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Discrete localized structures are found in optical cavities with focusing saturable nonlinearity. Families of
both bright and gray solitons exhibit multistability as they develop internal shelves in the pinning region
around a Maxwell point. Both saturability and discreteness are required for these solitons to be observable, but
they can occur for either zero or finite losses.
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Stationary localized structures in optical cavities contain-
ing a nonlinear material have received much attention due to
their potential applications in optical information processing
and intriguing physical properties �1�. These structures are
commonly referred to as cavity solitons �1�. A rich plethora
of stable cavity solitons have been shown to coexist due to
the formation of snaking bifurcation diagrams in a proximity
of the so-called Maxwell point �pinning region� where coun-
terpropagating fronts connecting bistable homogeneous
states lock one to another and form spatially localized bound
states �2–6�. Recently, opportunities offered by nonlinear
spatially periodic and discrete systems for manipulation by
localized states of light have attracted significant attention.
Models such as discrete nonlinear Schrödinger equations and
various nonlinear equations with periodic potentials have
been shown to support a range of stationary and moving
localized structures, see, e.g., Refs. �7–11�. These studies
have been extended to the models with loss and external
driving or gain, such as occur in optical cavities with embed-
ded photonic crystals and periodic arrays of optical cavities
�12–15�, where stable cavity solitons were found for the
cases of cubic �Kerr� and quadratic nonlinearities.

The purpose of this Rapid Communication is to study
effects of nonlinearity saturation on existence and stability of
discrete cavity solitons. Unlike in the previously studied case
of Kerr nonlinearity some of the solitons exist in the regime
where the linear cavity detuning is not compensated by the
nonlinearity detuning. Surprisingly enough these solutions
even persist into the conservative �zero-dissipation� limit. We
demonstrate that discreteness opens up certain intervals of
parameters around Maxwell points in which stable versions
of these solitons are born in snaking bifurcations. We also
present a coherent explanation of why these families of dis-
crete solitons are expected to exist in a wide class of discrete
systems.

We consider an infinite array of coupled optical cavities
governed by the dimensionless equations

i�tAn + �An −
�

1 + �An�2
An + c�An+1 + An−1 − 2An� = P ,

− � � n � � . �1�

Here An is the complex amplitude of the field in the nth
cavity, c�0 is the coefficient of coupling between the neigh-

boring oscillators, and P is the amplitude of the pump field.
Independence of the pump parameter P from n corresponds
to normal incidence of the spatially homogeneous pump
wave. In general, both � and � can be complex. Nonlinearity
form is typical for a medium of the off-resonant two-level
atoms. The real parts of � and � represent frequency detun-
ing and their imaginary parts account for the linear and non-
linear losses, respectively. We assume that � is real and posi-
tive, which corresponds to a focusing nonlinearity. We allow
either Im �=0 �conservative case� or Im ��0 �lossy case�.

Homogeneous solution An�t�=A satisfies

�� −
�

1 + �A�2�A = P . �2�

The equation above can have either one or three solutions,
with the latter implying bistability between the low-intensity
and high-intensity states. If Im���=0 and ����0 then it is
easy to show that bistability of the homogeneous solutions
occurs for an interval of P values including P=0. If we add
linear losses, then the bistability region starts at a nonzero
pump value. All this is similar to the case of pure cubic
nonlinearity. However, for −� /8���0 bistability occurs
as a direct consequence of the saturation effects, and starts
at a pump value Pmin different from zero, even in the
conservative case: Pmin= ��−� / �1+ �B�2��B, where B

=���+2�+��2+8��� / �−2��. We focus below on the ��0
case, which is strikingly different from the previously stud-
ied focusing Kerr nonlinearity �12,13� exhibiting neither bi-
stability nor localized structures for ��0.

In order for solitons to form on a given homogeneous
background, the background state must be temporally stable.
To find stable homogeneous states we look for the solution of
Eq. �1� in the form An=A+an�t�, where an is small, and seek
solutions in the form an=�+e�t+iqn+�

−
*e�*t−iqn, with stability

being implied by Re����0. After some algebra we find

��q� = − Im��� 	 �r2�A�4 − „Re	� + r + 2c�cos�q� − 1�
…2,

�3�

where r=−� / �1+ �A�2�2. This equation predicts stability of
the lower and upper states of the bistability loop in the range
− �

8 ���0 �see Fig. 1�c��.
We start our analysis of the localized structures from the

simplest, but instructive, conservative case Im���=0. We
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consider the continuum limit c→�, where An+1+An−1−2An
→�x

