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The prime number decomposition of a finite-dimensional Hilbert space reflects itself in the representations
that the space accommodates. The representations appear in conjugate pairs for factorization to two relative
prime factors which can be viewed as two distinct degrees freedom. These, Schwinger’s quantum degrees of
freedom, are uniquely related to a von Neumann lattices in the phase space that characterizes the Hilbert space
and specifies the simultaneous definitions of both �modular� positions and �modular� momenta. The area in
phase space for each quantum state in each of these quantum degrees of freedom, is shown to be exactly h,
Planck’s constant.
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I. INTRODUCTION

Studies of finite-dimensional quantum mechanics were
undertaken in the early days of the development of quantum
mechanics by Weyl �1� who showed thereby the connection
of the commutation relation to Schrodinger’s wave equation.
A systematic study of this, finite-dimensional quantum me-
chanics problem, was initiated 30 years later by Schwinger
�2�. His work introduced to the field some of the basic issues
that are under intensive investigations in the most recent lit-
erature. Among these are the relevance to the physics of
finite dimensional quantum mechanics of whether the dimen-
sionality M is a prime number or is made up of product of
distinct primes. In the latter case, which is our main concern
in the present work, Schwinger �2� noted what he termed
“quantum degrees of freedom” �see also in Ref. �3�� which
pertain to the relatively prime number factors of M—these
are given a concrete representation in this paper. He also
considered sets of complete and orthonormal bases that span
the M-dimensional space and which are what he termed of
“maximum degree of incompatibility.” Such vector bases un-
der their modern name of “mutually unbiased bases” �MUB�
�4,5� or “conjugate bases” �6,7� have led, with the recent
developments in our understanding of the foundation of
quantum mechanics, to intensive research in a great variety
of problems where implementations seems to involve finite
dimensions. These include the pioneering studies of von
Neumann lattices and magnetic orbitals on a finite phase
space �8�, quantum measurements �9�, teleportation �10�, and
others. A cogent review is given, e.g., by Vourdas �11�.

The kq representation was introduced by Zak �12,13� in
his study of the continuum �infinite-dimensional space� to
conveniently handle electrons in a periodic potential sub-
jected to an external magnetic field. Zak’s work was based
on Weyl’s �1� unitary displacement operators in both coordi-
nates and momenta which, for some particular choice of the

parameters involve commuting operators whose eigenvalues
may be labeled by both the space position and the momen-
tum of the electron. �No violation of the uncertainty principle
incurs since the values of both the coordinates and momenta
are modular, see Ref. �14�.� The Zak transform formalism
proves of wide use also in signal processing problems �15�
where the corresponding modular variables are frequency
and time. The transform is of considerable theoretical inter-
est in conjunction with it being parametrized by both the
coordinate and momentum. Only recently �16� the conjugate
basis to the kq representation was explicitly given. The finite
dimensional kq representation was formulated in Ref. �17�.
This can be done only for cases wherein the dimensionality
M of the Hilbert space is not prime �17–19,23�. For extended
dimensionality �i.e., M→��, already at the very early stages
of the development of quantum mechanics von Neumann
�20� suggested a physical way of accounting for states in
phase space by discretizing the phase space with an area of h
�in the units �=1 this equals 2�� for each state. This problem
was studied extensively, e.g., Ref. �21�. Recently it was
shown �22� that on a finite phase plane the kq coordinates
and the sites on a von Neumann lattice are closely related.

