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Maximally entangling tripartite protocols for Josephson phase qubits

Andrei Galiautdinov™
Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, USA

John M. Martinis’
Department of Physics, University of California, Santa Barbara, California 93106, USA
(Received 15 April 2008; published 9 July 2008)

We introduce a suit of simple entangling protocols for generating tripartite Greenberger-Horne-Zeilinger and
W states in systems with anisotropic exchange interaction g(XX+YY)+gZZ. An interesting example is pro-
vided by macroscopic entanglement in Josephson phase qubits with capacitive (g=0) and inductive (0

<|g/g]<0.1) couplings.
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I. INTRODUCTION

Superconducting circuits with Josephson junctions have
attracted considerable attention as promising candidates for
scalable solid-state quantum computing architectures [1].
The story began in the early 1980s, when Tony Leggett made
a remarkable prediction that under certain experimental con-
ditions the macroscopic variables describing such circuits
could exhibit a characteristically quantum behavior [2]. Sev-
eral years later, such behavior was unambiguously observed
in a series of tunneling experiments by Devoret et al. [3],
Martinis et al. [4], and Clarke er al. [5]. It was eventually
realized that due to their intrinsic anharmonicity, the ease of
manipulation, and relatively long coherence times [6], the
metastable macroscopic quantum states of the junctions
could be used as the states of the qubits. That idea had re-
cently been supported by successful experimental demon-
strations of Rabi oscillations [7], high-fidelity state prepara-
tion and measurement [8-13], and various logic gate
operations [9-12,14]. Further progress in developing a work-
able quantum computer will depend on the architecture’s
ability to generate various multiqubit entangled states that
form the basis for many important information-processing
algorithms [15].

In this paper, we develop several single-step entangling
protocols suitable for generating maximally entangled quan-
tum states in tripartite systems with pairwise coupling
g(XX+YY)+gZZ. We base our approach on the idea that
implementing symmetric states may conveniently be done by
symmetrical control of all the qubits in the system. This
bears a resemblance to approaches routinely used in digital
electronics: while an arbitrary gate (for example, a three-bit
gate) can be made from a collection of NAND gates, it is often
convenient to use more complicated designs with three input
logic gates to make the needed gate faster and/or smaller.

The protocols developed in this paper may be directly
applied to virtually any of the currently known supercon-
ducting qubit architectures described [in the rotating wave
approximation (RWA)] by the Hamiltonians of the form [16]
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HRWA= (1/2)[61 . (;'1 + 62 . (}2+g(0'l0')2(+ 0')10'}2,) +§0—Z]U§ N

(1)

with either g=0 (capacitive coupling case) or 0<|g/g]
<0.1 (inductive coupling case) [17].

Recall that in the RWA, an off-resonance “counter-
rotating” term is ignored in the dynamics. This is typically a
good approximation for experiments with superconducting
qubits because the time to do an operation (~ 10 ns) is much
slower than the inverse time scale of the qubit transition,
~0.1 ns. These time scales give an amplitude error from the
counter-rotating drive of order 1/100 and a probability error
of order 10™*. Most theories for qubit logic gates make this
approximation.

II. THE GREENBERGER-HORNE-ZEILINGER (GHZ)
PROTOCOL

A. Triangular coupling scheme

In the rotating frame (interaction picture) in the absence
of coupling, the system’s Hamiltonian is represented by a
zero matrix, and thus all computational basis states |000>,
[001), [010), [100), |011), |101), |110), |111) have the same
effective energy E.4=0 (no time evolution). The pairwise
coupling Him=(1/2)§)?=1[g(oiof(+l+ajva§+1)+§oéaé+l] par-
tially lifts the degeneracy, which results in the new energy
spectrum,

E=1{38/2,38/2,2¢ - 2/2,2¢ — g/2,— (g + 8/2),— (g + g/2),
- (g+8/2).- (g +8/2)}, 2)
and the corresponding H eigenbasis,
Hanz ® Hw © Hiey = {[000) @ [111)} & {[W) & W)}
e{Vpe|¥/')e¥)e[V,),
A3)

where
[W) = (]100) + [010) + [001))/4/3,
ikag@physast.uga.edu —
"martinis @physics.ucsb.edu W)= (J011) + [101) + |110))/V/3,
1050-2947/2008/78(1)/010305(4) 010305-1 ©2008 The American Physical Society


http://dx.doi.org/10.1103/PhysRevA.78.010305

ANDREI GALIAUTDINOV AND JOHN M. MARTINIS

[,)=(1100) - [010)\2,  [W,"y=(|011) - [101)2,
[W,) = (|100) +010) — 2|001))/ V6,

W,y = (J011) +|101) — 2|110))/6. 4)

Since the coupling does not cause transitions within each
of the degenerate subspaces (nor does it cause transitions
between different such subspaces), it is impossible to gener-
ate the |GHZ)=(]000)+|111))/2 state from the ground state
|000) by direct application of H,,. Instead, we must first
bring the |000) state out of the Hgyy, subspace by, for ex-
ample, subjecting it to a local rotation R; in such a way as to
produce a state |¢) that has both |000) and |111) components.
That is only possible if all one-qubit amplitudes «,...,Bs
in the resulting product state |¢)=R;|000)=(c,|0)
+B1 1) (@3] 0)+ B,]1))(a5]0)+ B5|1)) are chosen to be non-
zero, which means that in the computational basis the state
|y will have eight nonzero components.

