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Convergence of all-order many-body methods: Coupled-cluster study for Li
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We present and analyze results of the relativistic coupled-cluster calculation of energies, hyperfine constants,

and dipole matrix elements for the 2s, 2p;,,, and 2p;), states of Li atom. The calculations are complete through
the fourth order of many-body perturbation theory for energies and through the fifth order for matrix elements
and subsume certain chains of diagrams in all orders. A nearly complete many-body calculation allows us to
draw conclusions on the convergence pattern of the coupled-cluster method. Our analysis suggests that the
high-order many-body contributions to energies and matrix elements scale proportionally and provide a quan-
titative ground for semiempirical fits of ab initio matrix elements to experimental energies.
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Many-body perturbation theory (MBPT) is a ubiquitous
tool in atomic and nuclear physics and quantum chemistry.
Yet its order-by-order convergence has been found to fail in
several systems (e.g., [1]). To circumvent this drawback, one
usually employs all-order methods that implicitly sum im-
portant chains of diagrams to all orders of MBPT. Even in
this case, as we illustrate with a nearly complete solution of
the many-body problem for Li, the saturation with respect to
a systematic addition of the all-order chains may reveal a
nonmonotonic convergence. In other words, including in-
creasingly complex (and computationally more expensive)
chains does not necessarily translate into a better accuracy.

While such a convergence pattern may seem discourag-
ing, we find that the high-order many-body contributions to
energies and matrix elements vary proportionally as the all-
order formalism is augmented with increasingly complex
chains of diagrams. We explain this dependence by the simi-
larity of self-energy contributions to both energies and ma-
trix elements and provide a quantitative ground for semi-
empirical fits. This is especially valuable for atomic systems,
where high-accuracy experimental data for energies are
available, while the matrix elements have a relatively poor
accuracy. In parity violation, e.g., the matrix elements of the
weak interaction are not known experimentally at all, while
they need to be computed to a high precision [2,3]. Although
the semiempirical fits have been used before [3,4], the valid-
ity of such scaling has not been rigorously established. Here,
based on a nearly complete many-body calculation, we are
able to address this question.

We solve the many-body problem for the three-electron Li
atom. Here the availability of both high-accuracy variational
Hylleraas and experimental data makes the analysis of
minute high-order MBPT effects plausible. Our calculations
are complete through the fourth order of MBPT for energies
and through the fifth order for matrix elements. Additionally,
certain classes of diagrams are summed to all orders using
the coupled-cluster (CC) method. The previous CC-type for-
mulations for Li [5-7] were complete only through the sec-
ond order for energies and the third order for matrix ele-
ments.

We consider Li as a univalent atom and choose the
lowest-order Hamiltonian to include the relativistic kinetic
energy operator of electrons and their interactions with the
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nucleus and the VV¥~! Dirac-Hartree-Fock (DHF) potential.
The single-particle orbitals and energies g; are found from
the set of the frozen-core DHF equations. Using the DHF
basis, the Hamiltonian reads (up to an energy offset)

! Tt

- giiuNlalajaa]. (1)

H=H0 +G= E SiN[Cl}—ai] +
i 2ijkl

Here H, is the one-electron lowest-order Hamiltonian, G is
the residual Coulomb interaction, a,-T and q; are the creation
and annihilation operators, and N[---] is the normal product
of operators with respect to the core quasivacuum state |0,).
Indices i, j, k, and [ range over all possible single-particle
orbitals, and g;;; are the Coulomb matrix elements.

