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The quasilinear development of the modulational instability of a partially coherent wave in a dispersive and
nonlinear medium is analyzed. It is found that the quasilinear diffusion process tends to further stabilize the
instability growth in addition to the stabilizing effect which is due to the partial coherence. In an unstable
situation, the growth of the perturbation causes a slow change of the coherence spectrum such as to increase the
degree of incoherence and eventually saturate the instability. On the other hand, in a stable situation the decay
of the perturbation may cause a reversed quasilinear diffusion of the background distribution, which leads to an
increasing degree of coherence of the background.
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The modulational instability �MI� is a generic feature in
nonlinear wave propagation governed by the nonlinear
Schrödinger equation and is caused by an interplay between
nonlinearity and dispersion or diffraction. Over the years MI
has been investigated in connection with many nonlinear
systems describing the propagation of coherent optical waves
�1�. Only recently, theoretical �2–5� as well as experimental
�6,7� investigations have shown that MI may also take place
for partially coherent optical waves. It was found that the
partially coherent character of the light provides a stabilizing
effect that tends to suppress the MI.

However, as the modulational instability develops it will
ultimately affect the background wave, a problem which has
been investigated in detail for the coherent case, e.g., Ref.
�8�. The self-consistent interaction between the unstable per-
turbation and the background wave in the partially coherent
wave was first approached in �9� and shown to be described
by a quasilinear diffusion equation for the Wigner distribu-
tion function, which characterizes the coherence properties
of the background wave. In fact, this formalism is math-
ematically similar to the phenomena of Landau damping and
growth of electron plasma waves and the concomitant qua-
silinear diffusion of the electron velocity distribution in
plasma physics. In the plasma case, the interaction between a
small �unstable� wave perturbation and the electron velocity
distribution leads to a slow change of the distribution in such
a way as to quench the instability by forming a plateau in the
distribution function in the finite velocity range where the
interaction between the particles and the wave takes place,
i.e., in the range of resonant velocities; see, e.g., Refs.
�10,11�.

In the present work, the quasilinear diffusion equation for
the Wigner distribution function is analyzed in more detail.
The result is found to be a diffusive redistribution of the total
Wigner distribution that tends to counteract the MI by further
degrading the coherence of the partially coherent background
until the growth rate of the MI becomes zero and no further
interaction occurs. In contrast to the resonant interaction in
the plasma case, as described above, the quasilinear dynam-
ics in the Wigner case is nonresonant and involves interac-

tion between the wave and all parts of the Wigner distribu-
tion. This implies that the stabilization of the instability
proceeds by a broadening of the total distribution rather than
the plateau formation in a finite range of the distribution,
which is characteristic of Landau damping of plasma waves.
In the case when the MI is originally stabilized by damping
due to the partial coherence, the redistribution tends to in-
crease the coherence of the background until either the per-
turbation is completely quenched or the damping rate of the
MI goes to zero due to the decreasing width of the incoherent
background spectrum. The present work is an effort to ana-
lyze the dynamics beyond the linear stability analysis of the
modulational instability of partially coherent waves.

We consider one-dimensional �1D� propagation of a par-
tially coherent wave in a medium with an intensity depen-
dent refractive index. For simplicity we concentrate on a
Kerr-type nonlinearity. Assuming that the relaxation time of
the medium response is much longer than the characteristic
time of the statistical wave intensity fluctuations, the evolu-
tion of the wave field, ��x , t�, is determined by the nonlinear
Schrödinger equation �NLS�, cf. �12�,
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�t
+
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2

�2�

�x2 + �����2�� = 0, �1�

where � is the diffraction or dispersion coefficient, � is the
nonlinear coefficient, and the bracket � � denotes statistical
ensemble average.

