the quasidensity
operator corresponding to a phase-space distribution with el-
liptical symmetry can always be diagonalized in the general-
ized Fock-state basis, which may facilitate the test of posi-
tivity. We also illustrate the utility of the derived conditions
by examining the Wigner function corresponding to a two-
mode entangled state under partial transpose �16�, which
may be interpreted as an observable criterion for bipartite
entanglement.

This paper is organized as follows. In Sec. II, some pre-
liminary facts are briefly introduced to be used later, and in
Sec. III, the previously known KLM conditions are reviewed
in a heuristic manner. In Sec. IV, a set of complete conditions
for legitimate Wigner distributions is derived based on the
normally ordered expansion of the quasidensity operator, and
the case of elliptical symmetry in phase space is more spe-
cifically considered. These results are further extended par-
ticularly to two-mode cases in Sec. V, and the formalism is
illustrated by an example relating to the problem of detecting
bipartite entanglement. In Sec. VI, the results are summa-
rized with concluding remarks.*hyunchul.nha@qatar.tamu.edu
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Before going to the main part, we need to clarify our
usage of operators in this paper. The annihilation and the
creation operators, a and a†, for one degree of freedom sat-
isfy the well-known boson commutation relation, �a ,a†�=1.
When the annihilation operator is decomposed into real and

imaginary parts as a� X̂+ iŶ, the two Hermitian operators

X̂= a+a†

2 and Ŷ = a−a†

2i , which are known as the quadrature am-
plitudes in quantum optics, satisfy �X ,Y�= i

2 . In other words,
setting �=1, the quadrature amplitudes can be related to the

position and the momentum operators as x̂=�2X̂ and p̂

=�2Ŷ. In this paper, we will take into consideration only the

quadrature operators X̂ and Ŷ and their corresponding values
in phase space, not the canonical operators x̂ and p̂. How-
ever, the translation of the results into terms related to x̂ and
p̂ is rather straightforward by considering the numerical fac-
tor �2.

II. PRELIMINARIES

Let us first consider the case with one degree of freedom.

It is well known that an arbitrary bounded operator F̂ with a

finite Hilbert-Schmidt norm, �F̂�2�Tr�F̂†F̂	��, can be rep-
resented in an integral form as

F̂ =
1

�

 d2	D̂†�	�CF�	� , �1�

where D̂�	��e	a†−	�a is the displacement operator. The

complex-valued function CF�	�=Tr�F̂D̂�	�	 is usually

termed the characteristic function of the operator F̂ �12�. If
we further proceed with the normal-ordered expansion of the
displacement operator using the Baker-Campbell-Hausdorff

relation, D̂�	�=e	a†−	�a=e	a†
e−	�ae−�	�2/2, the operator F̂ can

be cast into the form

F̂ =
1

�
�
m,n

Cmna†man, �2�

where the coefficients Cmn are given by

Cmn �
�− 1�m

m ! n!

 d2		m	�ne−�	�2/2CF�	� . �3�

When the operator F̂ is Hermitian, F̂= F̂†, then the character-
istic function satisfies the property CF

��	�=CF�−	�, accord-
ing to which Cnm=Cmn

� follows. It is also known that the

coefficients Cmn are all finite, bounded as �Cmn�

��m+n�!�F̂�

m!n! ,
and that the normally ordered power series in Eq. �2� con-

verges well to the operator F̂ �12�.
Specifically, when the bounded operator F̂ is a quantum

density operator �̂, the characteristic function C�	�
=Tr��̂D̂�	�	 is used to define the Wigner distribution W���
via a Fourier transform in phase space, i.e.,

W��� =
 d2	e�	�−��	C�	� . �4�

The quantum state of any one-dimensional system can be
thus represented either by the operator �̂ or by the c-number
Wigner function W���, as the correspondence in Eq. �4� is
one-to-one. For a legitimate quantum state, the density op-
erator �̂ is positive semidefinite, i.e., all its eigenvalues are
non-negative, along with the trace condition Tr��̂	=1, which
is our concern in this paper.

