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Here we show how to generate a dark two-mode squeezed state of a trapped ion, employing a three-level ion
in a V configuration with a strong decay of the excited states. The degree of squeezing can be manipulated by
choosing the intensity of the driving fields. Our scheme is robust against the usual dissipation mechanism and
could be implemented with present-day technology. The validity of the approximations employed in this work
was tested by numerical calculations, which agreed completely with the analytical solutions.
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The recent experimental advances in quantum optics, es-
pecially in the domain of trapped ions, have allowed funda-
mental features of quantum mechanics, such as geometric
phases �1� and Bell inequalities �2�, to be investigated, as
well as offering potential applications in quantum computa-
tion �3,4� and teleportation processes �5�. With the advent of
quantum information theory, the generation of entangled
states has become essential for the implementation of quan-
tum communication protocols �3� and to improve our under-
standing of this nonlocal character of quantum theory �6�. In
particular, the two-mode vacuum squeezed �TMVS� state,
i.e., the original Einstein-Podolsky-Rosen �EPR� state �7�,
has attracted much attention because it can show a high de-
gree of entanglement �8� and can be useful for teleportation
of continuous variable states �9�. Success in generating the
TMVS state has been reported in the running wave domain,
with a parametric down conversion process �9�. However,
the experimental generation of this state in the cavity quan-
tum electrodynamics �QED� or trapped ion domains has not
been achieved so far, mainly due to the sensitivity of quan-
tum states to system-environment interaction. In the cavity
QED context, several theoretical schemes with three-level
atoms �10–12� or even two-level atoms, where the sideband
transition is used �13�, have been elaborated for the genera-
tion of the TMVS state. Also in the trapped ion domain we
find some schemes which allow the generation of this en-
tangled state through the manipulation of laser fields �14�.
However, none of the schemes cited above take into account
the system-environment interaction, which degrades the
quantum states so that, in general, the fidelity of the gener-
ated states decays quickly. In this scenario, reservoir engi-
neering appears to offer a possible way to round this problem
and can generate robust nonclassical states of the radiation
field or of the ionic motion. For example, using the atomic
decay of the internal levels of a single ion, in Ref. �15� the
authors showed how to construct a reservoir able to lead the
motion of the ion to a squeezed state asymptotically. Similar
schemes have been employed to protect various superposi-
tions of coherent states �16–18�, and in Ref. �19� the authors
showed how to protect any one-dimensional motional state
of an ion against decoherence. Also in this context of reser-
voir engineering, in Ref. �20� we find an effective master
equation that, in the stationary state, filters a specific number
state of the vibrational motion of a trapped ion. On the other
hand, reservoir engineering for multimode states has been
addressed only recently, and there are few theoretical

schemes so far. We can cite, for example, in the trapped ion
domain, theoretical schemes for the preparation of a pair
coherent state �21� and pair “cat” states �i.e., a superposition
of two pair coherent states separated in phase by �� �22�,
SU�1,1� intelligent states �23�, and dark SU�2� states of a
trapped ion �24�. Recently, Parkins et al. �25� have proposed
a scheme for the unconditional generation of a two-mode
squeezed state of two separated atomic ensembles. A similar
scheme was employed for the generation of the TMVS state
for the motion of two ions in different traps �26� or even a
single ion in a two-dimensional trap �27� inside an optical
cavity. In Ref. �28� it was shown theoretically how to gener-
ate this entangled state using an atomic reservoir for a two-
mode cavity. In Ref. �29�, the authors showed how a beam
splitter operation may be produced in a single ion in a two-
dimensional trap. After generating a robust squeezed state of
a single mode of a trapped ion �15�, this effective interaction
could be directly employed to generate a TMVS state, but in
this case the TMVS state would not be the steady state of the
system.