A number of different approaches have been developed
for analyzing partial coherence in terms of Eq. �1�; for a
summary, see �12�. In the present analysis we will use the
approach based on the Wigner distribution function,
��p ,x , t�, being the Fourier transform of the correlation func-
tion of ��x , t�, i.e.,

��p,x,t� =
1

2�
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��*�x + y/2,t���x − y/2,t��eipydy , �2�

which implies that
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The evolution of the Wigner function is determined by the
Wigner-Moyal equation �3,4�, which is obtained by applying
the Wigner transform to Eq. �1�. This yields
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where the sine operator is formally defined by its series ex-
pansion and the arrows over the derivatives indicate that the
derivatives act to the left and right, respectively. This equa-
tion is significantly simplified in the geometrical optics limit
�also known as the Vlasov limit in plasma physics�, which
corresponds to keeping only the first term in the expansion of
the sine operator, cf. �3�
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��
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= 0. �5�

Analogous equations have been obtained in plasma physics
for describing the self-consistent interaction between plasma
particles and Langmuir waves, cf. �13�. The Vlasov limit
generally provides a good approximation to the Wigner-
Moyal equation when the coherence length of the field is
small compared to the width of the coherent field-intensity
profile, a situation that corresponds to a large degree of in-
coherence.

For the subsequent analysis it is convenient to summarize
the main features of the modulational instability analysis as
given, e.g., in �3�. The background wave is assumed to have
a constant �averaged� intensity, ���0�2�, and its coherence
properties are characterized by the background distribution
function �0�p�, where �−�

+��0�p�dp= ���0�2�. The stability of
this distribution to plane wave perturbations is analyzed by
writing ��p ,x , t�=�0�p�+�1�p�exp�i�kx−�t��, where �1��0.
Inserting this ansatz into Eq. �4� and using Eq. �3�, the fol-
lowing implicit dispersion relation is obtained for the pertur-
bation:

1 +
�

�
�

−�

+� �0�p + k/2� − �0�p − k/2�
k�p − �/�k�

dp = 0, �6�

which in the Vlasov limit corresponding to small k can be
written as

1 +
�

�
�

−�

+� d�0/dp

p − �/�k
dp = 0. �7�

In the case of a Lorentzian distribution function of the form

�0�p� =
�0

2

�

p0

p2 + p0
2 , �8�

where p0
−1 is the correlation length, the dispersion relation

can be evaluated explicitly using either Eq. �6� or �7� with
the result

� = i��k�	1

2
�kc

2 − k2 − p0
 from Eq. �6� ,

� = i��k�	 kc

2
− p0
 from Eq. �7� �small k limit� , �9�

where kc
2=4��0

2 /� is assumed positive, i.e., ��	0. In the
coherent case when p0=0, an instability occurs if �k � 
kc.
This result clearly shows how the partial coherence tends to
suppress the growth rate of the modulational instability.

However, this analysis only describes the initial linear
stage of the instability. As the perturbation grows, it begins to
affect the background distribution, thus changing also its
own growth rate. This phenomenon is well known in plasma
physics where the �linear� theory of the Landau damping and
growth of plasma waves is extended to account for the phe-
nomenon of quasilinear diffusion, cf. �10,11�. Starting from
Eq. �4�, and following the conventional steps in the quasilin-
ear procedure, see, e.g., Refs. �10–13�, an evolution equation
for the Wigner distribution can be derived by expanding the
distribution function and the intensity according to

� = �0�p,t� + 
n=1

�

�n�p,x,t� �10�

and

����2� = ����2�0�t� + 
n=1

�

����2�n�x,t� �11�

where each term with index n is assumed to be of order n in
the small amplitude of the perturbation and the �slow� time
variation indicated in the zero order terms ��0�p , t� and
����2�0�t�� is due to the nonlinear reaction of the instability on
the background. Inserting these expansions into Eq. �4�, the
evolution of the first order perturbation of the Wigner distri-
bution �1 can be written as

��1

�t
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�x
+ 2�����2�1 sin	1

2

��

�x

��

�p

�0 = 0, �12�

where use has been made of the fact that ����2�0 does not
depend on x. An additional equation coupling �0 and �1 is
obtained by taking the spatial average of Eq. �4�, using the
fact that the spatial averages of �n�p ,x , t� and ����2�n�x , t�
vanish since they can be expressed as Fourier integrals with
wave number spectra denoted as �nk and ����2�nk, respec-
tively. The slow time evolution of �0�p , t� can then be shown
to be driven by the perturbations according to the equation