Legitimate Wigner distribution. Suppose now that a cer-
tain real-valued function Wt���=Wt��x ,�y� is given to be
tested whether it corresponds to a legitimate quantum state,
or more precisely, a legitimate Wigner distribution. One can
first take its complex Fourier transform to obtain the charac-
teristic function as

Ct�	� =
 d2�e	��−	��Wt��� . �5�

Now, from Eq. �1�, the quasidensity operator �q correspond-
ing to the given Wt��� is constructed as

�̂q =
1

�

 d2	D̂†�	�Ct�	� . �6�

The question at hand is to check if �q is positive semidefinite
with the trace condition Tr��̂q	=1. The trace condition is
rather simple to test, as Tr��̂q	=Ct�0�=d2�Wt���=1, i.e., it
requires that Wt��� is integrated to unity over the entire
phase space. Thus, we will focus only on the positive
semidefiniteness of �̂q throughout this paper.

Note that other types of phase-space distributions can be
treated in a similar way. Suppose one is given a real-valued
function Wt

s���=Wt
s��x ,�y� and asked whether it corre-

sponds to a specific s-parametrized distribution in phase
space �12�. The Wigner distribution corresponds to the case
of s=0, and other important distributions in quantum optics
are the Glauber P function for s=1 and the Q function for
s=−1. One would then calculate the characteristic function
as

Ct�	� = e−s/2�	�2
 d2�e	��−	��Wt
s��� , �7�

to obtain the quasidensity operator in the form of Eq. �6�. In
this paper, we will deal only with the case of s=0, that is, the
Wigner distribution.

III. KLM CONDITIONS

To begin with, let us briefly address the KLM conditions
for the positivity of the quasidensity operator �̂q �17�. If �̂q is

positive semidefinite, the condition Tr� f̂† f̂�q	�0 must be

fulfilled for an arbitrary operator f̂ . Let us particularly take f̂

as a discrete sum of the displacement operators, i.e., f̂

=�i=1
n AiD̂��i�, where Ai and �i are arbitrary complex num-

bers. Then, using the relation
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D̂���D̂�� = D̂�� + �e1/2���−���, �8�

and Tr�D̂���	=��2���, along with Eq. �6�, it follows

Tr� f̂†f �̂q	 =
1

�
�
i,j=1

n

AiAj
�Mij � 0, �9�

where

Mij � e1/2��i�j
�−�i

��j�Ct��i − � j� . �10�

As the inequality Eq. �9� must be fulfilled for arbitrary Ai’s,
every n�n matrix �Mij	 �n=1,2 , . . .� must be positive
semidefinite, which becomes the necessary condition for �̂q
to be positive semidefinite.

According to KLM �14,15�, the converse is also true, i.e.,
the positive semidefiniteness of all matrices �Mij	 becomes
sufficient for that of �̂q. In our heuristic argument, this suf-
ficiency may be seen, with less mathematical rigor, as fol-

lows. As implied by Eq. �1�, an arbitrary operator f̂ can be
expressed as a sum, more precisely an integral, of the dis-
placement operators. Then, following the same procedures as

before, the requirement of Tr� f̂† f̂�q	�0 for every operator f̂
leads to a similar condition to Eq. �9�, where the discrete sum
is only replaced by a continuous integration.

The KLM conditions may be understood as a quantum
version of the Bochner theorem �13,18�. The “classical” Bo-
chner theorem states that every positive-definite function is a
Fourier transform of a positive finite Borel measure. In our
problem, it implies that if the phase-space function is a clas-
sical probability density �Wt����0�, then the matrix �Mij�
�Ct��i−� j�	, instead of the one in Eq. �10�, must be positive
semidefinite. Thus, the only difference between quantum and

classical cases is the additional factor e1/2��i�j
�−�i

�
�j� of Eq. �10�

in quantum cases, which obviously arises due to the commu-
tation relation �a ,a†�=1 through Eq. �8�.

On constructing the n�n matrix �Mij	, one has to show
that Mij �0 for every choice of �i �i=1, . . . ,n� to confirm the
positivity of �̂q. In many cases, the test may thus amount to
the optimization problem involving 2�n−1� real independent
variables corresponding to the complex variables �i−�i+1 �i
=1, . . . ,n−1�, which becomes increasingly hard for a grow-
ing number of n. We will now derive another set of complete
conditions for the positivity of �̂q that can avoid such a prob-
lem. Furthermore, our approach will turn out to make it pos-
sible to directly evaluate the eigenvalues of �̂q rather easily
for the cases of elliptical symmetry in phase space.

