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We propose a method for completely controlling a nuclear spin subsystem using only microwave irradiation
of resolved anisotropic hyperfine interactions with a single electron spin. This paradigm of control has impor-
tant applications for spin based solid-state quantum information processing. In particular we argue that indirect
addressing of the nuclear spins via an electron spin acting as a spin actuator allows for nuclear spin quantum
logic gates whose operational times are significantly faster than either gates based on rf fields resonant with
nuclear spin flips or nuclear-nuclear dipolar interactions. We demonstrate experimental aspects of this method
with one electron and one nuclear spin of a single crystal of irradiated malonic acid.
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I. INTRODUCTION

Coherent control of quantum systems promises optimal
computation, secure communication, and new insight into
the fundamental physics of many-body problems. Solid-state
proposals �1,2� for such quantum information processors em-
ploy isolated spin degrees of freedom which provide Hilbert
spaces with long coherence times. Of particular interest are
hybrid systems of electron and nuclear spins. Here a single
electron spin provides a means for state preparation and qu-
bit readout while the nuclear spins act as qubits for storing
and processing information. Coherent control has recently
been demonstrated in several hybrid physical systems includ-
ing organic �3� and inorganic �4� single crystals, phosphorous
donors in Si �5�, endohedral fullerenes �6,7�, and nitrogen-
vacancy centers in diamond �8–11�.

Here we present a method for controlling an electron-
nuclear system without explicitly relying on nuclear spin
Rabi oscillations. Our method extends the techniques devel-
oped for electron spin envelope echo modulation, such as
nuclear spin �12� and coherence transfer �13� echoes. We use
the anisotropy of the hyperfine interaction along with opti-
mal control methods developed for quantum information
processing �QIP� to generate arbitrary quantum gates while
addressing only the electron spin. This approach provides a
fast and reliable means of controlling nuclear spins and en-
ables the electron spins of such solid-state systems to be used
for state preparation and readout of nuclear spin states. In
addition, we describe the use of the electron as a spin actua-
tor �14� for mediating nuclear-nuclear spin gates.

II. MODEL SYSTEM

The spin Hamiltonian of a single localized electron spin
with angular momentum, S=1 /2 and N nuclear spins, each
with angular momentum Ik=1 /2, in the presence of a mag-

netic field B� is �15�

H = �eg��Ŝ�B� − �
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Here �e is the Bohr magneton, �n
k is the gyromagnetic ratio;

Ŝ and Ik̂ are the spin-1 /2 operators. The second-rank tensors
g, Ak, �k, and Dkl represent the electron g factor, the hyper-
fine interaction, the chemical shift, and the nuclear dipole-
dipole interaction respectively. In the regime where the static

magnetic field B� =B0ẑ provides a good quantization axis for
the electron spin, the Hamiltonian can be simplified by drop-
ping the nonsecular terms, keeping only electron interactions
involving Sz. The quantization axis of any nuclear spin, how-
ever, depends on the magnitudes of both the hyperfine inter-
action and the static magnetic field, as well as their relative
orientations. When these two fields are comparable in
magnitude H is well approximated as
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k + Azy

k ŜzÎy
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�16�. The nuclear dipole-dipole interaction is neglected as it
is at least 100 times weaker than the hyperfine terms.

Any nuclear spin in this regime is quantized in an effec-
tive field that is the vector sum of the Zeeman and hyperfine
interaction �Fig. 1�. Its eigenstates are a mixture of the
nuclear Zeeman eigenstates: ��0�=cos 	↑ � ↑ �+ei
 sin 	↑ � ↓ �.
��1� is orthogonal to ��0�. 	↑,↓ and 
 are determined geo-
metrically: tan�	↑,↓�=−

A�

Azz��I/�
and 
=arctan�Azy /Azx�. An

N-bit string of quantum information can be stored in this
system in either the spin-up or spin-down electron manifold.
In the spin-up case, the state is

�j1j2 ¯ jN� = �↑� � �� j1
1 � � �� j2

2 � � ¯ � �� jN
N � , �2�

where jk� 	0,1
. Note that by storing information in either
the �↑ � or �↓ � electron spin manifolds there is no spin super-
position of the electron wave function and the electron spin
remains separable from the nuclear spins.

III. UNIVERSAL CONTROL OF 2N+1-DIMENSIONAL
HILBERT SPACE

The necessary and sufficient conditions for complete con-
trollability, or universality, are that the nested commutators
of the natural Hamiltonian �HN� and each of the control
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Hamiltonians �	HC
� form a closed Lie group SU�2N+1�
�17,18�. An equivalent diagrammatic representation �19,20�
relies on graph connectivity for assessing the controllability
of quantum systems represented as Lie algebras. Altafini �19�
has shown that barring degenerate eigenvalues El of HN or
degenerate transition frequencies �
�lm=El−Em�, the matrix
representation of HN is strongly regular. This condition along
with the complete connectivity of the graph generated by the
matrix elements of HC guarantees universality.