��0

�t
� − 2��

−�

�

����2�1 sin	1

2

��

�x

��

�p

�1dx , �13�

where the right-hand side has been approximated to lowest
nonvanishing order in the perturbations. An explicit expres-
sion for the perturbation �1 can be obtained from the spatial
Fourier transform of Eq. �12�, after noting that the pertur-
bations are linear and have an explicit time dependence
of the form �1k�p ,k , t�=�1k�p ,k�e−i��k�t and
����2�1k�k , t�= ����2�1k�k�e−i��k�t, which yields
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�1k = − i2�
1

�pk − �
����2�1k sin	 ik

2

��

�p

�0, �14�

where �=��k� denotes the frequency of the perturbation and
is determined by the dispersion relation equation �6�. When
this result is inserted into Eq. �13�, using the orthogonality of
the Fourier basis functions and expanding the sine operators
in the Vlasov limit, Eq. �13� is reduced to the diffusion equa-
tion, cf. �9�,

��0

�t
=

�

�p
	D�p,t�

��0

�p

 . �15�

The diffusion constant D�p , t� is given by

D�p,t� = −
i�2

2�
�

−�

+� k2�����2�1k�2

�pk − �
dk , �16�

but is more conveniently written as �using the parity condi-
tion ��k�=−�*�−k��

D�p,t� =
�2

2�
�

−�

+� �k2�����2�1k�2

��pk − �r�2 + �2dk , �17�

where ���r+ i�. Since the diffusion equation is derived in
the small k limit, and the analysis will be restricted to situa-
tions where the wave would be modulationally unstable in
the coherent case, it is clear that ��k� is purely imaginary �cf.
Eq. �9�� and the diffusion is of nonresonant character. This
feature was not analyzed in �9� where the diffusion constant
was evaluated in the classical way assuming a dominating
resonant contribution. Thus, in the present investigation the
quasilinear change in the Wigner distribution function is not
restricted to a flattening of the resonant region, but stabiliza-
tion of the instability will rather occur as a result of a change
involving all parts of the distribution.

The time evolution of the perturbation �1�p , t� is deter-
mined by ��1k /�t=��1k, which implies that the intensity of
the perturbation will, depending on the sign of �, grow or be
damped according to

�����2�1k�t��2 = �����2�1k�0��2 exp	2�
0

t

��k,t��dt�
 . �18�

Finally, to simplify the analysis we assume the spectrum of
the perturbation to be concentrated around a single wave
number, �k, which implies that the diffusion coefficient, Eq.
�17�, has a Lorentzian dependence of p and can be written as

D�p,t� = K

� exp	2�
0

t

�dt�

p2 + p1

2 ; K =
�2

��2 �����2�1k�0��2,

�19�

where �=��k , t� and p1=� / ��k�. The diffusion equation �15�
together with Eqs. �19� and �9� self-consistently determine
the evolution of the quasilinear diffusion process.

In order to proceed with an approximate analysis that
brings out the main physical features of the interaction dy-
namics, we make the analytically simplifying assumption
that the quasilinear diffusion proceeds in such a way as to

approximately preserve the Lorentzian shape of the back-
ground distribution while allowing the parameters of the
Lorentzian to vary in time, i.e.,

�0�p,t� =
�0

2�t�
�

p0�t�
p2 + p0

2�t�
. �20�

The diffusing Lorentzian now involves two parameter func-
tions, �0

2�t� and p0�t�, which can be determined from two
moments obtained by integrating Eq. �15� as it stands and
after multiplication by �0, respectively. The reason for choos-
ing this latter somewhat unusual moment is the fact that the
Lorentzian does not have a finite root mean square �RMS�
width, which rules out the possibility of using the more con-
ventional moment with respect to p2. This approximate ap-
proach, based on a similarity ansatz for the evolution of the
distribution, is inspired by the Goodman moment method,
which has been used for analyzing many types of diffusion
problems, see �14�. We thus have two independent relations
involving �0