In his studies of finite-dimensional quantum mechanics,
Schwinger �2,3� showed that if M, the dimensionality of the
Hilbert space under consideration, is not a prime or a power
of a prime, then states in the space may be viewed as having
“quantum degrees of freedom.” Thus, if M =M1M2 with M1,
M2 relative primes, the state may be considered as account-
ing for two distinct degrees of freedom one of dimension M1
and the other of dimension M2. This mapping of the one
degree of freedom, M-dimensional Hilbert space on a line
�i.e., spanned by �q�, q=1, . . . ,M� onto two �Schwinger’s
“quantum”� degrees of freedom on a torus �spanned by
�q1q2�, q1=1 , . . . ,M1; q2=1 , . . . ,M2� and their conjugate rep-
resentations were introduced earlier �19�. These representa-
tions are reviewed herewith and the equivalence of these
partially localized state �PLS� and states over the von Neu-
mann lattice is established. Thus we show that a “quantum
degree of freedom,” very similar to a proper degree of free-
dom, occupies a phase space area equals to h, Planck’s con-
stant. These states are distinct form the finite dimension
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Zak’s kq representation �13� although when M1, M2 are co
primes both bases are eigenstates of the commuting modular
operators, one pertaining to the position �q� and the other to
the momentum �k�. The latter �i.e., Zak’s� involve Bloch-like
symmetry in one of the variables. The phase relation between
Zak’s representations �kq� and the representations used by us
when both are applicable �i.e., when the factors M1, M2 are
coprimes� is given in the Appendix. The present work uti-
lizes Schwinger’s �2,3� quantum degrees of freedom for
finite-dimensional Hilbert space to consider states with two
quantum degrees of freedom as being labeled by the position
of one and the momentum of the other.

The paper is organized as follows. Sections II and III
outline some previous results and briefly derive the formulae
needed in our later discussion. Section IV contains our main
result, i.e., relating partially localized states �PLS�, the kq
representations states and states on von Neumann’s lattices.
These relations bring to the fore the role of the quantum
degrees of freedom that were introduced by Schwinger �2,3�
and give meaning to the localization in both the coordinates
and momenta in these variables �the price is complete delo-
calization in their conjugate variables� and relate it to states
over the von Neumann lattice. The last section gives the
conclusions and some remarks. The Appendix gives the
phase relation among different representations.

II. MAPPING OF DISCRETE LINE TO DISCRETE TORUS

Schwinger �2� showed that M-dimensional vector spaces
allow the construction of two unitary operators U and V �in
his notation�, which form a complete operator basis. This
means that if an operator commutes with both U and V it is,
necessarily, a multiple of the unit operator. These operators
have a period M, i.e.,

UM = VM = 1, �1�

where M is the smallest integer for which this equality holds.
The eigenvalues of both U and V are distinct: they are the M
roots of unity, i.e., with �x� the eigenfunction of U,

U�q� = ei�2�/M�q�q�, �q + M� = �q�, q = 1, . . . ,M .

The operator V is defined over these eigenvectors as

V�q� = �q − 1� . �2�

Schwinger then showed that the absolute value of the overlap
between any eigenfunction of U �q� and any one of V �k� is a
constant:

��k�q�� =
1

�M
. �3�

Vector bases with this attribute are referred �4� to as mutually
unbiased �MUB� or conjugate vector bases �we use these
terms interchangeably�.

A specific example of the M-dimensional space is the fol-
lowing: consider M points on a line, i.e., consider discretized
and truncated spatial coordinate x and its conjugate momen-
tum p as our M-dimensional space. This may be realized by
imposing boundary conditions on the spatial coordinate x of

the wave functions under study ��x� and on their Fourier
transforms Fp �we take �=1� �13�:

��x + Mc� = ��x�, F	p +
2�

c

 = F�p� .

Here M is an integer—it is the dimensionality of the Hilbert
space, and we term c the “quantization length.” As a conse-
quence of the above boundary conditions we have that the
value of the spatial coordinate x and the value of the momen-
tum p are discrete and finite:

x = sc, s = 1, . . . ,M ; p =
2�

Mc
t, t = 1, . . . ,M .

In this case we may replace the operators x and p by the
unitary operators

��M� = ei�2�/Mc�x, T�c� = eipc. �4�

These operators satisfy the basic commutator relation

��M�T�c� = T�c���M�e−i2�/M . �5�

They exhibit the dimensionality �i.e., periodicity� automati-
cally

���M��M = �T�c��M = 1 �6�

and we may associate Schwinger’s operator U with ��M� and
his V with T�c� �henceforth we take c=1�.