2A and, without loss of generality, assume A to be real
and satisfying

c�x
2A = −

�F

�A
, F =

�

2
A2 −

�

2
ln�1 + A2� − PA . �4�

This equation describes the motion of a particle with mass c
in the potential F. Figures 1�a� and 1�b� show the potential
for two different values of P and the corresponding phase
portraits of Eq. �4�. The minimum of the potential corre-
sponds to the intermediate state of the bistability curve, lo-
cated between the two maxima, corresponding to the upper
and lower bistable states. There is a critical value of P= PM
�Maxwell point�, such that the heights of the two maxima of
F are the same. At this point a resting front connecting the
bistable states exists in the system. At pump values close to
the Maxwell point, the fronts still exist but they move. For
P� PM, the peak of F corresponding to the upper bistable
state is the lower one. This implies existence of the ho-
moclinic connection to this state, see Fig. 1�a�, correspond-
ing to the gray localized structure. The entire branch of these
structures is shown in Fig. 1�c�. For P� PM, the peak corre-
sponding to the lower bistable state is the lower one, mean-
ing existence of the homoclinic connection to this state, cor-
responding to the bright localized structures, see Figs. 1�b�
and 1�c�. The bright solitons exist between the Maxwell
point, where they can be considered as a superposition of the
two infinitely separated fronts and the right-hand fold point
of the bistability curve, where their profile tends uniformly to
the lower homogeneous state. The situation for the gray soli-
ton is symmetric, but with the left-hand fold point being
involved, see Fig. 1�c�.

Considering a discrete situation we take Eq. �1� with

large, but finite, coupling c. Then we can consider Eq. �1� as
a two-dimensional map with coordinates An and �An+1
−An−1� /2. Upper and lower bistable states correspond to hy-
perbolic �saddle� fixed points of such a map, whereas the
intermediate state is an elliptic fixed point. Now, owing to
the general theory of homoclinic connections to saddle
points in the continuum limit �16�, two fundamental ho-
moclinic trajectories of the map will occur that are exponen-
tially close �as a function of 1 /c� to the solitons found in the
continuum limit. These we identify as being on-site centered
and off-site centered. The on-site solitons have the symmetry
An=A−n where, without loss of generality, we have placed
the maximum intensity at n=0, and the off-site solitons have
the symmetry A−n=An+1. In Fig. 1 gray �red� and black
circles represent the on-site soliton; the off-site ones look
similar. As the coupling is strong, the discrete homoclinic
points follow the separatrix trajectory closely. For weaker
coupling, the divergence of the circles from the continuous
homoclinic orbit becomes bigger. Note in addition that the
Smale-Birkhoff homoclinic theorem �e.g., Ref. �17�� gives
the existence of a homoclinic tangle. This in turn implies
existence of infinitely many bound states of these discrete
solitons. Henceforth we are not considering these bound
states, but rather study bifurcations of initially single-peak
fundamental cavity solitons.

Let us now take an example of bright solitons and deal
with the moderate coupling �c�O�1�� in the case ��0.
Since the discrete homoclinic orbit does not follow the con-
tinuous separatrix trajectory exactly, we find there is a finite
range of parameters with trajectories close to the continuous
heteroclinic orbit, and approaching the upper homogeneous
state before returning to the lower one again. This hetero-
clinic tangle was shown in �18,19� to lead to a snaking bi-
furcation diagram where there is an infinite number of folds
in the continuation of discrete solitons as one approaches the

FIG. 1. �Color online� �a�,�b� The potential and the corresponding phase plane for Eq. �4�. The parameters are �=−0.3, �=10, and P
=3.835 �a�, P=3.95 �b�. The magenta lines �marked by �s�� in the phase planes show the separatrices of �a� the low-intensity and �b� the
high-intensity soliton which indicate where the homoclinic orbits exist. The red and black circles show the numerically found fields of the
discrete on-site solitons for the same parameters but for c=0.5; in that case the vertical axis is �An+1−An−1� /2 and the horizontal axis is An.
Note that there are infinitely many distinct discrete solitons for these fixed pumps. �c� The corresponding bifurcation diagram of homoge-
neous states �green line; with dashes representing instablility, solid stability� together with curves of the bright �black line� and gray �red line�
solitons in the continuum limit c→�.
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limit of the discrete heteroclinic connection �pair of fronts�.
This creates a finite width of P values known as a pinning
region �20� where there is an infinite number of discrete
solitons for the same pump. This is illustrated in Figs. 1�a�
and 1�b�, where the dark and gray �red� circles represent two
different on-site discrete bright solitons at the same pump.
The pinning region is found to become wider as the coupling
strength is decreased. The same arguments apply to the case
of gray solitons. In Fig. 2�a� bifurcation diagrams are de-
picted for moderate coupling c=0.5. The snaking of both the
bright and gray soliton branches around the Maxwell point is
clear. The observation of snaking bifurcation diagrams in the
system under consideration can be anticipated from the work
of Refs. �18,19�, which consider heteroclinic tangles in
Poincaré maps around periodic structures in continuous sys-
tems.