IV. COMPLETE CONDITIONS FOR WIGNER FUNCTION

Given the phase-space distribution Wt���, or equivalently,
the characteristic function Ct�	� in Eq. �7�, one may repre-
sent the quasidensity operator in a normally ordered form
given by Eq. �2� as

�̂q =
1

�
�
m,n

Cmna†man. �11�

Here, the coefficients are given by

Cmn �
�− 1�m

m ! n!

 d2		m	�ne−�	�2/2Ct�	� , �12�

or, alternatively in terms of the phase-space function Wt���,
by

Cmn =
2��− 2�m

m ! n!

 d2���m−nS�m,m − n,2���2�Wt���� ,

�13�

where the kernel S is defined by

S�l1,l2,x� � �
k

�k + l1�!
�k + l2� ! k!

�− x�k =
l1!

l2! 1F1�l1 + 1,l2 + 1,− x� .

�14�

�1F1 refers to the hypergeometric function.�
With the identification of the coefficients Cmn for a given

distribution Wt���, the next step is to check whether the
quasidensity operator in Eq. �11� is positive semidefinite.

This can be done using the fact that a Hermitian operator Ĥ

is positive semidefinite if and only if ���Ĥ����0 for every
pure state ����H, where H is the Hilbert space under con-
sideration. Expressing an arbitrary pure state in the Fock-
state basis as ���=�kDk�k� �a†a�k�=k�k��, this condition
reads

����̂q��� = �
k,k�

Dk
�Dk��kk� � 0, �15�

where

�kk� =
1

�
�

m=M

k �k ! k�!

�k − m�!
Cmk�−k+m �16�

�M �max�0,k−k�	�. Therefore, the positive semidefiniteness
of the matrix ��kk�	 becomes the sufficient and necessary
condition for the legitimate Wigner distributions.

As a matter of fact, �kk� is simply the matrix element of
the quasidensity operator in the Fock-state basis, �kk�
= �k��̂q�k��. In this regard, if one directly calculates �kk� from
Eq. �6� using the matrix element of the displacement opera-

tor, �k�D̂†�	��k��=�k�!
k! �−	�k−k�e−�	�2/2Lk�

�k−k����	�2�, where
Lq

�p��x� is an associated Laguerre polynomial �12�, it follows

�kk� =
�− 1�k−k�

�
�k�!

k!

 d2	�	k−k�e−�	�2/2Ct�	�Lk�

�k−k����	�2�� .

�17�

In this paper, instead of Eq. �17�, we are going to deal with
the expression in Eq. �16�, which is more directly associated
with the normal-ordered operator form, Eq. �11�, by way of
the coefficients Cmn. Note that the condition ��kk�	�0 has a
clear physical interpretation as the positivity of quantum fi-
delity of the quasidensity operator with arbitrary pure states.
This is a full generalization of the approach taken by Manko
et al. for a particular example in �9�.

Clearly, the condition ��kk�	�0 does not involve the op-
timization problem in contrast to the KLM conditions. In-
stead, all relevant information is incorporated by evaluating
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the coefficients Cmn of the quasidensity operator �̂q in the
form of Eq. �12� or Eq. �13�. The positive semidefiniteness of
the matrix ��kk�	 can be characterized only in terms of matrix
determinants by Sylvester’s criterion �19�. That is, all princi-
pal minors constructed from the matrix ��kk�	 must be non-
negative for a given distribution Wt��� to represent a physi-
cally realizable quantum state.

Case of elliptical symmetry. Let us now consider the case
in which the distribution function Wt��x ,�y� possesses ellip-
tical symmetry in phase space; more precisely, the value of

Wt depends only on the parameter r�����x�−x�2

a2 +
��y�−y�2

b2 ,
where �x���x cos �−�y sin �, and �y���x sin �+�y cos �.
�a ,b: real constants� In other words, the distribution is cen-
tered at the point �x ,y�, and the major and the minor axes
of the ellipse are rotated by an angle �. The general elliptical
distribution can be transformed to a standard one centered at
the origin with x and y axes as major and minor axes by a
unitary operation as U�̂qU†. Here, U is the displacement op-
erator followed by the phase shift, U�e−i�a†aD�−�. As the
unitary transformation does not change the positivity of the
Hermitian operator, one may focus on the positivity of the
elliptic distribution only in a form of Wt��x ,�y�
=Wt���x