For our analysis where we take M as factorizable: M
=M1 ·M2, it is convenient to represent the number M in
terms of prime numbers Pj

M = �
j=1

N

Pj
nj, Pj � Pi, j � i , �7�

where the nj are integers, and more concisely we denote Pj
nj

by mj, i.e.,

M = �
j=1

N

mj . �8�

We find thus that the greatest common divisor �gcd� among
the mjs is 1:

gcd�mj,mi� = 1, ∀ j � i , �9�

i.e., distinct mi’s are relatively prime. In our study we con-
sider bipartitioning of the product that represents M �Eq. �8��
into two factors

M = M1M2. �10�

Here M1 incorporates one part of the N factors of Eq. �8� and
M2 contains the other part. Our way of bipartitioning implies
that the two numbers M1 and M2 are relatively prime, viz.
gcd�M1 ,M2�=1. In our discussion of the kq representation
�12,17,19� the above was used to show that the number of kq
representations ��M� each with its conjugate, which form a
complete basis can be accommodated in the M-dimensional
space, is simply related to the number of primes N that ap-
pear in M:
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��M� = 2N−1. �11�

�It should be noted that the familiar finite-dimensional Fou-
rier representation is included in this counting.� The mapping
of the M-dimensional, one degree of freedom �a line� to
�fake� two degrees of freedom �a torus� whose dimensions
are M1 and M2 can be accomplished in ��M�−1 ways �the
finite-dimensional Fourier transformation should not be in-
cluded�. We now introduce:

L1 =
M

M1
= M2, L2 =

M

M2
= M1. �12�

This implies that the equation,

q = q1L1 + q2L2 �mod M�, q = 1, . . . ,M,

q1 = 1, . . . ,M1, q2 = 1, . . . ,M2, �13�

has a unique solution q for every pair �q1 ,q2�, with q running
over its whole range of M values. We will now �2,9,11�
modify Eq. �13� to attain this simpler relation among the
solutions. This is obtained by applying the Chinese remain-
der theorem �9� to the solution of the two congruences

q = q1 �mod M1�, q = q2 �mod M2� . �14�

The solution of these is

q = q1N1L1 + q2N2L2 �mod M� , �15�

with

N2 = L2
−1 �mod M2� and N1 = L1

−1 �mod M1� . �16�

For example, with M =15, we have

L1 = 5, L2 = 3 → N1 = N2 = 2. �17�

We have then

ei�2�/M� = ei�2�/M1�N1ei�2�/M2�N2 → ei�2�/M�x

= ei�2�/M1�N1xei�2�/M2�N2x �18�

and

eip = eipN1L1eipN2L2.

Further, we may label

�q� = �q1N1L1 + q2N2L2�, �k� = �k1N1L1 + k2N2L2� .

We have thus that the �complete� operator basis pair may be
replaced by the two pairs �note the removal of Ni from the V
terms� as follows:

��M� = ei2�/Mx → ��M1���M2� = ei2�/M1xei2�/M2x,

T�1� = eip, → , T�L1�T�L2� = eipL1eipL2. �19�

While the basis �q� may be expressed via �q1��q2� with

ei�2�/Mi�x�qi� = ei�2�/Mi�qi�qi�; eipLi�ki� = ei�2�/Mi�ki�ki� .

�20�

Defining

�Mi�x� = 1, x = 0 mode �Mi� = 0 otherwise

allows equating

��q�q1N1L1 + q2N2L2� = �M�q − q1N1L1 − q2N2L2�

= �M1�q − q1��M2�q − q2�

= �q���q1��q2�� �21�

and

��k�k1N1L1 + k2N2L2� = �M�k − k1N1L1 − k2N2L2�

= �M1�k − k1��M2�k − k2�

= �k���k1��k2�� . �22�

The formulas

�q� → �q1��q2�, �k� → ��k1���k2� �23�

with �19� constitutes the transcription of the M-dimensional,
one degree of freedom system to the �Schwinger’s quantum�
two degrees of freedom one of M1 and the other of M2 di-
mensions �M =M1M2� which is our mapping of the
M-dimensional line to a torus. Our numerical subscripts des-
ignates the dimensionality; thus, e.g., �q1� refers to the spatial
coordinate with q1=1 ,2 , . . . ,M1.