To further analyze the snaking it is helpful to show bifur-
cation diagrams for the norm M =�n��An�2− �A��2�, which is a
discrete analog of the total soliton power taken relative to the
background, see Fig. 2�b�. Solid thick red and blue curves
show the continuation of the on-site gray solitons. The thin-
ner dashed lines show the continuation of the off-site gray
soliton. One can see that the norm M is always negative for
gray solitons. Solid thick magenta and cyan lines correspond
to the on-site bright soliton and the thinner dashed one to the
off-site bright solitons. It is seen that in this case the norm M
is positive. Let us note here that in the black and white ver-
sion of the figure the red and cyan lines look lighter than the
magenta and blue lines. Comparing Fig. 2�a� and Fig. 2�b�
we notice that when the pump approaches the Maxwell point
the field amplitude in the soliton center stops growing, but
the absolute value of M continues to grow as the soliton
width approaches infinity. Every new fold of the bifurcation
curve corresponds to the increase of the soliton width by one
site.

Figure 2 also shows the stability of the discrete solitons.
The stable soliton branches are shown by the blue and cyan
curves, and the unstable ones by the red and magenta colors.
The stability has been studied by numerical calculation of the
spectrum of the system linearized about the soliton and by
direct numerical simulations. The latter have revealed two

distinct instability scenarios. In both cases the soliton breaks
into two moving fronts, which can either move away from
the soliton center and one from another or toward it and
toward each other. In the former case the homogeneous states
nearest to the soliton center fills the cavity. In the latter case
the fronts collide and annihilate and the cavity is filled by the
homogeneous state, which served as the soliton background.
The above scenarios are valid for both bright and gray soli-
tons. Importantly, we found infinitely many stable solitons,
both bright and gray, on-site and off-site, inside the pinning
region. The region of infinite multistability of soliton states
becomes wider in the anticontinuum limit, c→0, clearly in-
dicating that the discreteness is the primary reason behind
the stabilization mechanism. While, in the continuum limit,
these solitons can be considered as unstable bound states of
traveling fronts, the discreteness provides a Peierls-Nabarro
barrier preventing the front motion and thus stabilizing the
solitons in a proximity of the Maxwell point.

Now we briefly discuss the influence of linear losses on
the cavity solitons: Im ��0. The presence of losses means
that we can no longer assume An to be real, and hence the
stationary version of Eq. �1� becomes a four-dimensional
map. This map is not conservative, but crucially is still re-
versible in the sense of Ref. �21�, and so homoclinic trajec-
tories have the same co-dimension as the Hamiltonian case.
We found that small losses do not significantly change the
solutions discussed so far; see the bifurcation diagram in Fig.
2�c�. The complete details will be presented elsewhere, but
perhaps the most important, though not unexpected, observa-
tion is that sufficiently large losses can cause the high-
intensity homogeneous state to have complex multipliers,
i.e., it becomes a saddle focus. This in turn opens the possi-
bility to form stable bound states of localized structures.

We should also mention the possibility of experimental
observations of the localized states of light discussed above.
Recent technology has enabled the creation of resonators
with extremely high Q factor; see, for example, Refs.
�22,23�. The advantage of low losses is obvious in optical
information processing systems, both in terms of quality of
signal and power consumption. We note that previously ob-
served discrete cavity solitons in Kerr media have ��0 in

gray
solitons

FIG. 2. �Color online� �a� The bifurcation diagram for on-site discrete solitons are shown in �a� for gray and bright solitons by the red and
black lines, correspondingly, with the green line representing homogeneous states and the thin magenta line showing the Maxwell point. �b�
The same information depicted as M vs P plane by solid lines. Dashed lines show the bifurcation diagrams for off-site solitons. Red and
magenta colors show the unstable regions of gray and bright solitons, correspondingly. Blue and cyan lines show the stable regions. The
parameters are �=−0.3, �=10, c=0.5. �c� The bifurcation diagram M�P� for the lossy case �=−0.3+0.8i with the coupling strength c
=1.5. The thicker line in the upper insertion shows the part of the bifurcation curve which is stable even in the continuum limit.
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our notation, and any gray solitons require finite dissipation
to be observable �12,13� and indeed can be shown in the
continuum limit to cease to exist when the losses tend to
zero. In contrast, the solitons we have found for ��0 are
fundamentally different and rely on the saturable nonlinear-
ity. Another interesting feature of our results is the infinite
multiplicity of states that have distinct, quantized values of

the energy measure M, for pump values that are tuned to lie
close to the Maxwell point. This property is particularly ap-
pealing for the possible creation of a multiple-state all-
optical information processing system.

This work has been supported by EPSRC Grant No. EP/
D079225/1.
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