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Transverse entanglement between pairs of photons can be detected through intensity correlation measure-
ments in the near and far fields. We show theoretically and experimentally that at intermediate zones, it is also
possible to detect transverse entanglement performing only intensity correlation measurements. Our results are
applicable to a number of physical systems.
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Detection and quantification of entanglement is essential
for the development of many applications in the field of
quantum information. Several tasks proposed to take advan-
tage of the entanglement properties of quantum systems can
be experimentally tested with photons produced from spon-
taneous parametric down-conversion �SPDC� �1�. This is a
versatile system, since SPDC photons can be prepared in
entangled states of many different degrees of freedom, such
as polarization �2�, time bins �3�, orbital angular momentum
�4�, as well as transverse spatial variables �5,6�. The latter
concerns correlations between the transverse components of
the wave vectors of the signal and idler photons, which have
been extensively studied and utilized in the past decade
�7–9�. They arise due to the localization of the emission of
photon pairs and the phase-matching conditions for the non-
linear interaction between the pump, signal, and idler fields.
Even though the quantum nature of spatial correlations was
already evident �10�, the formal relationship with entangle-
ment was demonstrated only a few years ago �5,6�. Trans-
verse entanglement was detected through the violation of a
nonseparability criterion �11,12�, based on intensity correla-
tion measurements performed in the near and far fields. En-
tanglement in continuous variables �CV� is a rich research
subject, because several quantum-information tasks can be
optimized using high-dimensional Hilbert spaces �13,14�.
SPDC is a natural option for the experimental investigation
of transverse spatial entanglement, which can be present in
other quantum systems �15,16�.

So far, CV transverse entanglement detection has been
based on intensity correlation measurements performed in
the near and in the far field �5,6�. An interesting entangle-
ment “migration” effect was shown recently by Chan et al.
�17�, in which entanglement moves from the real to the
imaginary part of the two-photon wave function during
propagation. In order to be able to detect entanglement in
this case, it would be necessary to perform phase-sensitive
measurements �18�.

In this Rapid Communication, we show theoretically and
experimentally that it is always possible to detect entangle-

ment by performing intensity correlation measurements,
even outside near- and far-field zones. We demonstrate the
connection between the variances of two observables and the
variances of these same observables rotated in phase space.
We encounter the conditions for which entanglement detec-
tion is possible with intensity measurements, and others for
which it is impossible. This connection allows one to circum-
vent problems like the migration of entanglement �17� by
performing proper phase-space rotations on the observables.
Though we consider the particular case of propagation of
transverse correlations of photon pairs, our results can be
used to improve detection of entanglement in other CV sys-
tems.

Our approach is based on the propagation of the signal
and idler fields using the formalism of the fractional fourier
transform �FRFT�, which is parametrized by the angle �
�19�. The FRFT appears naturally in a number of physical
systems and describes rotation in phase space. In particular,
it is possible to completely describe the propagation of a
light field through the order � of the FRFT. For instance, the
field at the source is given by a FRFT of order �=0, and the
usual Fourier transform, associated with Fraunhoffer diffrac-
tion in the far field, is given by an FRFT of order �=� /2.
Free propagation can always be described in terms of an
FRFT operation up to a quadratic phase term, which can be
considered essentially unity in the near and far field �24�. In
Ref. �5�, as is customary, detection of entanglement was ac-
tually performed using lenses to obtain the intensity correla-
tions in the near-field ��=�� and far-field ��=� /2�. Like-
wise, any FRFT of order � can be implemented perfectly
with lenses �19,20�.

We consider the experimental arrangement sketched in
Fig. 1�a�, where signal and idler photons from SPDC are sent
through FRFT systems of order �s and �i, respectively.

Following Ref. �17�, we write the two-photon wave func-
tion at the source in position representation as

��s,�i��� =
1

���−�+�1/2e−��i + �s�
2/4�+

2
e−��i − �s�

2/4�−
2
, �1�

where ��� is the two-photon quantum state produced by
SPDC, �s and �i are appropriate dimensionless position co-*tasca@if.ufrj.br
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ordinates in the source plane, and �+ and �− are independent
functions of experimental parameters. Once the state at the
source is taken to be approximately Gaussian, we only have
to consider one spatial dimension. The two-photon wave
function in wave-vector representation is

�qs,qi��� =��+�−

�
e−�+

2/4�qi + qs�
2
e−�−

2/4�qi − qs�
2
, �2�

where qs and qi are transverse dimensionless wave-vector
components at the source plane.