We shall now discuss briefly some attributes of what is
termed �19� the �q1��q2� representation �representation hence-
forth�. The conjugate basis viz �k1��k2� may be evaluated di-
rectly via the result

�q�k� =
ei�qk2�/M�

�M

to give

�q1��q2��k1��k2� =
ei�q1k1L1N1+q2k2L2N2�2�/M

�M
�24�

and, by direct evaluation

�qi�ki� =
ei�2�/Mi�Niqiki

�Mi

i = 1,2. �25�

Within the description in terms of two �quantum� degrees of
freedom �QDF�. For example, when accounting for �q� via
�q1��q2� �see Eq. �23�� we may construct eigenfunctions the
above operators by Fourier transformation in either one of
the variables �we show in the Appendix that we need not
differentiate between the two forms�

�q1,k2;� = �q1��k2� =
1

�M2
�q2

ei�2�/M2�k2q2N2�q1��q2�,

=
1

�M1
�k1

e−i�2�/M1�k1q1N1�k1��k2� . �26�

One can readily check that these are indeed the eigenfunc-
tions of the operators Eq. �A6� with the same eigenvalues. In
this form the state �q1 ,k2;� can be described as partially lo-
calized �PLS� as we have

�q1��q2�q01,k02;� =
�M1�q1 − q01�ei2�/M2k2q2N2

�M2

, �27�

thus it is localized in the q1 variable while completely delo-
calized in the q2 variable. �In Ref. �17� we used eipM2 instead
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of the present T�N1L1�; these two operators have the same
eigenvalues and eigenstates, but enumerated differently.� In
the next section we expand our presentation �22�, to show
that these states are states over the von Neumann lattice.

III. VON NEUMANN LATTICES

We now consider the von Neumann lattice for the
M-dimensional Hilbert space. To this end we first describe
the phase space of our system. The spatial-like coordinates q
are now discrete, q=0,1 , . . . . ,M −1 �this in dimensionless
units: q=cM is the “size” of our Hilbert space� and label the
eigenfunction �q� of the operator exp�i� 2�

M �x�. These label the
abscissa of our phase space. The momentumlike coordinates
are p= 2�

M k; k=0,1 , . . . . ,M −1, the label k of �k�, the eigen-
functions of exp�ip� are used for the ordinate of our phase
space.

We now consider the case wherein M =M1 ,M2,
gcd �M1 ,M2�=1. Since as k runs from 1 to M the momenta
runs from p= 2�

Mc� to 2�
c �, the “distance” �k=1 represents

�p= 2�
Mc�. �In dimensionless units, i.e., c=�=1− p runs from

2�
M to 2� and �p= 2�

M .� The “distance” �q=1 along the ab-
scissa is, obviously, c �1 in dimensionless units�. In this way
we see that each “point” marked on our phase space by �q, k�
may be viewed as representing an “area” �q�k= 2�

M .
Our aim in this section is to show that �q1 ,k2� states, i.e.,

the eigenfunctions of

ei�2�/M1x�ei�pM1�

as given above, Eq. �A6� have the attractive physical prop-
erties of being states over the von Neumann lattice, a term
that will also defined herewith. A von Neumann lattice in this
phase space are the M points whose coordinates are

q = nM1, k = mM2, n = 0,1,2, . . . ,M2 − 1,

m = 0,1,2, . . . ,M1 − 1. �28�

A displaced von Neumann lattice are the M points—here the
points are defined mode �M�.

q = q01 + nM1, n,k2 = 0,1,2, . . . ,M2 − 1,

k = k02 + mM2, m,q01 = 0,1,2, . . . ,M1 − 1. �29�

We now define a “state over a von Neumann lattice” to be
the state whose density matrix representative 	 is given by

