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With carefully prepared resonant laser-controlled pulses, the two quantum states of a cold ensemble of
sodium atoms were manipulated by pure geometric rotations of the Bloch vector around axes 2 and 3 on the
Bloch sphere. The fidelity for two geometric rotations was improved to be 90%. A universal single-qubit
operation on the ground-state wave function was demonstrated by a pure geometric operation and the phase
shift due to the rotation around axis 3 was measured using a geometric atom interferometer.
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Quantum computation is one of the most promising and
fascinating subjects that mankind will develop in the 21st
century. In order to realize quantum computation, there are
two building blocks: one is a universal single-qubit operation
and the other is a controlled-NOT gate for two qubits �1�. In
particular, the universal single-qubit operation is important,
since it is applicable to a basis of a controlled-NOT gate. A
universal single-qubit operation is an arbitrary unitary opera-
tion on a single qubit of two-level systems such as atoms or
spins �2,3�. In a two-level system, it can be accomplished by
three successive rotations of the Bloch vector around princi-
pal axes 3 and 2 on the Bloch sphere, as shown in Fig. 1�a�
�1�. These rotations have generally been induced through dy-
namic evolution of interaction Hamiltonians from external
sources such as laser pulses and magnetic fields, but they can
also be induced through a geometric effect. The geometric
manipulations are more robust than dynamic ones since a
geometric phase depends solely on the amount of the solid
angle enclosed by the evolution path, not on the details of the
path, the time spent, the driving Hamiltonian, or the initial
and final states of the evolution �4�. Up to now, experimental
demonstrations using partial geometric operation have been
presented in nuclear magnetic resonance �5� and ion trap �6�
systems.

In 2004, Tian et al. proposed that the Bloch vector can be
rotated around axes 3 and 2 by geometric manipulations us-
ing resonant laser-controlled pulses �7�. Special closed paths

were designed to eliminate the infidelity of the operation
associated with the Hamiltonian-dependent dynamic phase.
They verified a geometric rotation around axis 3 using het-
erodyned photon echoes for an ensemble of inhomoge-
neously detuned two-level Tm3+ doped in a yttrium alumi-
num garnet crystal. The rotation angle was controlled by two
resonant laser-controlled � pulses with a relative phase dif-
ference of � /2 and the phase was changed by twice the con-
trol phase, as expected.

Recently, we succeeded in demonstrating geometric rota-
tion around axes 3 �8� and 2 �9� using a cold ensemble of
sodium atoms. We evaluated that a geometric rotation around
axis 3 was twice the control phase change within an uncer-
tainty of 1% by monitoring the phase change using the
stimulated Raman atom interferometer composed of the ex-
cited and the ground hyperfine states of sodium atoms �8�.
Next, a geometric rotation around axis 2 was achieved using
three resonant laser-controlled pulses with pulse areas of
� /2, �, and � /2 and a relative phase difference of �+� /2 in
the central pulse. The population probability in the excited
state could be changed sinusoidally over five cycles �9�,
compared with a dynamical evolution such as the Rabi exci-
tation �10�.

Thus a single geometric rotation for a single qubit on
two-level atoms was found to be very accurate and robust.
However, if we apply geometric operations successively
more than two times on two-level atoms, the ac Stark shift
due to the excitation field and correlations between many
pulses will distort the phase and the population probability of
the wave function manipulated geometrically. Therefore,
careful preparations for resonant laser-controlled pulses are
necessary in order to accomplish the universal single-qubit
operation with a high fidelity.

In this Rapid Communication, we present first an im-
provement for preparing the resonant laser-controlled pulse.
Next we evaluate the fidelity of the present system from a
couple of geometric rotations around the same axis on two-
level atoms driven by two resonant laser-controlled pulses.
Lastly, as an example of universal single-qubit operation, we
demonstrate two geometric rotations around axes 2 and 3 on
the ground-state wave function successively, and we measure
the phase shift using an atom interferometer constructed of
pure geometric operations.

As shown in Fig. 1�a�, we consider a two-level atom as-
sociated with a wave function A described as �A=a�0�
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FIG. 1. �a� Trace of Bloch vector r driven by universal single-
qubit operation. The Bloch vector at initial position A is rotated
around axis 3 to the 1-3 plane, varying the phase of the wave
function, then rotated around axis 2, changing the population prob-
ability of the two states, and rotated around axis 3 to the final
position B. �b� Initial position A is the ground-state wave function.
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+b�1�, where �0� represents the ground state �r−3� and �1� is
the excited state �r3�. When a universal single-qubit opera-
tion is applied to the wave function A, it is transformed to
wave function B described as �B=a��0�+b��1�. The univer-
sal single-qubit operation is equivalent to three successive
rotations of the Bloch vector around axes 3, 2, and 3 �1�,
which can be accomplished as

U = U3���U2���U3���

= �ei�/2 0

0 e−i�/2 �� cos��/2� sin��/2�
− sin��/2� cos��/2�

�
��ei�/2 0

0 e−i�/2 � , �1�

where U3 and U2 are rotations around axes 3 and 2 of the
Bloch sphere, respectively. � �, and � denote the corre-
sponding rotation angle. With the first rotation around axis 3,
the Bloch vector rotates to the 1-3 plane by �, while the
probabilities of the excited and the ground states are pre-
served. With the second rotation around axis 2, the Bloch
vector rotates in the 1-3 plane by � and the probabilities of
the states are changed. With the third rotation around axis 3,
the phase of the Bloch vector rotates by � to the phase of
wave function B from the 1-3 plane. In the special case in
which the initial state A is the ground-state wave function,
the universal single-qubit operation shortens to two succes-
sive rotations around axes 2 and 3, as shown in Fig. 1�b�.

