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The nonequilibrium evolution of the block entanglement entropy is investigated in the XY chain in a
transverse magnetic field after the Hamiltonian parameters are suddenly changed from and to arbitrary values.
Using Toeplitz matrix representation and multidimensional phase methods, we provide analytic results for large
blocks and for all times, showing explicitly the linear growth in time followed by saturation. The consequences
of these analytic results are discussed and the effects of a finite block length is taken into account numerically.
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The nonequilibrium evolution of extended quantum sys-
tems is one of the most challenging problems of contempo-
rary research in theoretical physics. The subject is in a re-
naissance era after the experimental realization �1� of cold
atomic systems that can evolve out of equilibrium in the
absence of any dissipation and with high degree of tunability
of Hamiltonian parameters. A strongly limiting factor for a
better understanding of these phenomena is the absence of
effective numerical methods to simulate the dynamics of
quantum systems. For methods such as time-dependent den-
sity matrix renormalization group �TDMRG� �2� this lack of
efficiency has been traced back �3� to a too fast increasing of
the entanglement entropy between parts of the whole system
and the impossibility for a classical computer to store and
manipulate such large amounts of quantum information.

This observation partially moved the interest from the
study of local observables to the understanding of the evolu-
tion of the entanglement entropy and in particular to its
growth with time �5,6�. Based on early results from confor-
mal field theory �6,7� and on exact and/or numerical ones for
simple solvable models �6,8� it is widely accepted �3� that
the entanglement entropy grows linearly with time for a so-
called global quench �i.e., when the initial state differs glo-
bally from the ground state and the excess of energy is ex-
tensive�, while at most logarithmically for a local one �i.e.,
when the initial state has only a local difference with the
ground state and so a little excess of energy�. As a conse-
quence a local quench is simulable by means of TDMRG,
while a global one is not.

However, despite this fundamental interest and a large
effort of the community, still analytic results are lacking. In
this Rapid Communication we fill this gap providing the ana-
lytic expression of the entanglement entropy at any time in
the limit of a large block for the XY chain in a transverse
magnetic field described by the Hamiltonian
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where � j
� are the Pauli matrices at the site j. Periodic bound-

ary conditions are always imposed. In spite of its simplicity,
the model shows a rich phase diagram being critical for h
=1 and any � and for �=0 and �h��1, with the two critical
lines belonging to different universality classes. The block

entanglement entropy is defined as the Von Neumann en-
tropy S�=−Tr �� ln ��, where ��=Trn�� � is the reduced den-
sity matrix of the block formed by � contiguous spins. In the
following we will consider the quench with parameters sud-
denly changed at time t=0 from h0 ,�0 to h ,�.

Our main result is that, in the thermodynamic limit N
→� and subsequently in the limit of a large block ��1, the
time dependence of S��t� can be written as an integral over
the momentum variable 	,
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where 
�=d
 /d	 is the derivative of the dispersion relation

2= �h−cos 	�2+�2 sin2 	 and represents the momentum de-
pendent sound velocity �that because of locality has a maxi-
mum we indicate as vM 
max	�
���, cos 	= �hh0−cos 	�h
+h0�+cos2 	+��0 sin2 	� /

0 contains all the quench infor-
mation �9� and H�x�=−��1+x� /2 ln�1+x� /2+ �1−x� /2
�ln�1−x� /2�.

We first prove �2� and then discuss its interpretation and
physical consequences. The readers not interested in the deri-
vation can jump directly to the latter part.

The method. The entanglement entropy can be written
in terms of a block Toeplitz matrix �6,10�. One first intro-
duces Majorana operators ǎ2l−1
��m�l�m
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with �as a straightforward generalization of �6��
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0. The entanglement entropy is given by
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This trace can be numerically evaluated for finite � as done
in Ref. �6� in the Ising case ��=�0=1� for h ,h0�1. Strong
numerical evidence supports the fact that for 2vMt��, S��t�
increases linearly with time for large enough �, but this re-
mained without any proof until now. It has also been argued
that the limit t→� exists and S� saturates to a value propor-
tional to � �opposite the ground-state expectation where there
is at most a logarithmic � dependence �10–12�� that has been
calculated with a generalization of the Szego lemma �6�.
Equation �2� not only provides the proof for a strictly linear
increasing of S��t� for t�� /2vM, but gives also the complete
time dependence.