In this Brief Report we report a simple feasible scheme
for the unconditional generation of the TMVS state in a
single trapped ion. For this purpose we have employed a
two-dimensional harmonic motion �on the x and y axes� of
the center of mass of a single ion in a V configuration �see
Fig. 1�. The excited states, �1� and �2�, are coupled to the
ground state �0� through classical fields �propagating along
the x and y axes�. When the decay of the excited electronic
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FIG. 1. Atomic levels of the trapped ion. The ground state �0� is
coupled to the excited states �1� and �2� through laser fields.
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states is stronger than the effective coupling between the
vibrational and the internal ionic states, the steady state of
the vibrational modes, for convenient choices of the intensity
and frequency of the classical fields, turns out to be exactly
the TMVS state. Even in the presence of a thermal reservoir
for the ionic motion, we show that the generated TMVS state
is almost exactly the desired one. Such a scheme, based on
reservoir engineering, is robust against dissipative effects of
the vibrational modes and could be used to investigate ex-
perimentally the entanglement properties of this state. The
basic level configuration needed for the implementation of
our scheme is sketched in Fig. 1. We consider an ion with
mass m in a two-dimensional trap, driven by four classical
fields, two of them along the x axis and the other two along
the y axis, with complex amplitudes � j�= �� j��ei�j� ��� j��
being the Rabi frequency and � j� the phase of the classical
fields�, frequencies � j�, and wave numbers ki�, j=1,2 and
�=x ,y. The total Hamiltonian of the system is given by H
=H0+V�t�, with

H0 = ��1�11 + ��2�22 + ��xa
†a + ��yb

†b , �1a�

V�t� = ���1xe
ik1xx−i�1xt + �1ye

ik1yy−i�1yt��10

+ ���2xe
ik2xx−i�2xt + �2ye

ik2yy−i�2yt��20 + H.c.,

�1b�

where �1 and �2 stand for the atomic transition frequencies
between the states �0�↔ �1� and �0�↔ �2�, respectively, �lm
= �l��m�, l ,m=0,1 ,2, are the atomic operators, a �b� and a†

�b†� are the annihilation and creation operators of the vibra-
tional mode in the x �y� axis, with frequency �x ��y�, and H.c.
stands for Hermitian conjugate. In the Lamb-Dicke limit, i.e.,
	 j�
1, where 	 j�=kj�� �

2m� ja
, j=1,2, and �=x ,y, the above

Hamiltonian can be written in the interaction picture as

HI = ��1xe
i�1xt�1 + i	1x�ae−i�xt + a†ei�xt���10

+ ��1ye
−i�1yt�1 + i	1y�be−i�yt + b†ei�yt���10

+ ��2xe
i�2xt�1 + i	2x�ae−i�xt + a†ei�xt���20

+ �2ye
−i�2yt�1 + i	2y�be−i�yt + b†ei�yt���20 + H.c.,

�2�

with �i�=�i�−�i. Supposing �1x=−�2x=�x, �1y =−�2y =�y,
��i��� �	i��i��, and applying a rotating-wave approximation,
the effective Hamiltonian becomes

HI = �1x	a +
1y

1x
b†
�10 + �2y	b +

2x

2y
a†
�20 + H.c.,

�3�

where we have defined  j�� i	 j��i�. As in Ref. �25�, we can
apply a unitary transformation �̃=Sab

† ����Sab���, with Sab���
=exp���ab−�a†b†� and �=ei�r, this last being the two-mode
squeezing operator �r stands for the squeezing factor and
� the angle of squeezing�, to obtain the transformed
Hamiltonian

H̃I = Sab
† ���HISab��� = �̃aa�10 + �̃bb�20 + H.c., �4�

where ̃a=1x cosh�r�−e−i�1y sinh�r�, ̃b=2y cosh�r�
−e−i�2x sinh�r�, and we have assumed 1y cosh�r�
−ei�1x sinh�r�=2x cosh�r�−ei�2y sinh�r�=0, which im-
plies that

r = arctanh�1y

1x
� = arctanh�2x

2y
� �5�

and

� = �1x − �1y = − ��2x − �2y� . �6�

In this way, the squeezing factor r and the squeezing angle �
can be manipulated, respectively, by the intensities and the
phases � j� of the classical fields. When we take into account
the atomic decay of levels �1� and �2�, decay rates �1 and �2,
respectively, the dynamics of the system, in the transformed
picture, is determined by the master equation