We are interested in obtaining the exact many-body state
|\I’UT) that is seeded from the lowest-order DHF state [W")
=a,0.),

W)= Q¥ )

where () (yet to be found) is the so-called wave operator [8].
In the CC method, the MBPT diagrams are resummed to all
orders and one introduces the exponential ansatz for the
wave operator

Q=Nexp(K)]=1+K+ %N[K2]+ (3)

where the cluster operator K is expressed in terms of con-
nected diagrams of the wave operator (). The operator K is
decomposed into cluster operators (K), combining n simul-
taneous excitations of core and valence electrons from the
reference state |‘I’l()0)) to all orders of MBPT. For the three-
electron Li, the exact cluster operator reads

K=S.+D.+S,+D,+T,

_ \L+w+l_+u+m, .

the double-headed arrow representing the valence state. S,
and D, (S.,D,) are the valence (core) singles and doubles,
and T, are the valence triples. This exhausts the entire exci-
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FIG. 1. Representative diagrams for various classes of contribu-
tions of the valence triples. The wavy lines represent the residual
Coulomb interaction and those capped with the heavy square rep-
resent a one-body interaction (e.g., hyperfine interaction).

tation basis for the three-electron Li (e.g., there are no core
triples).

In the previous CC work for Li [6], the expansion (4) was
truncated at the S and D excitations and the CC equations
contained only terms linear in the CC amplitudes (SD
method). The full CC study involving S and D excitations
(CCSD method) was carried out in [9]. Our present treatment
is naturally labeled as CCSDVT to emphasize our additional
inclusion of the valence triple excitations. The CCSDT
method, albeit implemented on substantially smaller basis
sets, was used in quantum chemistry [10].

A set of coupled equations for the cluster operators (K),
[(K.),=S,, (K,);=S,, etc.] may be found from the Bloch
equation [8] specialized for univalent systems [11],

(81) - HO) (Kc)n = {QGQ}connecled,n’

(8 + 5E _HO)(K) ={QGQ}connecled ns (5)

where 6E,=(P0|GQ|P") is the valence correlation energy
and Q=1—-|¥ %W is the projection operator.

Below we present a topological structure of the CC equa-
tions for the cluster amplitudes in the CCSDvT approxima-
tion. The resulting equations for the core cluster amplitudes
S, and D, are the same as in the CCSD approximation [12]
and we do not repeat them here. Representative diagrams
involving triples are shown in Fig. 1. The structure of the
valence singles equation is

~[Hy,S,]+ SE,S,=CCSD + S,[T,], (6)

where notation like S,[7,] stands for the effect of the valence
triples (7,,) on the right-hand side of the equation for valence
singles (S,). Here [H,,S,] is a commutator and JE,
=68Eccsp+ OE,[T,]. The equation for the valence doubles
reads

—[Hy.D,]+ SE,D, = CCSD + D,[T,].

Here we discarded the contribution D,[S.® T, ], which stands
for a nonlinear contribution resulting from a product of clus-
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ters S. and T,,. For the valence triples, we obtain
-[Ho,T,1+ 6E,T, =~ T,[D.J+T,[D,]+T,[T,]
+T,[D.® D]+ T,[D.®D,]
+T,[S, ® D],

with the discarded terms of higher order in G. Our approxi-
mation subsumes the entire set of fourth-order diagrams for
OE,. This is a substantial improvement over both the SD and
the CCSD method, which are complete only through the sec-
ond order of MBPT.

Solution of the CCSDvVT equations provides us with the
wave functions and the correlation energies. With the ob-
tained wave functions, we compute the matrix elements. The
relevant CCSDvT formalism is presented in Refs. [12,13]. In
addition to the well-explored SD contributions [6], our for-
malism includes contributions from the valence triples and
also “dressing” of matrix elements. The dressing arises from
resumming nonlinear contributions to the atomic wave func-
tions (2) in expressions for matrix elements and, in particu-
lar, guarantees that the important chain of random-phase-
approximation diagrams is fully recovered in all orders of
MBPT [13]. In addition, we incorporated all contributions
that are quadratic in valence triples. Overall, the calculations
of matrix elements are complete through the fifth order of
MBPT and incorporate certain classes of diagrams summed
to all orders.