��q�	�k�� =
1

�M
on a lattice point,

= 0 otherwise. �30�

�This requirement implies that only M out of the M2 matrix
elements are nonvanishing.� It is easily verified that the par-
tially localized state �PLS� Eq. �27� with localization coordi-
nates at the origin �q01=k02=0� is such a state �summation
over repeated indices is implied�:

�q�	�k� = �q�q1q2��q1q2������k1k2��k1k2�p�

= ��x − q1N1L1 − q2N2L2�
�M1�q1�

�M2

�M2�k2�
�M1


��p − k1L1N1 − k2L2N2� . �31�

Thus the PLS is a state over a von Neumann lattice. For
example, M =15, M1=3, M2=5, L2=3, N2=2 leads to non-
vanishing matrix elements for

q = q2N2L2 → q = 0,6,12,3,9, k = k1L1 → k = 0,5,10.

We take it as obvious that with each von Neumann lattice we
have its conjugate obtained by interchanging q with k.

To study the case of displaced von Neumann lattices we
consider briefly the PLS with �at least� one coordinate not at
the origin. For example,

�q1q2��� =
�M1�q1 − q10�ei�q2k202�/M2�N2

�M2

, q01, k02 � 0.

�32�

The nonvanishing elements of the density matrix are now the
M points

q = q01N1L1 + q2N2L2, q2 = 0, . . . ,M2 − 1,

k = k1L1N1 + k02L2N2, k1, = 0, . . . M1 − 1. �33�

This is a von Neumann lattice with its origin shifted to
q01N1L1, k02L2. Note that corresponding to PLS �q01,k02� the
nonvanishing terms involve the coordinates of the conjugate
state �k1 ,q2�. This corresponds to a localized state at x say
implies all momentum state equally probable. This state is
orthogonal to the von Neumann state considered above. In-
deed each of the M pairs of coordinates q01,k02 represents a
state over the von Neumann lattice with its origin shifted to
the designated phase space point. These states are easily
shown to be orthogonal. Thus, considering the overlap be-
tween arbitrary such states �summation convention implied�

��1��2� = ��1�q1q2��q1q2��2�

=
�M1�q1 − q01�ei�q2k022�/M2�

�M2



�M1�q1 − q01� �e−i�q2k02� 2�/M2�

�M2

= �M1�q01 − q01� ��M2�k02 − k02� � . �34�

Thus these M states span the space and form a complete
orthonormal basis. We shall show below that these are the
PLS considered above. In closing this section we wish to
emphasize that by construction each von Neumann lattice
point represents an area of 2� in our phase space diagram.
The total number of such points within a rectangle labeled by
�q01,k02� is M. Thus, e.g., for the rectangle labeled by �q01
=0 ,k02=0� includes the phase space coordinates within the
area contained in the rectangle �0, 0�; �M1 ,0�, �0,M2�,
�M1 ,M2�. There are M possible values for �x�	�p� within this
rectangle. Thus the 2� area that contain M points—each
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labels a state over the von Neumann lattice �there are M such
states� each state includes M “points”: one in each
rectangle—this point is discussed further below.

We now show that PLS are kq states, i.e., are the eigen-
functions of

ei�2�/M1x�ei�pM1�

�repeated indices are summed over�:

�q1q2�ei�2�/M1x�ei�pM1���� = ei�2�/M1q1��q1q2�k1k2�ei�2�/M2k2�


�k1k2���

= ei�2�/M1q1�ei�2�/M2k2��q1q2��� .

�35�

We have then that the �k1q2� representation �as well as their
concomitant conjugates, �k2q1��, PLS �at the corresponding
points�, and the states over the von Neumann lattice �shifted
to the corresponding spots�, are one and the same states. �We
note that these states differ from Zak’s �12� states. The latter
are defined regardless whether M1, M2 are co primes or not.�
The completeness and orthogonality of the �k1q2� states as-
sures their validity for the other two. The states over the von
Neumann lattice were shown to occupy precisely an area of
h, Planck’s constant in phase space for the finite-dimensional
case. While the coordinates of the non vanishing density ma-
trix for the states �partially� localized at k02=q01=0 were at
the appropriate von Neumann lattice �as well as their conju-
gates k01=q02=0�. We thereby accounted for the connection
between the q1 ,q2 representations and von Neumann lattices
that were obtained recently �22�.