�̇̃ = −
i

�
�H̃I, �̃� + L1�̃ + L2�̃ , �7�

where L1�̃=
�1

2 �2�01�̃�10−�11�̃− �̃�11� and L2�̃

=
�2

2 �2�02�̃�20−�22�̃− �̃�22�. The steady state of Eq. �7� is the
vacuum for both modes and �0� for the electronic state. We
have assumed a strong decay of both excited electronic states
once, as pointed out in Ref. �15�, we need two distinct dis-
sipation channels �L1�̃ and L2�̃� to protect a two-mode quan-
tum state of a trapped ion. �Without this assumption we can-
not ensure that the steady state of both modes, in the
transformed picture, is the vacuum state.� By applying the
reverse unitary transformation, it is readily shown that the
steady state of this system is

��t → �� = Sab����̃Sab
† ��� = Sab����0,0��0,0�Sab

† ��� � �0��0� ,
�8�

which is a pure state for the vibrational modes a and b, i.e.,
exactly the two-mode squeezed vacuum state ���
=�n tanhn�r� /cosh�r��n,n�ab. The degree of squeezing r is
determined by the amplitudes of the classical fields � j� since
tanh�r�= �

1y

1x
�= �

2x

2y
� and  j�� i	 j�� j�. This steady state does

not depend on the initial electronic or motional state of the
ion. Thus the ion does not have to be cooled to the funda-
mental state in order to prepare such a state. Also, as the
entangled state is generated through the engineered reservoir,
there is no requirement for a precisely timed interaction be-
tween the ion and the laser fields and the degree of entangle-
ment �r� is determined only by the ratio of the amplitudes of
the classical fields �see Eq. �5��. In this scheme, the TMVS
state is generated when the system reaches the steady state.
As pointed out in Refs. �25,26�, the time needed for the
system to reach the steady state is defined by the atomic

decay rate �. For �̃a��̃b���, this time will be of the order
of a few times 1 /�. In Ref. �27� Hua-Tang et al. showed how
to generate the TMVS state in a single ion in a two-
dimensional trap inside a nonideal optical cavity. Different
from our scheme, where the required dissipation channels are
played by the decay of the excited electronic levels, in Ref.
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�27� the required dissipation channel is played by the decay
of the cavity mode.

To check our result we solve numerically the master equa-
tion for our system in the interaction picture,

�̇ = −
i

�
�HI,�� + L1� + L2� + Lab� , �9�

where HI is given by Eq. �3�. In this equation we have intro-
duced the Liouvillian Lab� which describes the action of the
thermal reservoir on both atomic motions, i.e.,

Lab� = �
�=a,b

	 �n̄th + 1���

2
�2���† − �†�� − ��†��

+
n̄th��

2
�2�†�� − ��†� − ���†�
 , �10�

n̄th being the mean number of quanta of the thermal reservoir
and �a ��b� the decay rate of the vibrational mode x �y�. We
start with the ion in the internal ground state �0� and both
modes in the thermal state, �ab�0�=�a � �b, with �a=�b

=�n=0
� n̄n

�1+n̄�n+1 �n��n�, n̄ being the initial mean number of
quanta for each mode. To solve numerically the master equa-
tion �9� we adopt the same coupling, 1x=2y =, 1y =2x
= tanh�r�, and the same decay rate for both excited elec-
tronic states, �1=�2=�, and the same decay rate for the
vibrational modes, �a=�b=�. In Fig. 2, we have plotted the
mean number of quanta of mode a against time �the evolu-
tion of mode b is identical� for different values of � and for
n̄=2, n̄th=0.5, �=10, and r=1 �which implies tanh�r�= �

1y

1x
�

= �
2x

2y
��0.76�. For an ideal two-mode vacuum squeezed

state, the mean number of quanta for each mode is �na,b�
= tanh�r�2

1−tanh�r�2 , which for r=1 gives �na,b��1.4. We can see in

Fig. 2 that, for �=0.001 and �=0.01, a mean number of
quanta close to this value is reached asymptotically, but this
is not so for �=0.1, because of the competition between the
engineered and thermal reservoirs. Another parameter we
have used to analyze the fidelity of the generated state is the
total variance ���û�2+ ��v̂�2� of a pair of EPR-like operators
û= ���x̂a+ 1

� x̂b and v̂= ���p̂a− 1
� p̂b �8�, with x̂�= ��̂+ �̂†� /�2 and

p̂�=−i��̂− �̂†� /�2, �=a ,b. According to Ref. �8�, a two-
mode Gaussian state is entangled if and only if ���û�2

+ ��v̂�2���2+1 /�2. For �=1 and an ideal two-mode
vacuum squeezed state, the total variance is ���û�2+ ��v̂�2�
=2e−2r, which for r=1 gives us ���û�2+ ��v̂�2��0.27. As we
can see in Fig. 3, this value is reached and approximately
reached for �=0.001 and �=0.01, respectively. Again, for
�=0.1, the action of the thermal reservoir does not allow
the ideal generation of the two-mode entangled state. Instead
of applying unitary transformations to the density matrix �,
which led to Eq. �4�, and thus making it easy to find the
steady state, we could have proceeded by looking for an
engineered Liouvillian for the engineered reservoir, as in
Ref. �19�. For an atomic decay rate � much stronger than the
effective coupling  and the decay rate of the vibrational
modes �, the effective decay rate for the engineered reser-
voir is given by �eng=42 /�. In our numerical solution of
the master equation �9� we have used �=10, which results
in �eng=0.4, that is, of the same order of magnitude as �
=0.1. Then, for this value of �, the influence on the gener-
ated TMVS state of the natural reservoir is almost the same
as that of the engineered reservoir. Hence to minimize the
influence of the natural reservoirs, we must have �eng
=42 /���. For example, for 	=0.1 �Lamb-Dicke limit�,
�i�1 MHz and �1 MHz, which can easily be achieved
with current technology, we have ��0.1 MHz and �eng
=40 KHz, which is much stronger than �2 KHz, found in
present-day experiments. �The chosen values above also sat-
isfy the requirements for the approximations employed to
obtain the effective Hamiltonian: for �x�y 30 MHz
� �	��0.1 MHz and �1 MHz.�
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FIG. 2. �Color online� The time evolution of the mean number
of quanta, �a†a�, of the vibrational mode x for �=10, n̄th=0.5, r
=1, and three values of the decay rate of the vibrational modes: �
=0.001 �solid line�, �=0.01 �dotted line�, and �=0.1 �dashed-
dotted line�. The dashed line �straight line� represents the expected
value.
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FIG. 3. �Color online� The time evolution of the total variance
���û�2+ ��v̂�2� for the same parameters used in Fig. 2.
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Summarizing, we have presented a simple scheme to pre-
pare a two-mode vacuum squeezed state for the two-
dimensional �2D� motion of a trapped ion via the generation
of an artificial reservoir. Our scheme is robust against the
usual mechanism of dissipation and could be implemented
with the present-day technology and we hope it could be
employed to test experimentally the entanglement properties
of Gaussian states. The approximations employed in this
work were validated by numerical calculations, which

showed complete agreement with the analytical solutions. To
prove the engineered two-mode state a tomographic method
could be employed that enables the Wigner function of the
entangled state to be reconstructed �30�.
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