We used a laser-cooled ensemble of sodium atoms as a
two-level system. The F=1, mF=0 and F=2, mF=0 states in
the ground hyperfine level S1/2 were used as the ground state
and the excited state, respectively. The two states were
coupled with a stimulated Raman transition comprised of
nonresonant two-photon transitions, one of which is �1 from
3S1/2, F=1, mF=0 to 3P3/2, F�=2, mF�=1, and the other is
�2 from 3P3/2, F�=2, mF�=1 to 3S1/2, F=2, mF=0, as shown
in Fig. 2. The right-hand circular polarization was used for
excitation. The frequency difference between �1 and �2 was
produced using an electro-optic modulator �EOM� driven at
around 1.771 626 GHz, which corresponds to the frequency
difference between the F=1, mF=0 and F=2, mF=0 states.

This scheme has a superior feature in that the optical fre-
quency jitter can be canceled out in the atom-laser interac-
tion �10�. Furthermore, atoms were irradiated by two co-
propagating laser beams to cancel out the recoil momentum
due to each optical photon �11�.

Using the Raman beam, the resonant laser-controlled
pulses for geometric rotations were prepared as follows. The
ac Stark shift depending on the intensity of the Raman beam
was canceled out by adjusting the ratio of intensities of �1
and �2 �12�. The output power of the Raman beam was
stabilized to be constant. After that, the Rabi oscillation was
measured as a function of pulse width at the resonance fre-
quency without ac field, so that the width of the � pulse was
determined. The interval between the control pulses was
spaced comparing with a risetime of phase change in the
EOM. With such careful preparations of the resonant laser-
controlled pulses, the phase shift due to the ac Stark shift
was canceled out and distortions or decoherence observed in
the interference fringes were reduced.

The experimental setup was almost the same as the pre-
vious one used for geometric rotation around axes 3 �8� and
2 �9�, except for generation of the Raman beam. The �2 of
the Raman beam was generated independently from the sec-
ond laser and stabilized to about 600 MHz below the reso-
nance frequency from the F=2, mF=0 to F�=2, mF�=1
states by a frequency offset-lock, and its power was stabi-
lized using an acousto-optic modulator. The difference fre-
quency between �1 and �2, the intensity ratio of �1 and �2,
and the phase of �1 were controlled by an EOM driven by a
synthesizer and switched on and off by another acousto-optic
modulator. They were controlled by a graphical program lan-
guage �National Instruments, LabView�. A typical condition
of a Raman beam used in the present experiment was as
follows: the intensity ratio was 1:2.7, the total intensity was
0.1 mW /mm2, and the width of the � pulse was 40 	s.
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FIG. 3. Resonant laser-controlled pulses of Raman beam. I, ini-
tializing; P, probe; O, optical pumping; T1 and T2, transmittance.
The figure above each pulse shows the pulse area and the figure on
the shadow shows the phase shift. �a� Single rotations around axis 3
with atom interferometer �AI�, �b� addition of two rotations around
axis 3 with AI, �c� subtraction of a rotation around axis 3 and a
reverse rotation with AI, �d� addition of two rotations around axis 2,
�e� two rotations around axes 2 and 3, and �f� three rotations around
axes 2, 3, and 2.
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FIG. 2. Partial level scheme and transitions of sodium atoms. R,
two-photon Raman transition; I, initializing; P, probe; and O, optical
pumping.
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A typical time sequence of the measurement is shown in
Fig. 3�a�. After sodium atoms were released from the trap,
first all atoms were optically pumped to the F=2 state by the
optical pumping beam O, and the number of atoms was de-
duced from the transmittance of the probe beam P, which
interacts with atoms in the F=2 state. After that, they were
prepared perfectly in the F=1 state by the initializing beam
I. As atoms in the F=1 state were distributed equally in three
m sublevels under a quantized magnetic field, only one-third
of the atoms interacted with two-photon Raman pulses. After
interaction, the number of atoms in the F=2 state with m
=0 was deduced again from the transmittance of the probe
beam. Then the population probability of the F=2 state was
obtained from the ratio of the numbers of atoms before and
after interaction. Therefore, the maximum population trans-
fer from the F=1 state to the F=2 state was 33%.

