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We study the combined effect of delayed Raman response and bit pattern randomness on pulse propagation
in massive multichannel optical fiber communication systems. The propagation is described by a perturbed
stochastic nonlinear Schrödinger equation, which takes into account changes in pulse amplitude and frequency
as well as emission of continuous radiation. We perform extensive numerical simulations with the model and
analyze the dynamics of the frequency moments, the bit-error rate, and the mutual distribution of amplitude
and position. The results of our numerical simulations are in good agreement with theoretical predictions based
on the adiabatic perturbation approach.
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I. INTRODUCTION

The interplay between noisy phenomena and nonlinear
processes is a rich field of research that is of great interest in
a variety of disciplines including solid state physics �1�, tur-
bulence �2�, and optics �3�. One of the most important prob-
lems in this field concerns propagation of coherent patterns,
such as solitons and solitary waves, in the presence of noise
and/or disorder. An excellent example for systems where
noise and nonlinear effects play an important role in the dy-
namics of coherent patterns is provided by fiber optics com-
munication systems, which employ optical pulses to repre-
sent bits of information �3�. It is by now well-established that
the parameters characterizing the pulses in fiber optics com-
munication systems can exhibit non-Gaussian statistics
�4–8�. Yet, since optical fiber systems are only weakly non-
linear, it was commonly believed that the statistics of optical
pulses is very different from the statistics encountered in
strongly nonlinear systems, such as turbulence and chaotic
flow, where intermittent dynamics exists. However, a recent
study of pulse propagation in optical fiber systems with mul-
tiple frequency channels in the presence of delayed Raman
response obtained results that stand in sharp contrast to this
common belief �9�. This study focused on the interplay be-
tween Raman-induced energy exchange in pulse collisions
and randomness of pulse sequences in different frequency
channels. Taking into account these two effects it was shown
that the pulse parameters exhibit intermittent dynamic behav-
ior in the sense that their normalized moments grow expo-
nentially with propagation distance. Furthermore, it was
shown that this intermittent dynamic behavior has important
practical consequences, by leading to relatively large values
of the bit-error-rate �BER�, which is the probability for an
error at the output of the fiber line.

The results of the study in Ref. �9� were based on an
adiabatic perturbation procedure that neglects radiation emis-
sion effects. However, these effects can be especially impor-
tant for the fiber optics system under consideration. Indeed,
as we shall see below, the interplay between collision-

induced energy exchange and randomness of pulse se-
quences can be described as an effective disorder in the lin-
ear gain/loss coefficient, and the presence of gain can lead to
instability with respect to emission of continuous radiation.
Therefore it is essential to obtain an improved description of
pulse dynamics in the system that includes emission of con-
tinuous waves. In this paper we take this important task and
derive a perturbed stochastic nonlinear Schrödinger �NLS�
equation, which takes into account both changes in pulse
parameters and radiation emission effects. We employ this
model to analyze the dynamics of soliton parameters in com-
parison with the results of the simpler description of Ref. �9�
and to draw conclusions on the possibility to observe inter-
mittent dynamics in multichannel optical fiber communica-
tion systems.

In this study we consider conventional optical solitons as
an example for the pulses carrying the information for the
following reasons. First, the main effect of delayed Raman
response on a single collision between two optical pulses, the
Raman-induced energy exchange, is similar in linear trans-
mission �10�, conventional soliton transmission �11–14�, and
strongly dispersion-managed �DM� soliton transmission �15�.
Moreover, once the interplay between this collision-induced
energy exchange and bit-pattern randomness is considered,
the statistics of pulse energies is similar in all three transmis-
sion formats �10,14,16–20�. Second, propagation of conven-
tional solitons in an optical fiber is described by the NLS
equation, which is an integrable model �21�. Consequently,
perturbation theories employed for calculating the effects of
various impairments on the soliton are more rigorous in this
case than in nonintegrable cases, such as DM transmission.
Third, conventional optical solitons have traditionally been
considered as excellent candidates for information transmis-
sion in optical fibers �3�. Furthermore, recent advances in
distributed Raman amplification techniques allow for loss-
less and quasilossless transmission over distances compa-
rable with the standard interamplifier distance of fiber optics
communication systems �22,23�. In such lossless systems
one can expect that four-wave mixing effects would be neg-
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ligible �24,25�. It should also be mentioned that state-of-the-
art transmission experiments already use all-Raman distrib-
uted amplification �26,27�, which is the most suitable
amplification scheme for conventional solitons. The rest of
the Introduction is devoted to a summary of previous re-
search on the impact of delayed Raman response on pulse
propagation in massive multichannel communication sys-
tems.