2�t� and p0�t�, viz.,

d

dt
�

−�

�

�0dp = 0,

d

dt
�

−�

�

�0
2dp = − 2�

−�

�

D�p,t�	 ��0

�p

2

dp . �21�

The first relation in Eq. �21� implies that �0
2�t�

=�0
2�0�=const. The second relation simplifies considerably

by assuming that p1
2� p2. The variation of p0�t� is then found

to be determined by

p0
4�t� = p0

4�0� + 10K�exp	2�
0

t

��t��dt�
 − 1� . �22�

A modulationally unstable perturbation thus tends to cause a
diffusion and a concomitant broadening of the background
distribution, which increases the width p0�t� and the associ-
ated degree of incoherence of the background, cf. Figs. 1 and
2. According to Eq. �9� this implies that the growth rate of
the instability will decrease until it ultimately becomes zero
and the instability is quenched by the quasilinear diffusion
process. On the other hand, in the stable case when �
0, the
diffusion coefficient becomes negative. This should cause a
narrowing of the coherence spectrum �implying that the
background becomes more coherent�, either until the spectral
energy in the perturbation becomes zero and the diffusion
process stops, or until the damping ceases due to narrowing
of the gain spectrum �decreasing p0�t��. The situation is
analogous to that of quasilinear diffusion of nonresonant
electrons interacting with electrostatic plasma waves �10,11�.

Self-consistent numerical simulations based on Eq. �3�
and the Vlasov equation �5� would involve solving a 3D
nonlinear integrodifferential system of equations and is be-
yond the scope of this paper. However, simulations of the
system �15�, �19�, and �9� were carried out for the case of
�	0 and these verify the qualitative behavior of the quasi-
linear diffusion process obtained from the approximate ap-
proach. Equation �22� does provide a good approximation for
the evolution of the width of the distribution, although it
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tends to overestimate the change in p0�t� for larger times, cf.
Fig. 1. A further comparison was also made for the time
evolution of the total distribution as predicted by the Lorent-
zian similarity ansatz and as obtained numerically, cf. Fig. 2.
The qualitative agreement is seen to be good, although the
evolving non-Lorentzian form of the numerical solution
starts to become significant for larger times.

We emphasize that a behavior, similar to the one predicted
and observed above, was found in �5�, where an experimen-
tal study was made of a continuous wave �CW� light beam
with stochastic phase noise, propagating in a nonlinear Kerr
medium. The change of the coherence properties of the beam
during propagation depended strongly on the sign of disper-
sion. In the modulationally stable case, the optical spectrum
and the coherence properties were essentially unchanged,
whereas in the unstable case of anomalous dispersion, strong
spectral distortion and coherence degradation were observed.

In conclusion, the present analysis has considered the
quasilinear evolution of the modulational instability of a par-

tially coherent CW beam in a dispersive medium with a
Kerr-type nonlinearity. The evolution of the background dis-
tribution is shown to be determined by a quasilinear nonreso-
nant diffusion equation for the corresponding Wigner distri-
bution function, Eq. �15�. The nonresonant character of the
diffusion implies that the interaction occurs between the
wave and the whole distribution—not just a restricted reso-
nant part. An approximate analysis of the solution of the
quasilinear diffusion equation shows that the coherence
properties of the background distribution change in such a
way as to lead to a globally adjusted steady-state distribu-
tion. In the modulationally unstable case, the perturbation
grows and the background distribution broadens until the
increased incoherence stops further growth of the perturba-
tion. In the marginally stable case, the perturbation is
damped while making the background distribution more co-
herent. Two steady-state solutions are possible in this latter
case: either the perturbation is damped out completely or the
attenuation is halted by the decreasing damping rate as the
coherence of the background increases.
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FIG. 1. The variation of the normalized width of the background
distribution (p0�t� / p0�0�) as a function of time—numerically ob-
tained result �fully drawn line� and analytical prediction according
to Eq. �22� �dashed line�. The parameters are chosen as �0

2=100,
p0�0�=3, �k=10−2, kc

2=100, k2=20, and K=150.
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FIG. 2. Comparison of the evolution of the normalized Wigner
distribution function (�0�p , t� /�0�0,0�), as obtained by numerical
simulations �fully drawn line� and by the approximate moment
method �dashed line�, at the normalized times t=0, t=1.25, and t
=10, respectively. Same parameters as in Fig. 1.
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