We now return to the more general case: we consider an
arbitrary pair with partially localized phase points q01, k02.
These, in turn, lead to different marked points in our phase
space-it specifies a lattice point within the rectangles consid-
ered above and may serve as a label for a partially localized
state localized at q01 and having quasimomenta k02. One can
readily verify that this state may be viewed as a state over the
von Neumann lattice where the M points for which the ma-
trix elements

�k�q01, k02��q01, k02�q�

do not vanish are given by

q = q01 + nM1, k = k02 + mM2, n = 0,1,2, . . . ,

M2 − 1, m = 0,1,2, . . . ,M1 − 1. �36�

Thus these states are states over the von Neumann lattice
with the whole lattice origin being shifted to the point
q01,k02.

In closing this section we would like to point out that the
results above are based on the particular choice of labeling,
viz. on having achieved a mapping of the M-dimensional
line geometry �q=1,2 , . . . ,M� to a torus like geometry with
one torus radius M1 dimensional �q1=1 ,2 , . . .M1� and the
other M2-dimensional �q2=1 ,2 , . . . ,M2�. This was shown to
be possible for M =M1M2 with gcd�M1 ,M2�=1.

IV. CONCLUDING REMARKS

In a finite, M-dimensional Hilbert space with M =M1M2
and M1, M2 are co primes, i.e., gcd�M1 ,M2�=1, one may, in
the manner of Schwinger, view the states as made of two
quantum degrees of freedom �QDF�: one of dimensionality
M1 and the other M2. This was utilized to consider the
�q1 ,q2� with q1 being M1, while q2 the M2-dimensional co-
ordinates. We analyzed the two QDF states as eigenfunctions
of the two commuting operators eipM2, ei2�/M2x, which, in the
present context may be viewed as referring to the two QDF.
We showed that the eigenstates, of these operators may be
obtained via Fourier transformation in one of the QDF, e.g.,
�k1 ,q2 ;C� is the Fourier-like transform in one of these QDF
variables �q1 in this example�. �Either of these sets spanning
the M-dimensional space under study.�

Thus the basis �k1 ,q2 ;C� specify k1 as the �modular� mo-
menta of the M1-dimensional QDF and q2 the �modular� po-
sition of the second �mode M2�, variable. �Hence the conju-
gate basis is �k2 ,q1� with analogous meaning for the
subscripted labels.� The M orthogonal basis vectors span the
space, as does the conjugate basis. These states are termed
partially localized states as therein �in the above example�
the second QDF is localized while the first has its momenta
defined. We termed these states partially localized states
�PLS�. We discuss briefly the distinction of these from Zak’s
kq states in the Appendix. In this finite-dimensional quantum
mechanics, one may draw the phase space of the system as a
whole �i.e., M-dimensional� by marking the abscissa by the
eigenvalues of exp�i 2�

M x� by the discrete, positionlike, eigen-
value of the state �q�, �q=0,1 ,2 , . . . ,M −1�, and the ordinate
by eigenvalues of exp�ip� by the momentumlike eigenvalue
of the state �p� �p= 2�

M k ; k=0,1 ,2 , . . . ,M −1�. �Giving
thereby M2 points forming a square, with each point desig-
nating an area of 2�

M .� The von Neumann lattice in this phase
space and pertaining to the factorization M
=M1M2 , gcd�M1 ,M2�=1, is given by the points

q = nM2, k = mM1, n = 0,1, . . . ,M1 − 1,

m = 0,1, . . . ,M2 − 1.

We refer to these points as vn points. Clearly each vn point
designates an area containing M phase space points i.e., it
designates an area of 2�. �Recall that we work in units of
�=1, i.e., the area in more physical units is h, Planck’s con-
stant.� We then defined “states over the von Neumann lat-
tice” as those density matrices whose only non vanishing
matrix elements are

�x�	�k� =
1

�M
, x, p on von Neumann lattice.