First, we examined the performance for two geometric
rotations around the same axis. As an example, we show the
interference signals for addition and subtraction of two rota-
tions around axis 3 in Fig. 4, together with that for single
rotation. The phase shift between the ground-state and the
excited-state wave functions was measured as the variation
of the population probability in the excited state using the
atom interferometer. Their time sequences of resonant laser-
controlled pulses are shown in Figs. 3�a�–3�c�. For a single
rotation, the population probability varies from 35% to 10%
according to the sinusoidal function of �2.01
0.02��� /2,
as shown in Fig. 4�a�. The population probability of 35% is
almost unity of the expected transfer for the operation. On
the other hand, about 10% of the atoms lost coherence
through spontaneous emission during a pulse duration of 2�
pulse, so that the minimum population probability was lim-
ited to 10%. In the interference signal of the addition of two
rotations of � /2 around axis 3, as in Fig. 4�b�, the fringe size
was decreased to 80% of that for a single rotation due to the
width of the 4� pulse, but the phase of fringes shifted sinu-
soidally with a phase of �4.03
0.02��� /2. In the case of
subtraction in Fig. 4�c�, the sinusoidal component of � could
be reduced within scattering of the data, however a small
sinusoidal component of � /2 appeared in the signal of sub-
traction. It will be generated from the incompleteness of the
widths of each pulse. The amplitude of the component of � /2
was larger than the scattering of the data. Therefore, we de-

fined the present fidelity for two geometric rotations as 1
−R, where R is the ratio of the amplitude of the component
of � /2 on the peak-to-peak amplitude of fringes for two ro-
tations. The fidelity was 90%. If we could remove such a
component by appropriate adjustments, the fidelity would be
improved still more.

Next, we applied two successive geometric rotations
around axis 2 by � /2 and around axis 3 by � /2 to two-level
atoms, as shown in Fig. 3�e�, in order to demonstrate a uni-
versal single-qubit operation from the ground-state wave
function. At first, the population probabilities in the excited
state were measured for �=0, −� /2, and −� as a function of
� /2. Figures 5�a�–5�c� show the results, where a small com-
ponent of � /2, as observed in Fig. 4�c�, was eliminated in
advance. Figure 5�d� shows the population probability for
two identical rotations of � /2 around axis 2 with a time
sequence in Fig. 3�d�, as a reference. For �=0, the popula-
tion probability is in the vicinity of the maximum of signal
�d� for �=−� /2 at the middle and for �=−� at the mini-
mum. These results verify that the population probability
does not depend on the operation of a rotation around axis 3.

In order to confirm the phase shift of the Bloch vector by
a geometric rotation around axis 3 in the above operation, we
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FIG. 6. Phase shift for a universal single-qubit operation. Phase
shift due to the rotation around axis 3 by � /2 was measured by
atom interferometer composed of two rotations around axis 2 by
� /4.
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FIG. 4. Interference fringes versus rotations around axis 3 by
� /2. �a� A rotation around axis 3, �b� two rotations around axis 3,
and �c� a rotation around axis 3 with a reverse rotation around
axis 3.
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FIG. 5. Population probability of the excited state observed for a
sequence of a geometric rotation around axis 2 by � /2 and a rota-
tion around axis 3 by � /2. �a� �=0, �b� �=−� /2, and �c� �=−�.
�d� Two geometric rotations around axis 2, as a reference.
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constituted an atom interferometer by adding the third geo-
metric rotation of � /4 around axis 2 together with the first
geometric operation of � /4 around axis 2, as shown in Fig.
3�f�. These geometric rotations correspond to the � /2 pulse
of the Rabi excitation. As shown in Fig. 6, the interference
fringes of �2.01
0.02��� /2 appeared clearly, although the
fringe size was decreased to 60% of that for a single rotation
due to the width of the total 6� pulse. Thus, we could mea-
sure the population probability due to the rotation around
axis 2 and the phase shift due to the rotation around axis 3
independently. The results confirm orthogonality between
geometric rotations around axes 2 and 3. Therefore, we could
demonstrate that a universal single-qubit operation on two-
level atoms can be accomplished using pure geometric rota-
tions around axes 2 and 3. At the same time, we could con-
struct an atom interferometer using two geometric rotations
around axis 2 by � /4.

In summary, we have prepared precise resonant laser-
controlled pulses for geometric rotation around axes 2 and 3,

and we determined that the fidelity of the present geometric
operation was 90% from addition and subtraction of two
geometric rotations around axis 3. Also, we verified the or-
thogonality of geometric rotations around axes 2 and 3 by
measuring the variation of the population probability and the
phase shift independently. Finally, as an example of a uni-
versal single-qubit operation, successive geometric rotations
around axes 2 and 3 of the Bloch vector from the ground
state were demonstrated. Thus, we have developed a method
of geometric universal single-qubit operations on a cold en-
semble of two-level atoms. If we apply geometric operation
for a controlled-NOT gate on two qubits, we need two-level
systems that are entangled with another superposition state.
At present, we are planning to use two-level atoms trapped in
an optical lattice entangled with a vibrational state, like ion
trap �13�.

We thank A. Takahashi and K. Numazaki for assistance in
the experiment.
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