Our numerical calculations are based on our previous
CCSDVT code [12], with the addition of the entire set of the
nonlinear CCSD contributions documented in Ref. [9]. The
important new additions are the effects of triples on triples
T,[T,] and the leading-order nonlinear terms on the right-
hand side of the triples equations. We also employed efficient
dual-kinetic-balance basis sets, as described in Ref. [14].
There are 40s, 35pj, 32dj, 27fj, 25gj, ZOhj, and 15ij
positive-energy radial states in the complete basis
(j=€ *=1/2). We truncate the basis at 88% of basis functions
per partial wave, with the resulting total number of radial
spinors of 306. The basis set included partial waves
€=0-6 for the S and D amplitudes and €=0-4 for the T,
amplitudes. Our final results include extrapolation for an in-
finitely large basis. Since the hyperfine interaction occurs at
small distances, due to the uncertainty relation, one has to
keep orbitals with high excitation energies in the basis.

In Tables I and II, we present calculated energies and
magnetic-dipole hyperfine structure (HFS) constants A. In
these tables, the entries are ordered by increasing MBPT
complexity of the calculations. A denotes a difference from
the preceding entry due to extra classes of the diagrams in-
cluded at that level of approximation; e.g., the entry ACCSD
is obtained by taking a difference between the CCSD and the
SD results. We include Breit, QED, and recoil corrections in
our final result. For energies they were adopted from Ref.
[7], for A, from [20], and for A, from [21]. The basis-set
extrapolation was carried out in the conventional manner
(see, e.g., [7]). The error bar is estimated as a half of the
basis-set extrapolation correction. The HFS constants were
computed using finite nucleus and uniform magnetization.

The correlation contributions follow a similar pattern in
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TABLE I. Contributions to removal energies of 2s, 2p,,,, and
2ps, states for 'Li in various approximations (cm™).

25112 2p1n 2p3pn
DHF 43087.3 28232.9 28232.3
ASD 405.8 352.0 351.9
ACCSD -6.8 -5.0 -5.0
A(T,[D,+D_])" 2.8 2.6 2.6
A(T,[T,)) 2.8 3.3 33
A(T,[NL])* -1.1 -1.1 -1.1
corrections’ -3.3(5) -0.7(5) -0.4(5)
Total 43487.5 28584.1 28583.7
Experiment [15] 43487.2 28583.5 28583.2

Other CC works

SD+MBPT-1II [7] 43487.5 28581.9 28581.5
CCSD [16] 43483 28567

aTU[DU+DC]=TU[DU]+TU[DC]’ TU[NL]z TU[DC ® DU]+TU[DC ®DC]
+T,[S,®D,].

Includes basis set, recoil, Breit, and QED corrections. Error bar is
due to basis extrapolation.

all these cases. We illustrate the convergence of the all-order
method in the case of the HFS constant for the ground state
in Fig. 2. Here the experimental uncertainty is about 1 ppb
so that the deviation from the experimental value is an indi-
cation of the theoretical accuracy. The dominant correlations
are recovered at the SD level, which captures all third-order
diagrams and results in a 0.2% theoretical accuracy. The in-
clusion of the CCSD nonlinear (NL) effects and the dressing
leads to a worse agreement with the experiment (-0.4%). An
inclusion of the leading valence triples returns the agreement
to the 0.1% level. The addition of the higher-order 7,[7,]
effect results in an almost perfect agreement with the experi-

TABLE II. Contributions to the magnetic-dipole hyperfine struc-
ture constants A of 2s, 2py,, and 2p;, states for Li [I:z, "
=3.256427(2)] in various approximations (MHz).