In order to detect entanglement of the state ���, one must
apply a separability criterion �11,12�. For example, defining
the dimensionless operators �̂�	 �̂i��̂s and q̂�	 q̂i� q̂s
���̂ j , q̂k�= i� j,kj, k=s , i�, the separability criterion of Duan,
Giedke, Cirac, and Zoller �DGCZ� �11� establishes that
if one of the two inequalities ����̂−�2��+ ���q̂+�2��	2 or
����̂+�2��+ ���q̂−�2��	2 is violated, then the state ��� is
nonseparable and therefore is entangled.

Using Eqs. �1� and �2�, we have

����̂+�2�� = �+
2 ,

����̂−�2�� = �−
2 ,

���q̂+�2�� = 1/�+
2 ,

���q̂−�2�� = 1/�−
2 , �3�

and we obtain

����̂−�2�� + ���q̂+�2�� = �−
2 +

1

�+
2 . �4�

The right-hand side �RHS� of Eq. �4� can be smaller than 2
for small �− and large �+. In the case of SPDC, this is readily
achievable, as these two parameters are independent and ex-
perimentally accessible.

The variances in inequality �4� refer to position and mo-
mentum variables of the signal and idler fields in the source
plane, which are related to the intensity distributions in the
near and far field. It is well known that the propagation of a
light field characterized by a FRFT is equivalent to a rotation
of the transverse variables in phase space �19�, given that
these variables are properly adimensionalized �21�. The di-
mensionless operators transform as

�̂ j → �̂�j
= cos � j�̂ j + sin � jq̂j ,

q̂j → q̂�j
= − sin � j�̂ j + cos � jq̂j , �5�

where j=s , i. Therefore, it is possible to write the DGCZ
inequality for rotated transverse variables of the fields, �̂−�
	 �̂�s

− �̂�i
and q̂+�	 q̂�s

+ q̂�i
, in terms of the variables �̂− and

q̂+ at the source �22�,

����̂−��2�� + ���q̂+��2��

=
1 + cos��i + �s�

2
�����̂−�2�� + ���q̂+�2���

+
1 − cos��i + �s�

2
�����̂+�2�� + ���q̂−�2���

−
sin��i + �s�

2
��
�̂+, q̂+�� − 2��̂+��q̂+���

+
sin��i + �s�

2
��
�̂−, q̂−�� − 2��̂−��q̂−���. �6�

Equation �6� shows that whenever �i+�s�mod2��=0, the
sum of variances for the rotated variables coincides with the
sum of variances for the variables at the source. This shows
that, for any propagation of the signal field characterized by
�s, it is possible to find a propagation of the idler field �i, so
that intensity correlation measurement will violate the DGCZ
inequality, in or out of the near and far field. We also note
that Eq. �6� does not depend on the state �Eq. �1�� and is
applicable to any bipartite continuous variable systems.

For states of the form �1�, the last two lines on the RHS of
Eq. �6� are zero. Then considering an entangled state satis-
fying ����̂−�2��+ ���q̂+�2��=�−

2 +1 /�+
2 
2, a necessary con-

dition to detect entanglement is

cos��i + �s� �
S1 + S2 − 4

S1 − S2
	 0, �7�

where we define S1	�+
2 +1 /�−

2 and S2	�−
2 +1 /�+

2. We note
that for cos��i+�s�=0, intensity correlation measurements
never evidence entanglement, regardless of the state.