In the anisotropic hyperfine coupled electron-nuclear
system both of these conditions are satisfied. The classical
controls are time-dependent microwave fields oscillating at
the electron spin resonance frequency ���egzzB0� and
parametrized by three values: B1

e, the amplitude of an
oscillating magnetic field ��B0ẑ�; � the frequency of oscil-
lation; and � the phase of the oscillation. This yields the
control Hamiltonian:

HC�B1
e,�,�� = �egzzB1

e�t�	cos��t + ��t��Ŝx

+ sin��t + ��t��Ŝy
.

The connectivity of the eigenstates by HC is determined
by drawing an edge between the �l� and �m� states if

�l �HC �m��0. Since H0 only contains Ŝz terms it is block-

diagonal with orthogonal electron spin subspaces �↑ � and
�↓ �. The 2N states for the ↑ manifold are given by Eq. �3�; for
the ↓ manifold they are �p1 . . . pN�= �↓�p1

1 . . .�pN

N �. Thus, all
transitions changing the electron spin states are allowed by
HC. For these states �p1 . . . pN �HC � j1 . . . jN�=
k=1

N ��pk
�� jk

�.
From Fig. 1�a�, it is clear that as long as A�

k �0,
��0,1

k ��0,1
k ��0. In this case, any single level in the ↑ mani-

fold is connected to all of the 2N states in the ↓ manifold, and
vice versa. Regarding the strong regularity of H0, for the
1e-N nuclear spin system, distinct Larmor frequencies �sum
of Zeeman and chemical shift� and hyperfine couplings for
each nuclear spin guarantee the nondegeneracy of the eigen-
states. The hyperfine couplings and the Zeeman frequencies
must also be chosen such that � jk /� j�k��1. Figure 2 shows
diagrammatic examples for N=2; it shows that universal
control over a set of nuclear spins, each with an anisotropic
hyperfine coupling, is obtained with only an amplitude
modulated wave form applied to any electron spin transition
at a fixed �.

We can provide some insight into how modulation of the
electron spin state through shaped microwave fields provides
control over the nuclear spins. Flipping the electron spin
changes the quantization axis of the nuclear spins. Since
these two quantization axes are separated by a large angle, a
sequence of spin evolutions under these two noncommuting
axes permits arbitrary nuclear rotations. If we consider col-
lective motions of the N nuclear spins relative to the two
electron spin states, this generates the complete algebra in
SU�2N+1�. Given the complexity of the full dynamics of these
2N vectors, we can use numerical optimal control methods
developed for and applied to nuclear magnetic resonance
QIP in order to engineer arbitrary unitaries �21–23�. By lim-
iting the control fields of the electron-nuclear system to only
the electron spin flip transitions we achieve quantum gates
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FIG. 1. �Color online� �a� The electron spin state is aligned

�or antialigned� with the quantization axis given by B� =B0ẑ,
while the nuclear spin state aligns along the local field. When
the electron spin is �↑ �, the nuclear spin quantization axis, ��0�
is a vector sum of Azz, �I along ẑ and A� along x̂ drawn as

double arrows. �A�=�Azx
2 +Azy

2 �. When the electron spin is
�↓ �, the sign of Azz and A� is negative, yielding a different nuclear
quantization axis ��0�. �b� Since ��m ��l��0, electron spin flips in-

duced by the Ŝx operator drive many transitions �dashed arrows�
between energies of H0. This allows for universal control of the
entire spin system. In our experimental setup �N=1� the energy
differences are �12 /2�=7.8 MHz, �34 /2�=40 MHz, �14 /2�
=12.005 GHz, �23 /2�=11.954 GHz.
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FIG. 2. The connectivity of energy levels of 1e-2n system.
When the control Hamiltonian is applied resonant with a single
transition �bold line� it excites detuned transitions between the lev-
els of the electron spin up and spin down manifolds �double line�.
An edge is drawn between two eigenstates if the control Hamil-

tonian operator has a nonzero matrix according to ��m � Ŝx � l��0�.
�a� If one of the hyperfine tensors between a nuclear spin is isotro-
pic, universality does not occur. The control operator induces tran-
sitions that join two sets of four levels �gray and black�, but does
not join all levels. �b� Full connectivity is achieved when both hy-
perfine interactions are anisotropic.
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whose operation times are faster than if we had relied upon
nuclear spin nutation rate alone �7,24�.

IV. 1e-1n SYSTEM

We demonstrate the utility of this control scheme by ex-
ploring Ramsey fringes �28� in a 1e-1n system—a single
crystal of x-ray irradiated malonic acid �29�. The param-

etrized Hamiltonian is H0 /2�=�sŜz−�nÎz+AzxŜzÎx+AzzŜzÎz,
where �s=11.885 GHz, �n=18.1 MHz, Azx�14.2 MHz, and
Azz�−42.7 MHz. The control Hamiltonian parameters are
max��egzzB1

e�t�� /2�=7 MHz and � /2�=11.909 GHz. No
arbitrary phase controls ��t� were used as they are not a
necessary element of HC for universal control. All experi-
ments were performed on a home-built pulsed electron spin
resonance �ESR� spectrometer and cryogenic probehead with
a loop-gap resonator.