The main effect of Raman scattering on a single soliton
propagating in the fiber is the self-frequency shift. This ef-
fect, which is caused by energy transfer from higher fre-
quency components of the pulse to its lower frequency com-
ponents, was first observed experimentally by Mitschke and
Mollenauer �28� and explained theoretically by Gordon �29�.
Following this discovery, the impact of delayed Raman re-
sponse on soliton propagation in optical fibers has drawn a
lot of attention �9–20,30–34�. Most significantly, the influ-
ence on two-soliton collisions was studied by numerical
simulations �11,32� as well as by theoretical analysis
�12,13,15�. These studies revealed that the main effect of a
single two-soliton collision in the presence of delayed Ra-
man response is an energy exchange between the colliding
pulses, which leads to a change of their amplitudes �Raman-
induced cross talk� �11–13,32�. The frequencies of the two
solitons was also found to change as a result of the collision
�Raman-induced cross-frequency shift� �11,13,32�. We em-
phasize that the same energy exchange takes place in colli-
sions between strongly DM solitons �15� as well as in colli-
sions between pulses in the linear transmission regime �10�.
Furthermore, the cross-frequency shift experienced by
strongly DM solitons is very similar to the one experienced
by conventional solitons �15�.

Raman-induced energy exchange in pulse collisions can
be beneficially employed in a variety of applications, includ-
ing amplification in fiber lines �35,36� and in tunable laser
sources �3,37�. However, it can also have negative effects
that impose severe limitations on the performance of multi-
channel communication systems. Indeed, it is known that the
Raman-induced energy exchange in a single interchannel
collision is independent of the frequency difference between
the channels. Consequently, the magnitude of the induced
energy shifts for a given pulse grows with the square of the
number of channels, a result that is valid for linear transmis-
sion �10�, conventional soliton transmission �19�, and
strongly DM soliton transmission �15�. Thus in a 100-
channel system, for example, these effects can be larger by a
factor of 2.5�103 compared with a two-channel system op-
erating at the same bit rate per channel. Furthermore, since
collisions with pulses from distant channels give the main
contribution to energy shifts, a complete description of the
dynamics must include interaction between pulses from all
frequency channels. In contrast, effects of other nonlinear
phenomena on pulse collisions are inversely proportional to
some integer power of the frequency difference, and their
cumulative influence can be adequately described by taking
into account only a few neighboring channels �3,38,39�.

Early studies of Raman cross talk in linear multichannel
transmission systems focused on the dependence of the in-
duced energy shifts on the total number of channels �40,41�.
The combined effects of Raman cross talk and randomness

of pulse sequences were also considered, and it was found
that the probability distribution function �PDF� of pulse am-
plitudes is lognormal �10,16–18�. However, these previous
studies ignored several important properties of the system,
which are essential for obtaining a correct dynamical model.
First, all other nonlinear processes affecting pulse propaga-
tion, such as the Raman-induced self- and cross-frequency
shifts were neglected. Second, strong coupling between am-
plitude dynamics and the dynamics of the other pulse param-
eters, such as frequency, position, and phase, was not taken
into account. Consequently, only the amplitude PDF was cal-
culated, whereas a correct evaluation of system performance
requires calculation of the mutual PDF of the pulse ampli-
tude and position. Third, most studies considered only dy-
namic impact on performance of high frequency channels
due to pulse decay, thus ignoring potential negative conse-
quences for intermediate and low frequency channels due to
large position shifts induced by relatively large amplitude
values.