2

a2 +
�y

2

b2 � without loss of generality.
Furthermore, let us now consider a rescaled bosonic op-

erator as a���a
b X̂+ i�b

a Ŷ, where X̂ and Ŷ are the original
quadrature operators �20�. The new operator a� and its con-
jugate a�† obviously define a bosonic mode as the commu-
tation relation �a� ,a�†�=1 holds. The corresponding rescaled
distribution then becomes Wt��x ,�y�=Wt�

1
�ab

����, i.e., it now
possesses the circular symmetry in phase space. In this case,
the quasidensity operator becomes diagonal in the Fock-state
basis, as the coefficients Cmn=0 for m�n in Eq. �12� or in
Eq. �13�. �Note that �a†mam ,a†a�=0 for every integer m.�
When �̂q is expressed as �̂q= 1

��mCmma†mam, the diagonal
terms become �kk= �k��̂q�k�= 1

��m=0
k k!

�k−m�!Cmm, which of
course correspond to the eigenvalues of �̂q. The test of posi-
tivity of �̂q thus becomes relatively easy for the elliptical
distributions using our method.

As an example, let us consider the distribution introduced
by Manko et al. in �9�, which is obtained by rescaling the
initial Wigner distribution as �x→	x�x and �y→	y�y.
Manko et al. particularly showed that for 	x=	y =	, the un-
certainty relation �x�p�

�
2 is fulfilled with the condition 	


1, and that the original Wigner distribution for the Fock
state �1�, however, becomes unphysical for very small 	.

In fact, using our method, one can easily check that the
rescaled Wigner distributions become unphysical for any val-
ues of 	�1. The deformed characteristic function for �1�
reads

C��� = �1 − � �

	
�2�e−1/2��/	�2, �18�

where 	��	x	y. Then, the coefficients in Eq. �12� are ob-
tained as

Cmm =
�− 1�m�

m ! �1 + 	2�� 2	2

1 + 	2�m+1

�	2 − 1 − 2m� , �19�

and the eigenvalues of the quasidensity operator given by

�kk =
2	2

�1 + 	2�3�1 − 	2

1 + 	2�k−1

�4k	2 − �1 − 	2�2� , �20�

where k=0,1 ,2 , . . .. With 	�1, the eigenvalue �00 always
becomes negative. On the other hand, with 	�1, the eigen-
values �kk always become negative for k�

�	2−1�2

4	2 . Therefore,
only the trivial rescaling, 	=1, preserves the physical realiz-
ability of the Wigner distributions.

V. MULTIMODE CASES

It is rather straightforward to extend the previous results
to cases of d degrees of freedom. Specifically, for two-mode
cases, the quasidensity operator may be represented as

�̂q =
1

�2�
mn

Cm1n1m2n2
a1

†m1a1
n1a2

†m2a2
n2, �21�

where

Cm1n1m2n2
� �

i=1,2
� �− 1�mi

mi ! ni!
�
 �

i=1,2
�d2	i	i

mi	i
�nie−1/2�	i�

2
�

�Ct�	1,	2� . �22�

The characteristic function Ct�	1 ,	2� in Eq. �22� can be ob-
tained in terms of the two-mode phase-space distribution
Wt��1 ,�2� as

Ct�	1,	2� =
 �
i=1,2

�d2�ie
	i�i

�−	i
��i�Wt��1,�2� , �23�

which leads to an alternative expression for Cm1n1m2n2
as

Cm1n1m2n2
= �

i=1,2
�2��− 2�mi

mi ! ni!
�

�
 �
i=1,2

�d2�i�i
mi−niS�mi,mi

− ni,2��i�2��Wt��1,�2� , �24�

where the kernel S is defined in Eq. �14�. Taking similar
steps, one obtains the condition for the positive semidefinite-
ness of the quasidensity operator as that of the matrix ��kk�	,
where

�kk� =
1

�2 �
m1=M1

k1

�
m2=M2

k2 � �k1 ! k1� ! k2 ! k2�!

�k1 − m1� ! �k2 − m2�!
Cm1,k1�−k1+m1,m2,k2�−k2+m2

� �25�
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�Mi�max�0,ki−ki�	 , i=1,2�. Note that we have used the
collective indices k��k1 ,k2	 and k���k1� ,k2�	 in Eq. �25�. In
constructing the matrix ��kk�	, these indices may be arranged
in the increasing order of the sums k=k1+k2 and k�=k1�+k2�,
respectively. When the sum is fixed, e.g., k=k1+k2, one takes
the order as �k1 ,k2	= �0,k	 , �1,k−1	 , . . . , �k ,0	, and similarly
for �k1� ,k2�	.