Since the total number of von Neumann lattice points is M
and each point occupies and area of 2�

M each von Neumann
state occupies exactly an area of 2� �i.e., an area of h,
Planck’s constant�. We then showed that the state �k1=0 ,q2
=0� �as well as its conjugate state� are states over von Neu-
mann lattice and thus occupy an area of h, Planck’s constant.
This led to the demonstration that concomitant to this state
over the von Neumann lattice each of the other vectors in
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this basis designates a shifted von Neumann lattice—the
shift being by the coordinates of the designated vector. Thus
the vector k1=k01�0, q2=q02�0 is a state over the von
Neumann lattice shifted to �k01�mode M1� ,q02�mode M2��.
Here too the area occupied by each of the M points is 2�

M .
Thus the states over von Neumann lattice are labeled by the
coordinates of one of the QDF and by the momentum of the
other.
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APPENDIX: PHASE RELATION AMONG DIFFERENT
REPRESENTATIONS

Utilizing the general definitions Eqs. �10� and �24� one
obtains directly

��q�q1N1L1 + q2N2L2� = �M�q − q1N1L1 − q2N2L2�

= �M1�q − q1��M2�q − q2�

= �q���q1��q2�� ,

��k�k1N1L1 + k2N2L2� = �M�k − k1N1L1 − k2N2L2�

= �M1�k − k1��M2�k − k2� = �k���k1��k2�� .

�A1�

We also have

�q1� + q2�L2�q1N1L1 + q2N2L2�

= ��q1� − q1N1L1 − �q2 − q2�N2
−1�N2L2�

= �M1�q1� − q1��M2�q1� − q2 + q2�N2
−1� .

The above implies also shift operators as follows:

ei2�/Mx�k� = �k + 1�, eip�q� = �q − 1� ,

ei2�/M1x�k1� = �k1 + M2�, eipL1�q1� = �q1 − M2�

with similar equations for �k2�, �q2�
We now consider the wave functions explicitly Define

�q1k2,C1� 
1

�M1
�k1

e−i2�/M1k1q1N1�k1N1L1 + k2N2L2�

=
1

�M1
�k1

e−i2�/M1k1q1N1�k1��k2� = �q1��k2� .

�A2�

We have by direct calculations that �the eigenvalue indices
are deleted for brevity�,

ei2�/M1x�C1� = ei2�/M1q1�C1�, eipL2�C1� = ei2�/M2k2�C1� .

In similar fashion, define

�q1k2,C2� 
1

�M2
�q2

ei2�/M2k2q2N2�q1N1L1 + q2N2L2� .

�A3�

With

ei2�/M1x�q1k2,C2� = ei2�/M1q1�q1k2,C2� ,

eipL2�C2� = ei2�/M2k2�q1k2,C2� .

Thus �q1k2 ;C1� and �q1k2 ;C2� are eigenfunctions of the com-
plete set of commuting operators for the M-dimensional
space under study. To calculate the �possible� phase differ-
ence between them we evaluate the overlap

�q1k2,C1��q1k2,C2� = �M1�q1� − q1��M2�k2� − k2� . �A4�

This evaluation requires the evaluation of the Fourier trans-
form �k1 �q1�:

�k1�ei�2�/M1�x�q1� = ei�2�/M1�q1�k1�q1� = �k1 − M2�q1� ,

�k1�eipL1�q1� = ei�2�/M1�k1�k1�q1� = �k1�q1 − M2� .

This leads to �with the proper normalization, see Eq. �A2��:

1
�M1

e−i�2�/M1�q1k1N1 = �k1�q1� .

