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Recent papers in Physical Review A have considered small quantum circuit decompositions in terms of a
minimal number of controlled-NOT �CNOT� gates. Specifically, we point out errors in the papers by Vidal and
Dawson �Phys. Rev. A 69, 010301�R� �2004�� and by Shende et al. �Phys. Rev. A 70, 012310 �2004��.
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Recently there has been interest in characterizing two-
quantum-bit �qubit� operations in terms of certain invariants,
and by other methods �1–6�. By such techniques one may
discriminate whether a two-qubit operator is locally equiva-
lent to zero, one, two, or three controlled-NOT �CNOT� gates.
The equivalence for CNOT complexity is up to single-qubit
rotations. This is very useful both in terms of the feasibility
of achieving a single, double, or triple �SWAP� CNOT gate, and
for constructing minimal two-qubit operator decompositions.

In a recent paper �3� building upon the magic basis results
of Ref. �7�, a decomposition for a two-qubit matrix exponen-
tial is given. We point out that Theorem 1 as stated in Ref.
�3� is incorrect. All five operators u2, v2, u3, v3, and w in Eqs.
�7�–�9� in that paper need to be modified. Correspondingly,
certain intermediate results are also slightly but importantly
modified. For instance, both the m and n dependencies of the
phase �mn in Eq. �17� are modified. The corrected form of
Eqs. �7�–�9� of Ref. �3�, as kindly supplied to us by the
authors, is given in Sec. 3.4 of the thesis �8,9�. One may also
note that Ref. �3� also differs from the arXiv version �10�
with respect to the matrix u2.

The corrected single-qubit operators are given by

u2 = Heihx�x, v2 = eihz�z, �1�

u3 = HS, v3 = e−ihy�z, �2�

w = ei��x/4 =
1
�2

�I + i�x� , �3�

where H is the Hadamard gate, S=diag�1, i�, and � j are the
Pauli matrices. Then it is readily verified that

exp�iHxyz� = �w � w−1�UCNOT�u3 � v3�

�UCNOT�u2 � v2�UCNOT, �4�

where

Hxyz � hx�x � �x + hy�y � �y + hz�z � �z. �5�

As an example instance of change in the intermediate re-
sults incurred by Eqs. �1�–�3�, we have now

�mn = �− 1�m+1hx + �− 1�n+1hz, �6�

replacing Eq. �17� in Ref. �3�. Equation �6� follows from

u2�xm� = e�− 1�mihx�m� = e−�− 1�m+1ihx�m� , �7a�

and

v2�n� = e�− 1�nihz�n� = e−�− 1�n+1ihz�n� , �7b�

where �x0�=H�0� and �x1�=H�1�. In stating Eqs. �6�, �7a�, and
�7b� we have employed the convention of Ref. �3�, wherein
phases are written in the form exp�−i�mn�.

As a complement to a special case of Ref. �3�, we con-
sider the CNOT complexity of the unitary evolution generated
by the Hamiltonian

Hx = hx�x � �x, �8�

wherein we may restrict consideration to values 0�hx
�� /4. We verify the single CNOT complexity induced by
Eq. �8� at particular times, as well as provide the correspond-
ing gate decomposition.

The evolution operator U�t��exp�−iHxt� ��=1� is given
by

U�t� = cos �hxt�I − i sin �hxt��x � �x. �9�

Using the classification procedure of Ref. �11�, we apply the
operator, for matrices in SU�2�, ��w�=w�y

�2wT�y
�2, wherein

T denotes transposition. Since in this case Hx and U are
symmetric, we have ��U�t��= �U�t��y � �y�2 and find

��U�t�� = cos 2hxtI − i sin 2hxt�x � �x. �10�

Calculating the characteristic polynomial ��g��x�=det�xI
−g�, we have

�	��U�t��
 = �x2 − 2x cos 2hxt + 1�2. �11�

According to the classification of Ref. �1�, the evolution of
Hx is generally equivalent to a double CNOT gate. In addition,
there are special times when � assumes the form �= �x2

+1�2. In this case, tn=��n+1 /2� /2hx for nonnegative inte-
gers n, and the smallest such is t0=� /4hx. At these times, the
evolution is equivalent to a single CNOT gate.

At the particular time t0, when ��U�t0��=−i�x � �x, we
have

U�t0� =
1
�2

�I − i�x � �x� = e−i��x��x/4. �12�

We introduce the single-qubit operators
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wx �
1
�2

�I − i�x� = e−i��x/4, wy
�	� �

1
�2

�I 	 i�y� = e	i��y/4.

�13�

We then determine the decomposition

U�t0� = e−i��x��x/4 = �wy
�−�S � wx�UCNOT�wy

�+�
� I� .

�14�

In this equation, we have given the explicit tensor product
pre- and postfactors for the single CNOT equivalence. We
may note that Eq. �14� does not simply correspond to either
u2 � v2= I or u3 � v3= I in Eq. �4�, in which case we could
apply the fact UCNOT

2 = I.
The CNOT complexity that we have illustrated may also be

determined directly in terms of the operator � �1�. In fact,
from Eq. �9� tr�U�t�� is real, implying the equivalence of
U�t� to two CNOT gates. As concerns U�tn�, we have that
��U�tn�� is not proportional to the identity matrix, while
�2�U�tn��=−I, implying equivalence to a single CNOT gate.

Reference �1� considered two-qubit operators with respect
to CNOT complexity and presented a series of algebraic re-
sults and some numerical examples. We nonexhaustively de-
scribe some corrections and clarifications that are in order for
this paper.

In example 3 for the two-qubit Fourier transform, the 42
entry of the matrix F should read −i, thereby making this

operator symmetric and unitary, as it must be. Most impor-
tantly, neither the written nor the corrected matrix has deter-
minant 1. Therefore, one does not literally compute the char-
acteristic polynomial ����F�� as stated, but must first divide
F by the normalizing factor �det�F��1/4.

The numerical example matrix decomposition given in
Sec. V of Ref. �1� is incorrect. That is, with C2

1 denoting a
CNOT gate with control on the second qubit, C2

1= �a2
� b2�exp�iH42tCNOT��c2 � d2� does not hold for the given lo-
cal gates a2, b2, c2, and d2, which may be readily confirmed
by performing the matrix product in question. �Compare the
paper �12�, which contains the very same example.�

In the last paragraph of Sec. III of Ref. �1�, “nonscalar”
should be taken to mean “not proportional to the identity,”
and after tr���u�� “is real” should be inserted. Other ex-
amples of typographical errors in this paper include the �here
revised� statements tr���C1

2��=tr���C2
1��=0 on p. 2 and −�y

� �y =EET in the fourth paragraph of the Appendix on p. 4.
In conclusion, �i� explicit quantum circuit decompositions

are very useful, and indeed necessary in order to take quan-
tum logic circuits to an engineering physics level and further
�ii� although it may be difficult at times to arrive at the de-
sired gate decomposition, a candidate decomposition may be
swiftly verified.
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