25112 2p1p 2p3p
DHF 284.35 32.295 6.457
ASD 117.68 13.622 -9.474
ACCSD -1.79 -0.233 0.176
A dressing -0.40 -0.039 0.031
A(T,[D,+D,]) 1.25 0.218 -0.175
A(T,[T,]) 0.28 0.058 ~0.031
A(T,[NL)]) -0.04 -0.010 0.002
corrections® 0.33(3) 0.046(6) —-0.026(1)
Total 401.66 45.958 -3.041
Experiment 401.75...° 45.914(25)° -3.055(14)¢
Experiment 46.010(25)

“Includes basis set, recoil, Breit, and QED corrections. Error bar is
due to the basis extrapolation.

°401.752 043 3(5), Reference [17].

“Reference [18].

dReference [19].
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FIG. 2. (Color online) Convergence pattern of the CCSDvT
method as a function of MBPT complexity for the HFS constant of
the ground state of Li. Breit, QED, recoil, and basis-set corrections
are included in all theoretical values.

ment. Finally, 7,[NL] diagrams provide only a minor correc-
tion. The final result is complete through the fifth order and
agrees with the experiment at the 0.02% level.

Finally, we present the computed reduced matrix elements
of the electric-dipole operator. We obtain in the CCSDvT
approximation ~ with  the  dressing  (2s,,/|D|2p1)2)
=3.31633(7)|e|ay and (2s,,,||D|2ps/,)=4.6901(1)|e|a. These
values also include basis extrapolation and are complete
through the fifth order of MBPT. The error bars here corre-
spond to half of the basis extrapolation correction. Again, the
convergence with respect to the addition of higher-order dia-
grams follows the same pattern as for the HFS constants
(Fig. 2) and energies. Our result for the oscillator strength,
f=0.746 86, is smaller than the nonrelativistic variational
value [22] by 0.01%. This difference is consistent with the
expected sign and size of relativistic effects.

The accuracy and the completeness of our calculations
allow us to make the following observations.

Accuracy. The CCSDVT method improves the accuracy
over the previous less complete CC-type calculations. For
example, for energies the overall agreement stands at a few
0.1 cm™! while the SD method is accurate to a few cm™.
Similarly, there is an order of magnitude improvement in the
accuracy of computing A,, over that of the SD approxima-
tion. The remaining differences with the experiment are
likely due to higher-order diagrams discarded in our scheme;
these are consistent with the size of the T,[NL] effect.

Convergence. In the absence of general theorems on con-
vergence of MBPT, the present work provides an empirical
proof that the CC method converges for Li. For all the com-
puted properties, the saturation of the method with respect to
adding increasingly complex classes of diagrams is not
monotonic, as illustrated in Fig. 2. The empirical conclusion
for other, more complex, univalent atoms is that both the
nonlinear CCSD effects and the valence triples have to be
treated simultaneously [2].

Correlation between corrections to the energy and to the
matrix elements. There is a strong link between the conver-
gence patterns for energies and for matrix elements. This is
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FIG. 3. (Color online) Variations from the the final CCSDvT
values of A,, and E,, in different approximations, e.g., AXgp
=Xsp—Xccspyr- The variations in matrix elements and energies are
correlated and exhibit linear dependence.

illustrated in Fig. 3: the deviations of the A,, and E,; from
the final CCSDvVT values follow roughly a linear law. The
data for matrix elements do not include dressing. A similar
pattern is observed for other matrix elements as well. Such a
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linear dependence is due to the effect of self-energy (Brueck-
ner) correction. This dominant chain of diagrams is pre-
sented in both matrix elements and energies. For example,
for triple excitations, the corrections S,[7,] and SE,[T,] arise
from the same diagram and the modification of singles due to
triples propagates into the calculation of the matrix element.
Similar scaling ideas were used earlier [3,4] to fit low-order
results to higher orders, but never rigorously tested. As is
apparent from Fig. 3, the linear scaling is only approximate
and can be used in the semiempirical fits only to a certain
accuracy. For example, the self-energy corrections do not
affect “dressing” of matrix elements, which contributes at a
sizable 0.1% level to the A, constant. Neither can it capture
the distinctively different QED corrections to the energies
and matrix elements.
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