We check this by evaluating �we do not include the normal-
ization for simplicity�

�k�q� = e−i�2�/M�qk = e−i2�/M�q1N1L1+q2N2L2��k1N1L1+k2N2L2�

= e−i�2�/M1�q1k1N1e−i2�/M2q2k2N2 = �k1�q1��k2�q2� . �A5�

The kq representation for finite dimensional were consid-
ered by Zak �12,17� and are defined as the eigenfunctions of
the �commuting� operators

��M1� = ei�2�/M1�x, T�L2� = eipL2, �A6�

which are periodic in one variables and quasiperiodic in the
other. These can be written in terms of �q�, the eigenfunctions
of ��M�=ei�2�/M�x �we label these by E1� as

�q1,k2,E1� 
1

�M2
�
q2

ei�2�/M2�k2q2�q1 + q2L2� . �A7�

In terms of the eigenfunctions of T�L2� these can be ex-
pressed via �the extra label here is E2�

�q1,k2,E2� 
1

�M2
�k1

e−i�2�/M1�k1q1�k2 + k1M2� . �A8�

The variables in these states cannot be considered as refer-
ring to two degrees of freedom. Indeed they are well defined
whether or not M1 and M2 are relative primes �in the latter
case, of course, N1, N2 do not exist�

�q1k2,E1� 
1

�M1
�k1

e−i�2�/M1�k1q1�k2 + k1M2� . �A9�

It is easily shown that

ei�2�/M1�x�q1k2,E1� = ei�2�/M1�q1�q1k2,E1� ,
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eipL2�q1k2,E1� = ei�2�/M2�k2�q1k2,E1� .

Thus this wave function can differ at most by phase from
�q1k2 ;C1�. This phase difference is gotten by evaluation of
the overlap. In the following we suppress the �common� ei-
genvalues indices, e.g., �q1k2 ,C1�→C1�

�C1��E1� =
1

M1
�

k1�,k1

�k1�N1L1 + k2�N2L2�k2 + k1L1�


exp�i
2�

M1
�k1�q1�N1 − k1q1��,

= �M2�k2 − k2���
M1�q1 − q1��e

i�2�/M1�k2q1N1,

The phase difference between �C1� and �C2� may be obtained
by evaluating the overlap between these two wave functions

�C1��C2� =
1

�M
�

k1�,q2

ei�2�/M1�k1�q1�N1


�k1�N1L1¯�q1N1L1¯�ei�2�/M2�k2q2N2.

Inserting

�k1�N1L1¯�q1N1L1¯�

=
1

�M
exp − i� 2�

M1
�k1�q1N1� +

2�

M2
�k2�q2N2�� .

We get

�C1��C2� = �M1�q1 − q1���
M2�k2 − k2��

thus confirming Eq. �A4�. This can be checked by evaluating
the overlap �C2� �E1�: it gives the same result that we got
above for �C1� �E1�. We now consider

�E2� 
1

�M2
�
q2

ei�2�/M2�k2q2�q1 + q2L2� . �A10�

One can check directly that

ei�2�/M1�x�E2� = ei�2�/M1�q1�E2�, eipL2�E2� = ei�2�/M2�k2�E2� .

Thus this function may differ from those above by phase
only. We calculate the overlap to get

�C2��E2� = �M2�k2 − k2���
M1�q1 − q1��e

−i�2�/M2�k2q1N2.

This implies that the phase difference between �E1� and �E2�
is

e−i�2�/M2�k2q1N2e−�2�/M1�k2q1N1.

We now evaluate this overlap directly to confirm this result

�E1��E2� =
1

�M
�

k1�,q2

ei�2�/M1�k1�q1�


�k2� + k1L1�q1 + q2L2�e�2�/M2�k2q2. �A11�

The overlap,

�k2� + k1�L1�q1 + q2L2� =
1

�M
e−i�2�/M��k2�q1+k2�q2L2+k1�q1L1�.

Substituting this into the Eq. �A11� we get

�E1��E2� =
1

M
ei�2�/M�k2�q1�

k1�

ei�2�/M1�k1��q1−q1���
q2

ei2�/M1k1��q1−q1��

= �M1�q1 − q1���
M2�k2 − k2��e

i�2�/M�k2�q1,

thereby confirming the previous anticipation.
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