Proof of Eq. (2). Let us first sketch the strategy to prove
Eq. �2� and give only after the technical details. The matrix
i�� has the same eigenvalues of the ��� Hermitian
Hankel+Toeplitz matrices W�=H� iT, with Hkj =g�+1−k−j
and Tkj = fk−j. In fact, if w� is an eigenvector of W� with
eigenvalue �, then the vector u� with elements u2j−1=wj and
u2j = �w�+1−j is an eigenvector of i�� with eigenvalue ��.
We will show that Tr W2n with n integer satisfies a relation
similar to Eq. �2� with H�x� replaced by the appropriate
power. Since Eq. �4� can be written as an expansion in Tr Wn

with only even powers, this implies Eq. �2�. Another ingre-
dient is that in Eq. �3� for ��1 the term e−i�	 is stationary
being � independent. At this point a multidimensional inte-
gral for Tr W2n �see below� can be calculated with the sta-
tionary phase approximation, which is exact for ��1.

In order to obtain Tr�Wn� /� ,n�N as �→� with a mul-
tidimensional stationary phase approximation �see, e.g.,
�14��, we consider the Toeplitz and the Hankel symbols
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Each multiplication between two H+T matrices involves
sums such as
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where the sign is plus when a Hankel matrix is on the left
and minus otherwise. We can fix the sign to be minus, mul-
tiplying any Hankel symbol to the right by the parity opera-
tor acting as Pf�x�P= f�−x�. When we close the chain with

the trace operator, we cannot change the sign of the first
symbol and if there is an odd number of P, the term does not
contribute to the leading order, because the phase in the in-
tegrand is not stationary anymore. The � dependence on the
phase implies that all 	 j variables are equal along the sta-
tionary curve. Note that all the significant terms have the
same number of Hankel symbols with direct and reversed
signs. In fact, considering a tensor product of n symbols
inside a symmetric integration, it follows �with � we always
mean equal in the limit of large ��

�t + hP��n � �
k

ak
�n,t�h�k

� h−
�k + bk

�n,t�h��k+1�
� h−

�kP , �7�

with h−= PhP, as can be straightforwardly proved by induc-
tion. Using the parity h*�	�=h�−	�, we have that the Hankel
symbol phase e−i�	, which is not proportional to �, can
be dropped. The Toeplitz symbol is odd t�	�=−t�−	� so
the symmetrized product �t�	1�+h�	1�P� � �t�	2�+h�	2�P�
� t�	1�t�	2�+h�	1�h�−	2� leaves no parity terms, and if n is
odd the whole integral asymptotically vanishes. Thus, from
now on, we use the redefined symbols

h�	� = cos 	 − i sin 	 cos 2
t ,

t�	� = sin 	 sin 2
t , �8�

which depend on the initial parameter only through 	. Re-
peated application of the multiplication rule leads to

1
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where C is the hypercubic domain. The product A can be
moved inside the cosine function turning it in a sum, because
of the symmetry of the � domain of integration with respect
to 0. There is a trivial integration along a direction in the �
domain since the integrand depends only on the difference
between the � variables, thus

	
C�−1,1�
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d2n�A �	 d2n−1�����cos�� �
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i=1

j

�i�� .

The permutation symmetry of 	 variables allows one to or-
der the cosine products in B, so that we can introduce a set of
spin variable � j � �−1,1� and bring B to the form
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Interchanging the limit �→� with the integration with
respect to the variable 	
	2n, the remaining
�2n−2�-dimensional integral is easily solved by stationary
phase methods. For each configuration of ��� the Hessian
determinant is 22−4n and the Hessian signature vanishes �this
is the reason why in Eq. �2� oscillations, usually present in
stationary phase calculations, are not present�. On stationary
points we finally have �=2 on time-independent terms and
�=2�1−2 �
� � t /�� otherwise. Of course the limit exists and
the direct computation gives

lim
�→�
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��
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that is, a “Taylor” expansion of Eq. �2�. From Eq. �12� we
also have the time dependence of all Rényi entropies SR
=ln Tr��l

�� / �1−��: it is enough to replace H�cos � with
ln��cos2 

2 ��+ �sin2 
2 ��� / �1−�� in Eq. �2�. In passing, we men-

tion that our exact result obviously satisfies the bound for
S��t� given in Ref. �4�.

Description of the result. In Ref. �6� an interpretation of
the time dependence of S� has been provided in terms of
causality �later generalized to the correlation functions in
�13��. The idea is simple: the initial state has a very high
energy relative to the ground state of the Hamiltonian which
governs the time evolution, and therefore acts as a source of
quasiparticle excitations. Particles emitted from different
points �further apart than the correlation length in the initial
state� are incoherent, but pairs of particles moving to the left
or right from a given point are entangled. Thus S��t� should
just be proportional to the number of coherent particles that
emitted from any point reach one a point in �0,�� and the
other the remainder of the system. Since there is a maximum
speed for these excitations vM, this implies the linear growth
for 2vMt�� and saturation for very large times.