Detection of bipartite entanglement. As an illustration, let
us consider the problem of detecting bipartite entanglement
for continuous variables �CVs�. The entanglement criteria so
far known for CVs are all based on the partial transposition
�PT� �21–25�. When a two-mode state � is separable, it is
represented by a form �=�ipi�1

�i�
� �2

�i�, where the state � j
�i�

refers to the subsystem j=1,2. Under PT for the subsystem
2, a separable state still remains positive, therefore it de-
scribes a certain physical state �16�.

In our formalism, for a given two-mode entangled state
with the Wigner distribution Wt��1 ,�2�, one can take the
partially transposed distribution, Wt��1 ,�2

�� �21,25�. If the
state becomes negative under PT, then the distribution
Wt��1 ,�2

�� must violate at least one of the non-negative con-
ditions for the matrix ��kk�	, which demonstrates the pres-
ence of entanglement. Note that the coefficients Cm1n1m2n2

PT for
the partially transposed distribution are given by the original
coefficients as Cm1n1m2n2

PT =Cm1n1n2m2
through Eqs. �22� and

�23�.
For instance, let us consider the two-mode entangled state

���=��00�+�11�. The determinant of the 3�3 matrix
��kk�	 for the partial-transpose distribution is obtained in
terms of the original coefficients Cm1n1m2n2

for the state ���
as

1

�2��C0000 C0010 C0100

C0001 C0000 + C0011 C0101

C1000 C1010 C0000 + C1100
��

= �����2 0 0

0 0 ��

0 �� 0
�� � 0, �26�

which is negative for any nonzero values of � and .
The above inequality in Eq. �26� implies that by measur-

ing several coefficients of Cm1n1n2m2
for a given two-mode

state, one can verify bipartite entanglement. To experimen-
tally obtain those values, however, it seems that one must
construct first the two-mode Wigner distribution via the ho-
modyne tomography �26�, as seen from Eq. �24�. This may
be regarded as a practical disadvantage, although one could
not rule out the possibility of constructing the coefficients
through an alternative, desirably more efficient experimental
method. On the other hand, there is also a certain advantage

in our formulation regarding entanglement detection. Since
we formulated the complete conditions for Wigner distribu-
tions from the positivity of the quantum fidelity of the
quasidensity operator with respect to pure states in the Fock-
state basis, one can effectively constrain the dimension of the
matrix ��kk�	 to take into account. Specifically, when the
total excitation of the state is bounded by N, one just needs to
construct at most a N��N� matrix, where N�� �N+1��N+2�

2 .
This was actually done for the above example of ���
=��00�+�11�, for which a further reduction of the dimen-
sion of the matrix was possible in Eq. �26�.

VI. SUMMARY AND CONCLUDING REMARKS

In summary, we have derived a set of complete conditions
for a legitimate Wigner distribution of d degrees of freedom,
based on the normally ordered expansion of the quasidensity
operator in terms of annihilation and creation operators. It
was argued that this set may provide a practical advantage
over the previously known KLM conditions. Furthermore, it
was shown that the phase-space distributions with elliptical
symmetry can be rather easily diagonalized in our formalism,
thereby facilitating the test of positivity of the quasidensity
operator. The derivation was specifically extended to two-
mode cases and it was illustrated how the conditions can be
used in detecting bipartite entanglement for CVs, along with
the discussion on its experimental implementation.

In this paper, we formulated the complete conditions for
Wigner distributions using the positivity of quantum fidelity
of the quasidensity operator with arbitrary pure states, par-
ticularly in the Fock-state basis �n�. In one perspective, it
would be worthwhile to pursue this quantum-fidelity-based
approach using generalized basis states �bn� ��n�bn��bn�= I�,
particularly to identify other types of phase-space symmetry
for which a diagonalization rather easily follows. In another
perspective, it was recently proved that the positive semidefi-
niteness of a Hermitian operator is equivalent to the satisfac-
tion of all uncertainty relations �27�. It was further shown
that a separability inequality can be systematically derived
for any given negative PT entangled state. In this respect, it
also seems worthwhile to derive another equivalent set of
conditions for admissible Wigner distributions purely in
terms of uncertainty relations in phase space, which is left
for future work.
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