We have experimentally tested these conditions, using
pairs of twin photons generated by SPDC in a 5-mm-long
lithium iodate crystal �LiIO3� with a cw diode laser oscillat-
ing at 405 nm, as shown in Fig. 1�a�. Optical FRFT systems,
such as the one shown in Fig. 1�b�, were used in each of the
down-converted fields. This system, with z�=2fsin2�� /2�, is
able to implement a FRFT in the range 0
���. For �
	�, we use a series of FRFT systems, respecting the addi-
tivity condition of maintaining f�= f sin � �19� the same for
each. To describe all FRFTs as rotations in the same phase
space, we use dimensionless coordinates �=�k / f��̄ and q
=�f� /kq̄. In our experimental setup, f�=25 /�2 cm. Signal
and idler photons were detected with single-photon counting
modules and 10 nm full width at half-maximum bandwidth
interference filters centered at 810 nm. Horizontal slits
�100 m� were mounted on translation stages and scanned
vertically in steps of 50 m to register the detection position.
In all measurements, the “�” �“�”� correlations were mea-
sured in all cases by scanning the detectors with equal steps
in the same �opposite� directions.

Pump

Crystal
Output planeIntput plane

Z �
Z ��i

�s

a) b)

L

FIG. 1. �Color online� �a� Experimental setup. Boxes on signal
and idler paths represent the optical systems used to perform FRFT
of order �s and �i. �b� The optical lens system used to perform the
FRFT �20�. L is a lens with focal length “f” and z�=2fsin2�� /2�.
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First, we measured the �− and q+ distributions at the
source, using imaging ��s=�i=�� and Fourier transform
��s=�i=� /2� lens configurations �5�. The dimensionless
variances were �2��−�=0.93�0.01 and �2�q+�
=0.073�0.004. Applying the DGCZ inequality, we obtain

���−�2 + ��q+�2 = 1.00 � 0.01 
 2, �8�

indicating that the state is entangled.
Next, we measured the intensity correlations for the signal

and idler fields at intermediate zones. We chose FRFT orders
�s=�i=3� /4, so that cos��s+�i�=0, which does not satisfy
the condition of Eq. �7�. The coincidence counts C��3�/4

i

−�3�/4
s � and C��3�/4

i +�3�/4
s � are plotted in Figs. 2�a� and 2�b�,

respectively. We obtain �2��3�/4
i −�3�/4

s �=13.6443�2 and
�2��3�/4

i +�3�/4
s �=39.1473�2, which clearly indicates that

these intensity correlations cannot be used to violate the
DGCZ inequality. We also tested an intermediate zone con-
figuration following the condition given by Eq. �7�. We used
three additive FRFT lens systems to perform an �s= 5�

4 order
FRFT on the signal field, while maintaining the �i=

3�
4 order

FRFT on the idler field, so that �i+�s=2�. Coincidence
counts C��3�/4

i −�5�/4
s � are plotted in Fig. 2�c�, and the di-

mensionless variance is �2��3�/4
i −�5�/4

s �=0.038�0.005. Co-
incidence counts C�q3�/4

i +q5�/4
s �, plotted in Fig. 2�d�, were

measured performing an inverse Fourier transform of the sig-
nal and idler fields at the planes of FRFT of order 5�

4 and 3�
4 ,

corresponding to FRFT of orders 3�
4 and �

4 , respectively. The
dimensionless variance is �2�q3�/4

i +q5�/4
s �=0.069�0.003.

With our experimental data, we are now able to verify en-
tanglement at intermediate zones.

�2��3�/4
i − �5�/4

s � + �2�q3�/4
i + q5�/4

s � = 0.107 � 0.006 � 2.

�9�

The experimental values obtained in Eqs. �8� and �9� are
not equal as expected from Eq. �6�. This discrepancy can be
explained by the experimental imperfections. It is difficult to
characterize every source of experimental error and their pre-
cise effect on the measurement results. However, we notice
that these imperfections contribute by broadening the coinci-
dence distributions. In this respect, our measurement results
are upper limits to the actual variances. To evaluate the ex-
pected variances, we characterized the initial state �1� at the
source by measuring the width w of the intensity distribution
of the pump beam. The dimensionless variance at the source
is �+