V. EXPERIMENTAL RESULTS

To make the description more concrete we have used the
aforementioned techniques to indirectly observe nuclear pre-
cession via an electron spin. While indirect nuclear observa-
tion is well known in the magnetic resonance literature �e.g.,
electron-nuclear double resonance and echo modulation�, we
present an example where optimal control theory is used to
develop control sequences for ESR. To implement an arbi-
trary unitary propagator we use the gradient ascent pulse
engineering �GRAPE� �21� algorithm for finding the control
field B1

e�t�. Constraints on the modulation sequence, such as
maximum nutation rate and pulse bandwidth, were chosen in
accordance with our hardware limitations such as finite
power amplifiers, modest AWGs, and finite bandwidth com-
ponents. The simulated gate fidelity �22� of these gates is at
least 0.98.

The equilibrium state of the ensemble system, �thermal

=−Ŝz, has no net nuclear spin polarization, so we first trans-
fer the available electron spin polarization to the nuclear
spins. This is achieved by selectively inverting the levels �2�
and �4� or �1� and �3� �see Fig. 1 and supporting material�.
We created coherence between nuclear eigenstates by using a
microwave modulation sequence engineered to perform a
nuclear � /2 pulse selective for only one of the electron
manifolds, U12�� /2� �30�. The Ramsey fringe experiment
�Fig. 3� measures the phase evolution under H0. We halt the
evolution by again applying U12�� /2� and then transferring
the polarization back to the electron spin. By monitoring the
relative amplitude of the electron spin echo at different
times, �, we indirectly observe the nuclear spin dynamics.

Figure 4 shows the coherent oscillations between nuclear
coherence on levels �1� and �2�. We implement the net uni-
taries, Upc=U12�

�
2 �U24��� and Upc

−1, as a single modulation
sequence with a total time of 800 ns and simulated fidelities
�F� 0.99 and 0.98, respectively. All nuclear pulses are
achieved through modulation of the hyperfine interaction and
are applied resonant with the 1–4 transition. The agreement
between the simulated spin system, aligned at 42.6° with
respect to the c axis, and the experimental data points clearly
demonstrate an electron spin actuator as we are able to excite

nuclear spin coherence via GRAPE pulses applied to solely
the electron spin.

VI. CONCLUSIONS AND OUTLOOK

Using shaped pulse techniques for engineering quantum
gates, we have described a method to control nuclear spins
coupled via anisotropic hyperfine interactions to a single lo-
calized electron spin impurity using only electron spin tran-
sitions. This proof-of-principle idea has many immediate ap-
plications to solid-state quantum information processors. Our

FIG. 3. �Color online� Schematic pulse sequence for measuring
Ramsey fringes. Up creates a nonequilibrium population difference
between levels 1 and 2, and Uc creates a coherence of the nuclear
spin in the S=−1 /2 manifold. During �, this coherence evolves
under H0, acquiring an observable phase. The coherence is trans-
formed back to a population difference between nuclear spin levels
and then to electron spin levels. A pair of short unmodulated pulses
are used to detect an electron spin echo whose height is propor-
tional to the resultant electron spin population. The wave form used
to implement UpUc is shown in the inset. Note that all pulses have
a carrier frequency resonant with the 1–4 transition �� /2�
=11.909 GHz� and induce transitions between 1–4, 2–4, 1–3, and
2–3 via time-dependent amplitude modulations.
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FIG. 4. �Color online� Measurements of the electron spin echo
as a function of the time � between coherence transfer indirectly
reveal the nuclear precession rate. Numerical simulations of the
experiments �solid line� show agreement with the observed signal
�dashed�. The Ramsey fringe experiment ��� reveals a clear pre-
cession of the coherence between the �1� and �2� states at roughly
8 MHz.
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method extends to any number of nuclear spins that have
resolvable anisotropic hyperfine interactions. Simulations of
1e-2n systems show that a complete set of gates over the
nuclear subsystem can be easily obtain using the GRAPE
algorithm. For example, we have found a 1e-2n controlled-
NOT �CNOT� gate �31� between the carbon and proton nuclear
spins for malonic acid isotopically labeled with a 13C at the
methylene position. This gate can be performed in only 2 �s.
We note that if only nuclear nutation frequencies and nuclear
dipole-dipole interactions were used, such a CNOT would
take much longer due to the relative strength of the hyperfine
interaction to these nuclear-nuclear dipole interaction.

We suggest that these methods will find application in the
development of solid-state quantum computing. In analogy
to an actuator, modulations of the electron spin in turn modu-
late the anisotropic hyperfine interactions, thus generating
quantum gates between nuclear spins while leaving the final
state of the electron identical to its initial state. Previously
studied solid-state spin systems with multiple resolved
nuclear spins �4,8–10,32� can thus be controlled by only

modulating the electron spin states. Moreover, one can aug-
ment the controllable Hilbert space by coupling localized
multiple electron spin states. Such coupling may be electri-
cal, with systems such as phosphorous-doped silicon or op-
tical in systems akin to nitrogen-vacancy defects in diamond
�33�. As the ultimate utility of these systems depends on their
decoherence, characterization of these mechanisms is key.
Precise unitary engineering can also be used to measure re-
laxation processes or perform quantum process tomography
in hyperfine coupled systems �25�.
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