A more complete description of pulse propagation, which
takes into account the three aforementioned factors, was de-
veloped in Refs. �9,14,19� for conventional solitons. In Ref.
�19� it was shown that the PDF of the soliton amplitude is
lognormal, and that the coupling between frequency dynam-
ics and amplitude dynamics leads to an exponential growth
of the first two normalized moments of the self- and cross-
frequency shifts with propagation distance. A perturbed NLS
equation describing the combined effects of bit pattern ran-
domness and Raman cross talk in a two-channel system was
derived in Ref. �14�. Numerical simulations with the latter
NLS model confirmed the analytic predictions of Ref. �19�.
Later on it was shown that the nth normalized moments of
the self- and cross-frequency shifts increase exponentially
with both propagation distance and n2 �9�. These results,
combined with similar results for the normalized moments of
the amplitude �19�, imply that the soliton parameters exhibit
intermittent dynamics in the sense that rare but violent events
associated with relatively large amplitudes and frequency
shifts become important. Furthermore, it was shown that the
dominant mechanism for error generation in the system at
long propagation distances is related to the intermittent dy-
namic behavior and is due to the Raman-induced cross-
frequency shift �9�. In this process the error is generated due
to large values of the frequency and position shifts induced
by large amplitude values. Thus it is very different from the
two mechanisms for error generation that are usually consid-
ered in fiber optics transmission, which are due to: �1� posi-
tion shift with almost constant amplitude and �2� amplitude
decay with almost constant position shift. As mentioned
above, the analysis in Ref. �9� ignored radiation emission
effects, which can be important in massive multichannel
transmission. In the current paper we take these effects into
account and derive a perturbed stochastic NLS model for
propagation in massive multichannel transmission systems,
where the number of channels is much larger than one. We
analyze the dynamics of the soliton parameters and the be-
havior of the bit-error-rate �BER� by extensive numerical
simulations with the model, and compare our results with the
analytic calculations of Ref. �9�.

The material in the rest of the paper is organized as fol-
lows. In Sec. II A, we construct a perturbed stochastic NLS

YEOJIN CHUNG AND AVNER PELEG PHYSICAL REVIEW A 77, 063835 �2008�

063835-2



model describing soliton propagation in massive multichan-
nel optical fiber transmission systems. The dynamics of the
soliton amplitude and frequency and of the BER are obtained
in Sec. II B by employing a standard adiabatic perturbation
procedure. In Sec. III, we analyze the results of numerical
simulations with the perturbed NLS model and compare
them with the predictions of the adiabatic perturbation
theory. Section IV is reserved for conclusions.

II. STOCHASTIC MODEL FOR PULSE PROPAGATION

A. Derivation of the model

Propagation of short pulses of light through an optical
fiber in the presence of delayed Raman response is described
by the following perturbed NLS equation �3�:

i�z� + �t
2� + 2���2� = − �R��t���2, �1�

where � is proportional to the envelope of the electric field,
z is propagation distance, and t is time in the retarded refer-
ence frame. The term −�R��t���2 represents the first order
approximation for the fiber’s delayed Raman response and �R
is the Raman coefficient �42�. When �R=0, the single-soliton
solution of Eq. �1� in a frequency channel � is given by

���t,z� = ��

exp�i���
cosh�x��

, �2�

where x�=���t−y�−2�z�, ��=��+��t−y��+ ���
2 −�2�z, and

�� ,��, and y� are the soliton amplitude, phase, and position,
respectively.

Consider the effects of delayed Raman response on a
single collision between two solitons from different fre-
quency channels. For simplicity, one of the two channels is
chosen as the reference channel with �=0 so that the fre-
quency difference between the two channels is �. We assume
that �R	1 and 1 / ���	1, which is the typical situation in
current multichannel transmission systems �43�. In addition,
we assume that the two solitons are initially well-separated
from each other in the temporal domain. Under these as-
sumptions we can employ the perturbation procedure, devel-
oped in Refs. �44–46�, and applied in Ref. �14� for the case
of delayed Raman response. Here we only give the outline of
the calculation and refer the interested reader to Ref. �14� for
details. In accordance with this perturbative approach, we
look for a two-pulse solution of Eq. �1� in the form

�two = �0 + �� + 
 , �3�

where �0 and �� are single-pulse solutions of Eq. �1� with
0��R	1 in channels 0 and �, respectively. The term 
 on
the right-hand side of Eq. �3� is a small correction to the
single-soliton solutions, which is solely due to collision ef-
fects. By analogy with the ideal collision case we take 
 to
be of the form


 = 
0 + 
� + ¯ , �4�

where 
0 and 
� represent collision-induced corrections in
channels 0 and �, and the ellipsis represents higher order
terms in other channels. Combining Eqs. �3� and �4� we see
that the total pulse in the reference channel is �0

total=�0

+
0. We substitute the relations �3� and �4� together with
�0�t ,z�=�0�x0�exp�i�0�, 
0�t ,z�=
0�x0�exp�i�0�, ���t ,z�
=���x��exp�i���, and 
��t ,z�=
��x��exp�i��� into Eq. �1�.
The resulting equation can be readily decomposed into an
equation for the evolution of 
0 and an equation for the
evolution of 
�. We focus attention on 
0 and remark that
the calculation of 
� is very similar. The equation for 
0 is
solved by integration with respect to z over the collision
region. Carrying out this integration one obtains that the
O��R� effect of the collision on the reference channel soliton
is given by