2 = �4w2�k / f�=47�2. The dimensionless variance �−
2 is

given by �−
2 = �k / f��0.455D /K=0.006, where D is the length

of the nonlinear crystal and K is the pump beam wave num-
ber �17�. With these values, we predict a violation of the
DGCZ inequality: ����̂−�2�th+ ���q̂+�2�th=0.027�0.001
2,
which is smaller than both experimental values �8� and �9�.
Therefore, it is clear that without the experimental imperfec-
tions, we should have observed even stronger violations for
both cases. A possible imperfection is the error in lens posi-
tioning. The effect of this type of imperfection can be esti-
mated by calculating the propagation through the different
lens systems in each field �19� and including a 1% error in z
for all lens systems. Taking the worst case scenario, we ob-
tain the following predictions for each variance: �2��3�/4

i

−�5�/4
s �th=0.09 and �2�q3�/4

i +q5�/4
s �th=0.04, �2��−�th=0.84

and �2�q+�th=0.03. These variances are much closer to the
experimental values. Thus, considering small experimental
imperfections, the theoretical prediction agrees with both
Eqs. �8� and �9�, as expected from Eq. �6�.

Let us now discuss the application of these results to a
situation similar to that of Ref. �17�, in which it is shown that
the transverse intensity correlations decrease as the field
propagates, and then are recovered again in the far field. For
a certain propagation distance, the DGCZ or similar inequal-

a) b)

c) d)-
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FIG. 2. �Color online� Measured coincidence counts and Gaussian curve fits. �a� C��3�/4
i −�3�/4

s �, �b� C��3�/4
i +�3�/4

s �, �c� C��3�/4
i

−�5�/4
s �, and �d� C�q3�/4

i +q5�/4
s �.
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ity will be satisfied, because the real part of the wave func-
tion becomes separable and the entanglement is present only
in the imaginary part. An analysis similar to that of Ref. �17�
in terms of FRFTs yields a separability condition for the real
part of the wave function �1� given by �sep= tan−1��+�−�,
where �s=�i=�sep is the order of the FRFT implemented on
both fields. Substituting this condition in Eq. �7� shows that
the DGCZ inequality is not violated.

To successfully detect entanglement in this case, it is nec-
essary to adopt a scheme such as the one shown in Fig. 3.
Signal and idler fields propagate through optical systems
characterized by FRFTs of order �sep, so that the separability
condition for the real part of the wave function is reached. At
this point, intensity correlations alone will fail to register

entanglement. To detect entanglement, additional optical sys-
tems are used to implement a second FRFT in the signal and
idler beams, with orders �s2 and �i2, respectively. The opti-
cal systems can be designed so that the additivity of two
consecutive FRFTs is preserved �19�. The signal beam has
had a total propagation characterized by a FRFT of order
�s=�sep+�s2 and the idler �i=�sep+�i2. In this case, apply-
ing the condition �i+�s�mod2��=0, Eq. �6� shows that the
DGCZ inequality will be violated in the same way as it
would be for the field in the source.

In conclusion, we have demonstrated theoretically and ex-
perimentally that it is possible to detect transverse entangle-
ment performing intensity correlation measurements, not
only in the near and far fields but also at intermediate propa-
gation planes. This is achieved using optical systems that
implement FRFTs according to the condition �s+�i=2n�,
where �s and �i are the orders of the transforms on the signal
and idler fields. We also show that entanglement is never
registered when �i+�s�mod��=� /2. These results demon-
strate that, given a signal field propagation characterized by
�s, one can always find an FRFT �i that can be used to detect
entanglement with intensity correlations alone. Though our
experiment was conducted using spatial entanglement of
photons, our results are directly applicable to spatial en-
tanglement in other systems �15,16�. Since the fractional
Fourier transform describes rotation in phase space, our re-
sults are applicable to a number of physical systems.
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FIG. 3. �Color online� Both signal and idler fields propagate
through lens systems that implement a FRFT of order �sep

= tan−1��+�−�. The dashed detectors will observe no intensity cor-
relation. Additional FRFT systems are used so that the total propa-
gation for signal and idler is characterized by FRFTs of orders �s

=�sep+�s2 and �i=�sep+�i2, respectively. Intensity correlation is
recovered for any �s2 and �i2 such that �i+�s�mod2��=0.
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