We now notice that in the H basis, the three-qubit rota-
tions are block-diagonal,

3)y(2) (1

X,=XPxPx)
—i3se? = \Bes?
[2 .2
—\3cs
- i\r’gscz —V3es? c(1-3s%) is(1-3¢?)

- \e"gcsz - i\e‘gsc2 is(1=3¢%)  ¢(1-3s?)

c is3
~
is® b —iV3sc?

3 -5 - \Escz \Ecs2

s c \J'Ecs2 \Escz
- \f‘gsc2 \Ecs2 c(1=-35%)  s(1-3¢?)
V3es? —\Bse? - s(1-3¢?) ¢(1-3s%)

c s c N
-S§ C -85 C

where X{'=exp(-if0%/2), Yy =exp(-ifo}/2), k=1,2.3,
and c=cos(0/2) and s=sin(0/2). For 6=7/2, the corre-
sponding 4 X4 blocks acting on the Hgyz ® Hyw subspace
are

. T [y
1 i —-iy3 =43
. I -
xow_ Lf 01 i
/2 \’8 _ l.\"3 _ \’,3 -1 _i B
!’_ . /— .
-3 -3 —i -1
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1 - 1 —_— \r’ 3 \C’E

il 1 3B
Y(774/>2<4) == I I . (6)
V8l V3 V3 -1 -1

V3 -3 1 -1

This shows that Y, provides a convenient choice for R;. We
may thus start by generating the so-called uniform superpo-
sition state,

| W unitorm = (l/\f"g)(|000>+ |001) + -+ +[110) + [111))
= Y,5/000) = (1/2)[|GHZ) + V3/2(|W) + [W"))]
S HGHZ 2 HW (7)

The entanglement is then performed by acting on |#)ynitorm
with U;=exp(—iH,,!), thus inducing a phase difference be-
tween the GHZ and W+W' components (this step works
only for g # g, see Sec. IV),

UindY 21000) = (e7/2)[|GHZ) + e™\3/2(|W) + [W'))],

a=(3g2), &=2(g-7)r. (8)

To transform to the desired GHZ state, we first diagonal-
ize the X(;/;“) and Y 5;%4) operators to get the unimodular
spectra,

7\X= {_ ei(ﬂ/4)’_ e—i(7T/4)’e—i(w/4)’ei(77/4)}’

)\Yz {_ e—i(’ﬂ/4)’_ ei(’n’/4),ei(’n’/4),e—i(7r/4)}, (9)
and the eigenbases X={|X)),|X»),|X3).|Xs)} and Y
={|Y1),|Y2),]Y3),|Y4)}, whose vectors are given by the col-

umns of Y% and X34 correspondingly.
Using the X basis, we notice that both states

X)) +\3[x
|GHZ)=| 1> \ | 4>’
2
e 1+3e7° 1-¢ ~
UintYﬂ'/2|000> = T<T|X1> + 2 \’3|X4>> 5 (10)

belong to the same two-dimensional subspace |X,)&® |X,).
Therefore, by performing an additional X, rotation, we can
transform Uy, Y ,,|000) to

X 2 UinY 2|000) = e/ ™| GHZ), (11)

provided the entangling time is set to give |8|=m, or fgyy
=7/2|g-g|. Any other GHZ state (|000)+e'#[111))/y2 can
be made out of the “standard” GHZ state by a Z rotation
applied to one of the qubits, as usual.

The protocol may be compared to controlled-NOT logic
gate implementations [16] that used various sequences
R,UcnotR =¢"™¥eNort,  det(Ucnor)=+1, with (entan-
gling) times tcnoT=T(7/2g), 1<T<1.6. Thus, for g=0,
the entangling operation proposed here will be of same du-
ration as the fastest possible CNOT.

We conclude this section by noting that in its present
form, the GHZ protocol cannot be used to generate the W
state. This can be seen by writing |W)=[V3(|X,)+|X,))
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—(1X3)+|X,))1/+/8, which shows that our XU,,Y sequence
does not result in a W since the final X, rotation cannot

eliminate the |X,) and |X3;) components. Also,
.. . ,f_
W) =[\3G[Y ) = V2) = ([Y3) =i Y ) ]/N8 (12)

and

e 1 3¢710
Y 2pUinlY 72/000) = e T(I|Y1)— |Y2))

—"3(1” (1¥5)- z|Y4>)) / 3.

