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controlled-NOT gates” and “Recognizing small-circuit structure in two-qubit operators”
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Recent papers in Physical Review A have considered small quantum circuit decompositions in terms of a
minimal number of controlled-NOT (CNOT) gates. Specifically, we point out errors in the papers by Vidal and
Dawson [Phys. Rev. A 69, 010301(R) (2004)] and by Shende et al. [Phys. Rev. A 70, 012310 (2004)].
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Recently there has been interest in characterizing two-
quantum-bit (qubit) operations in terms of certain invariants,
and by other methods [1-6]. By such techniques one may
discriminate whether a two-qubit operator is locally equiva-
lent to zero, one, two, or three controlled-NOT (CNOT) gates.
The equivalence for CNOT complexity is up to single-qubit
rotations. This is very useful both in terms of the feasibility
of achieving a single, double, or triple (SWAP) CNOT gate, and
for constructing minimal two-qubit operator decompositions.

In a recent paper [3] building upon the magic basis results
of Ref. [7], a decomposition for a two-qubit matrix exponen-
tial is given. We point out that Theorem 1 as stated in Ref.
[3]is incorrect. All five operators u,, v, us, v3, and w in Egs.
(7)—(9) in that paper need to be modified. Correspondingly,
certain intermediate results are also slightly but importantly
modified. For instance, both the m and n dependencies of the
phase ¢,,, in Eq. (17) are modified. The corrected form of
Egs. (7)=(9) of Ref. [3], as kindly supplied to us by the
authors, is given in Sec. 3.4 of the thesis [8,9]. One may also
note that Ref. [3] also differs from the arXiv version [10]
with respect to the matrix u,.

The corrected single-qubit operators are given by

Uy = Heihxa'x’ Uy = eihzzrz’ (1)
uy=HS, vy=e Mo, (2)
iTo /4 1 .
w=e T = —=(I+i0,), (3)
V2

where H is the Hadamard gate, S=diag(1,i), and o; are the
Pauli matrices. Then it is readily verified that

exp(iH,,,) = (w ® w ) Uenor(itz ® v3)
X Uenorl(tty ® v2)Ucnors “4)
where
H,, =ho,® o, +ho,®0,+h0, 0,. (3)

As an example instance of change in the intermediate re-
sults incurred by Egs. (1)—(3), we have now

¢mn = (_ 1)m+1hx + (_ 1)n+1hz’ (6)

replacing Eq. (17) in Ref. [3]. Equation (6) follows from
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|y = e Vi = = l)’"”ihx| m), (7a)
and

l)n+l

valn) = = Vi) = ¢ VT ), (7b)

where ['0)=H|0) and |[*1)=H|1). In stating Egs. (6), (7a), and
(7b) we have employed the convention of Ref. [3], wherein
phases are written in the form exp(—id,,,).

As a complement to a special case of Ref. [3], we con-
sider the CNOT complexity of the unitary evolution generated
by the Hamiltonian

H.,=ho,® oy, (8)

wherein we may restrict consideration to values 0=#h,
=m/4. We verify the single CNOT complexity induced by
Eq. (8) at particular times, as well as provide the correspond-
ing gate decomposition.

The evolution operator U(t) =exp(—iH,r) (h=1) is given
by

U(t) = cos (ht)I — i sin (ht)o, ® o,. 9)

Using the classification procedure of Ref. [11], we apply the
operator, for matrices in SU(2), y(w):wa';9 2WT(T)Q,9 2, wherein
T denotes transposition. Since in this case H, and U are

symmetric, we have {U(1)]=[U(1)o, ® ¢, ]* and find
M U(t)] = cos 2htl — i sin 2h,t0, ® o,. (10)

Calculating the characteristic polynomial x(g)(x)=det(x/
—g), we have

XY AUD = (x* = 2x cos 2,1+ 1)%. (11)

According to the classification of Ref. [1], the evolution of
H, is generally equivalent to a double CNOT gate. In addition,
there are special times when y assumes the form y=(x’
+1)% In this case, t,=m(n+1/2)/2h, for nonnegative inte-
gers n, and the smallest such is #y=m/4h,. At these times, the
evolution is equivalent to a single CNOT gate.

At the particular time 5, when YU(5y)]=—io,® oy, We
have

1 )
U(ty) = _E(I_ 0, ® 0,) = e TR0, (12)
v

We introduce the single-qubit operators
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1 ) . 1 B
_E(I_ io'x) = e_’mrxm, W;_) =—(I=*io,)= imoy/4.
\r

w, = =e
V2 '
(13)
We then determine the decomposition
U(ty) = e7imox® 04 = (w;')S Q w,) UCNOT(W;+) ®1).
(14)

In this equation, we have given the explicit tensor product
pre- and postfactors for the single CNOT equivalence. We
may note that Eq. (14) does not simply correspond to either
u, ®v,=1I or u3®v3=I in Eq. (4), in which case we could
apply the fact U(Z:NOT=I .

The CNOT complexity that we have illustrated may also be
determined directly in terms of the operator y [1]. In fact,
from Eq. (9) tt{U(r)] is real, implying the equivalence of
U(r) to two CNOT gates. As concerns U(z,), we have that
Y U(t,)] is not proportional to the identity matrix, while
Y[U(t,)]=—-1, implying equivalence to a single CNOT gate.

Reference [ 1] considered two-qubit operators with respect
to CNOT complexity and presented a series of algebraic re-
sults and some numerical examples. We nonexhaustively de-
scribe some corrections and clarifications that are in order for
this paper.

In example 3 for the two-qubit Fourier transform, the 42
entry of the matrix F should read —i, thereby making this
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operator symmetric and unitary, as it must be. Most impor-
tantly, neither the written nor the corrected matrix has deter-
minant 1. Therefore, one does not literally compute the char-
acteristic polynomial x[y(F)] as stated, but must first divide
F by the normalizing factor [det(F)]"4.

The numerical example matrix decomposition given in
Sec. V of Ref. [1] is incorrect. That is, with C) denoting a
CNOT gate with control on the second qubit, C£=(a2
® b,)exp(iHptenor) (2 ® dy) does not hold for the given lo-
cal gates a,, b,, c,, and d,, which may be readily confirmed
by performing the matrix product in question. (Compare the
paper [12], which contains the very same example.)

In the last paragraph of Sec. IIT of Ref. [1], “nonscalar”
should be taken to mean ‘“not proportional to the identity,”
and after t[y(u)] “is real” should be inserted. Other ex-
amples of typographical errors in this paper include the (here
revised) statements tr{ 1(C3)]=tr[ ¥(C})]=0 on p. 2 and —o”
® 0*=EE" in the fourth paragraph of the Appendix on p. 4.

In conclusion, (i) explicit quantum circuit decompositions
are very useful, and indeed necessary in order to take quan-
tum logic circuits to an engineering physics level and further
(ii) although it may be difficult at times to arrive at the de-
sired gate decomposition, a candidate decomposition may be
swiftly verified.
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