�
01
�1� = �� sgn����R�0�x0� , �5�

where the first subscript in �
01
�1� stands for the channel, the

second subscript indicates the combined order with respect
to both �R and 1 /�, and the superscript represents the order
in �R. This O��R� effect corresponds to an amplitude change
�11–14�

��0 = 2�0�� sgn����R, �6�

which is accompanied by emission of continuous radiation.
In a similar manner, one finds that the effect of the collision
in order �R /� is �14�

�
02
�1� =

4i���R

���
�t�0�x0� . �7�

�
02
�1� corresponds to a collision-induced frequency shift:

��0 = − �8�0
2���R�/�3���� , �8�

which is also accompanied by emission of continuous radia-
tion.

Let us describe propagation of a reference channel soliton
under many collisions with solitons from all other frequency
channels in a system with 2N+1 channels, where N�1. We
employ a mean-field approximation �14�, in which we as-
sume that the amplitudes of the solitons in the other channels
are constant. The random character of soliton sequences in
different channels is taken into account by defining discrete
random variables �ij, which describe the occupation state of
the jth time slot in the ith channel: �ij =1 with probability s if
the slot is occupied, and 0 with probability 1−s otherwise. It
follows that the nth moment of �ij satisfies ��ij

n �=s. We also
assume that the occupation states of different time slots are
uncorrelated: ��ij�i�j��=s2 if i� i� and j� j�. We denote by
�� the frequency difference between neighboring channels
and by T the time slot width. Therefore the distance traveled
by the reference channel soliton while passing two succes-
sive time slots in the nearby channels is �zc

�1�=T / �2���. The
O��R� effect of the collisions is taken into account by intro-
ducing a new perturbation term S1 into Eq. �1�. The term S1
is obtained by summing Eq. �5� over all collisions occurring
in the interval �zc

�1�, and dividing the result by �zc
�1�,

S1 � i�R�0ei�0	
i�0

sgn��i� 	
j=�k−1�i+1

ki
�ij

�zc
�1� , �9�

where k−1 and k are the indexes of the two successive time
slots in the i=−1 channel, and the outside sum is from −N to
N. We decompose the disorder �ij into an average part and a
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fluctuating part: �ij =s+ �̃ij, where ��̃ij�=0, ��̃ij�̃i�j��=s�1
−s��ii�� j j�, and �ii� is the Kronecker delta function. Substi-

tuting �ij =s+ �̃ij into Eq. �9� we obtain

S1 =
2is�R���0

T
	
i�0

sgn��i��i� + i�R��z��0, �10�

where the continuous disorder field ��z� is

��z� =
1

�zc
�1� 	

i�0
sgn��i� 	

j=�k−1�i+1

ki

�̃ij . �11�

Using Eq. �11� and the properties of �ij one can show that
���z��=0 and ���z���z���=DN��z−z��, where DN=N�N
+1�D2, D2=2��s�1−s�T−1, and ��z� is the Dirac delta func-
tion. Notice that the first term on the right-hand side of Eq.
�10� is zero due to symmetry. Even if this term is not zero, it
can be compensated by appropriately adjusting the gain of
the amplifiers. Therefore the O��R� effect of the collisions is
described by

S1 = i�R��z��0. �12�

The O��R /�� effect of the collisions is calculated in a
similar manner. We first sum Eq. �7� over all collisions oc-
curring within the interval �zc

�1�:

S̃2 � − c1�t�0 − 4�R�t�0	
i�0

1

��i�
	

j=�k−1�i+1

ki
�̃ij

�zc
�1� , �13�

where c1= �16N�Rs� /T. The second term on the right-
hand side of Eq. �13� can be estimated as
−8�D2HN / �T����1/2�R�t�0, where HN=	 j=1

N 1 / j. Conse-
quently, for a typical multichannel system the coefficient in
front of �R�t�0 in this term is of order 1 or smaller, whereas
for the first term this coefficient is of order N. We therefore
neglect the second term on the right-hand side of Eq. �13�,
and set S̃2=−c1�t�0. Using the fact that for a weakly per-
turbed soliton ei�0�t�0=�t�0− i�0�0 we arrive at

S2 � ei�0S̃2 = − c1�t�0 + ic1�0�0, �14�

where �0 is the frequency of the perturbed reference channel
soliton. Substituting S1 and S2 into Eq. �1� and replacing �0
with � we obtain

i�z� + �t
2� + 2���2� = − �R��t���2 + i�R��z�� − c1�t�

+ ic1�0�z�� , �15�

which is the stochastic model describing propagation of the
reference channel soliton in the fiber under many collisions.