(13)

and thus no choice of § will work for the YU, Y sequence
either.

B. Linear-coupling scheme

In the case of linear coupling, say 1«2 and 23, the
energy spectrum is given by

Ep=12.3, €V, €M, €7, €7,0,0},
= = \2g7+ (127 - 22, (14)
with eigenbasis
[000y, [111),

(W) = cH[|001) + (¢*/g)[010) +]001)],
W)@ = CH|011) + (€¥/g)[101) + |110)],
W) = cO[|001) + (¢7)/g)[010) +[001)],
W = 011y + (€7/g)[101) + |110)],

[110))/V2,
(15)

W)= (001) - [100)\2, [¥')=(J011) -

where C*) are normalizing constants. We have,

[W) = ADW)HH 1 AC| W)

1 —éV+g o1 €—g

A ——— S - 5
CH B _ - CO) ) _ )

(16)

and similarly for [W’). Our GHZ sequence then leads to the
entangled state

Ui, Y .|000) = (e7/2){|GHZ) + 3/2(e 1 AW [W)®)
+ WO+ 7AW+ [WHODS,
(17)

with a=gr, §*)=(e*)=g)t. Since r>0, in order for the X,
post-rotation to give a GHZ, we must restrict coupling to g
=0 and set the entangling time to gy, =/V2|g|. An alterna-
tive GHZ implementation for superconducting qubit systems
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with capacitive coupling has recently been considered [18].
There, individual qubits were conditionally operated upon
one at a time.

III. THE W PROTOCOL

We now turn to the W protocol. Equation (16) suggests
that control sequence YU;, Y may still give a W, provided a
proper adjustment of i|Y,)—|Y,) and |Y5)—i|Y,) amplitudes is
made by a physically acceptable change of the system’s
Hamiltonian. In the context of Josephson phase qubits, such
modification can be achleved by addmg local Rabi term(s) to

H,,, for instance, H', = =(Q/2)(0}+0?+07) + H,y. The energy

spectrum then becomes
— e 2 ) D) 2 0 D) ) o) on

(18)

ll'll

with

X =V(g-22* (g-9Q+Q2
(19)

=g+g/2*+0Q/2,

The (first two) eigenvectors are
() = C{UI- 1 - (/0)(g - § 7 x*)]GHZ) +\3/2(W)
+ W)}, (20)

with normalizing constants C(+), k=1,2. After some algebra,
we find

Ui Y 12000) = e7//(4+ 2X(+))[(A/Q)(le’(”/4 Y}y =™
X[¥2)) + (BBIQ) e ™]3) — ie ™y,
(21)
where
A=(g-g+Q+xX)(g-g+20-x") -
- X —g+20+xY),

e g-g+Q

B=(g-g+Q+x)(g-g-x")-e"(g-g+Q-x")(g
_geat), )

and a=(eM + )t =—2x"r. It is straightforward to verify
that additional Y, rotation applied to this state produces a
W [see Egs. (9) and (12)],

YUY 10]000) = [= sgn(g — @)l /W),  (23)
O=—(g-g)/2.

IV. ADDENDUM: ISOTROPIC HEISENBERG EXCHANGE
g(XX+YY+ZZ)

Maximally entangling protocols introduced in the previ-
ous sections are singular in the limit g— g, which corre-
sponds to the isotropic Heisenberg exchange interaction.
Even though this limit is not met in superconducting qubits,
for completeness we briefly discuss it here.

It is obvious that when g=g, the uniform state Y ,,|000) is
an eigenstate of the interaction Hamiltonian. Consequently,
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the Heisenberg exchange does not cause transitions out of it,
making the gate time divergent. To perform single-step en-
tanglement, we break the symmetry of the local rotations.
For example, the GHZ state can be generated by

e—ia|GHz> — e—i(ﬂT/Z)o’zze—i(w/S)(O'}l,—ai)

XU, iAo +07-30) e—i(7/2)02|000>’

a=— 77/2, [GHZ= (2/3)(7T/2g) (24)

To generate the W state, we generalize Neeley’s fast imple-
mentation [19] for triangular g(XX+YY) coupling to arbi-
trary coupling g(XX+YY)+gZZ, including the Heisenberg
exchange g=g,

W) = e+i(7ﬂ3)(r§ Uinte_i(W/2)¢3|OOO>’

a=(5g-22)m/18g, tw=(4/9)(7/2g). (25)
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V. CONCLUSION

In summary, we have developed several single-step sym-
metric implementations for generating maximally entangled
tripartite quantum states in systems with anisotropic ex-
change interaction that are directly applicable to supercon-
ducting qubit architectures. In the GHZ case, both triangular
and linear-coupling schemes have been analyzed. In the iso-
tropic limit, our implementations exhibit singularities that
can be removed by breaking the symmetry of the local
pulses.
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