However, only in the conformal case when 
� does not
depend on the momentum because of the linear dispersion
relation, this scenario makes quantitative predictions on the
time evolution, else the rate of production of particles
f�p� , p�� is an unknown function of the Hamiltonian param-
eters both before and after the quench. The comparison of
Eq. �2� with the general one �Eq. �4.2� in �6�� allows one to
identify f�p� , p�� with ��p�− p��H�cos p��. We can also eas-
ily read from our result the value of the ratio

R 


� �SA

�t
�

t�t*

2vM� �SA

��
�

t�t*

=
�−�

� d	�
��H�cos 	�

vM�−�
� d	H�cos 	�

�13�

that results in the average of the absolute value of the speed
of sound on the H�cos 	� distribution. R as a function of the
quench parameters is shown in Fig. 1. It is not analytic at the
quantum critical point h=1, as a trivial consequence of the
nonanalyticity of its building blocks �i.e., 
, 	�. However it
is clear from the inset that such nonanalyticity is so weak
that is unrealistic to say that the out-of-equilibrium behavior
of entanglement entropy is sensitive to the phase transition.

From Eq. �2� we also have the large time corrections to
the asymptotic result. Since H��1�=0 with a logarithmic
singularity, when the zero-velocity mode giving the large t
behavior is at 	= �� �as, e.g., for h�1�, one has that the
first correction is ��4 ln t / t3, whereas when there are zero
velocities not at the border of the Brillouin zone, where H�x�
is finite, the leading correction is ��2 / t.

For t=� only the second term in Eq. �2� contributes to the
entropy that thus is extensive. As already noticed in Ref. �6�
this is the same result at finite large temperature �eff. An
interesting question is whether this effective temperature is
observable independent as found in the conformal case �13�
or instead depends on the operator and so would not be a
well-defined concept. Further checks of this point are man-
datory to avoid speculations.

As a consequence of H�x��H�0�=ln 2, we have S��t�
�� ln 2 for any time, a bound that is just the maximum
entanglement allowed by the dimension of the Hilbert space.
In Ref. �6� it was noticed that the various curves for the
quench from h0=� to any h apparently collapse on a single
curve when rescaling S��t� to S����. From Eq. �2�, this is
exactly true for �h � �1, but only approximately otherwise.
Finally, the t=� result is symmetric under the exchange
�h ,��↔ �h0 ,�0�, because the asymptotic result only depends
on cos 	 that does not distinguish between initial and final
values.
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FIG. 1. �Color online� R defined in Eq. �13� for quenches from
�h0=10, �0=2�. The inset shows the singular behavior in the neigh-
borhood of h=1.
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Finite �. The matrix representation �4� allows for the nu-
merical calculation of S� for finite and relatively large �.
Some results are reported in Fig. 2, where we choose those
quench parameters that make the finite � effects more rel-
evant. Increasing � the results always approach Eq. �2�,
showing unambiguously its correctness, but there are pecu-
liar and interesting finite � effects. The most evident effect is
the oscillation of S��t�. These oscillations have been generi-
cally seen in numerical studies also on more complicated
models �8�, but they are absent in the Ising model for h, h0

�1 �6�: oscillations can only be present when there is a
second local maximum of �
��. The data �also for cases not
shown in the figure� provide strong evidence that the first
nonoscillating correction at order O��0� is positive and time
independent.

In the bottom-left plot in Fig. 2 the most unexpected ef-
fect is shown. For the quench �h0=1 ,�0=0.4�→ �h=0.5,�
=0.2�, it seems that the linear regime of S��t� continues after
t*=� /2vM. However, looking at the derivative �inset� one
realizes that it is not exactly constant, since it slightly bends
at t*. This happens because for this peculiar quench the
maximum velocity mode carries very little information, and
so a stronger nonanalyticity is present at a local maximum of
the velocity smaller than vM. This effect is pronounced every
time that h0��h�0, with �h� , ��� , �h0� , ��0��1, because of the
functional form of 	. This anomalous behavior is important
because it is nowadays common to extract the speed of
propagation of information from t*. Every time this effect is
present, this procedure gives the wrong answer. For example,
we plotted in the inset of Fig. 2 the numerical derivative of
S��t� for �=90 �a value hardly reached in nonequilibrium
simulation�. It is evident that at t* there is no trace of the
nonanalyticity. Relying on these results one would have ob-
tained a value of vM that is almost half of the real one.

Conclusions. The nonequilibrium time evolution of S��t�
for the XY chain seems to encode most of the features that
have been observed numerically in other contexts �8�. It is
then natural to wonder whether slight modifications of Eq.
�2� can be true in more complicated situations and not only
for models mapped to free fermionic theories as the present
one.
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FIG. 2. �Color online� Time evolution of the entanglement en-
tropy S��t� /� for several quenches and �. The straight line is the
leading asymptotic result for large �. The inset in the bottom-left
graph shows the derivative with respect to time of S��t� for �→�
and the numerical derivative for �=90.
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