We remark that in Ref. �14� the second term on the right-
hand side of Eq. �13� was taken into account, whereas the
first term was neglected. Therefore the perturbed NLS model
derived in Ref. �14� is unsuitable for describing pulse dy-
namics in massive multichannel transmission. We also note
that in deriving Eq. �15� we neglect the position shift induced
by the influence of Kerr nonlinearity on the collisions. This
approximation is justified in the Appendix, where we show
that the magnitude of the position shift induced by the terms
on the right-hand side of Eq. �15� is much larger compared

with the position shift due to Kerr nonlinearity for interme-
diate and large propagation distances.

B. Statistics of soliton parameters and BER calculation

The evolution of the parameters of the reference channel
soliton with propagation distance can be obtained by em-
ploying the standard adiabatic perturbation theory �47,48�.
Employing this perturbation procedure we obtain the follow-
ing equations for the soliton amplitude and frequency:

d�0

dz
= 2�R��z��0�z� �16�

and

d�0

dz
= −

8

15
�R�0

4�z� −
2

3
c1�0

2�z� . �17�

Notice that the right-hand side of Eq. �16� is contributed
solely by the second term on the right-hand side of Eq. �15�,
i.e., the term describing the Raman cross talk effects. The
first and second terms on the right-hand side of Eq. �17�
describe the Raman-induced self- and cross-frequency shifts,
and are contributed by the first and third terms on the right-
hand side of Eq. �15�, respectively.

Integrating Eq. �16� over z we obtain

�0�z� = �0�0�exp�2�Rx�z�� , �18�

where x�z�=
0
zdz���z�� and �0�0� is the initial amplitude. Ac-

cording to the central limit theorem, the PDF of x�z� ap-
proaches a Gaussian PDF with �x�z��=0 and �x2�z��=DNz.
As a result, the PDF of the soliton amplitude approaches a
lognormal PDF:

F��0� = �8�DN�R
2z�−1/2�0

−1 exp�−
ln2��0/�0�0��

8DN�R
2z

� .

�19�

The lognormal distribution is very different from the Gauss-
ian distribution, and this difference is significant already in
the main body of the distribution �14�. Moreover, the normal-
ized moments of the lognormal PDF grow exponentially
with propagation distance, from which it follows that the
soliton amplitude exhibits intermittent dynamic behavior �9�.

The dynamic evolution of the soliton frequency is given
by

�0�z� = �0
�s��z� + �0

�c��z� , �20�

where

�0
�s��z� = −

8

15
�R


0

z

dz��0
4�z�� �21�

is the self-frequency shift and

�0
�c��z� = −

32N�Rs

3T



0

z

dz��0
2�z�� �22�

is the cross-frequency shift. The nth moments of �0
�s� and �0

�c�

can be calculated from �9�
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��0
�s�n�z�� = �−

8

15
�R�0

4�0��n

n ! �
m=1

n 

0

zm−1

dzm

�exp�32DN�R
2�2m − 1�zm� �23�

and

��0
�c�n�z�� = �−

2

3
c1�0

2�0��n

n ! �
m=1

n 

0

zm−1

dzm

�exp�8DN�R
2�2m − 1�zm� , �24�

where z0=z. By carrying out the integration in Eqs. �23� and
�24� one can show that ��0

�s�n�z�� and ��0
�c�n�z�� are given

by sums over exponential terms of the form
Km exp�a�s,c�m2DN�R

2z�, where a�s�=32, a�c�=8, 0�m�n,
and the Km are constants. Furthermore, the leading contribu-
tions to the normalized moments ��0

�s�n�z�� / ��0
�s��z��n and

��0
�c�n�z�� / ��0

�c��z��n are exponentially increasing with both z
and n2. As we shall see in the next section, the normalized
fourth moments of �0

�s�, �0
�c�, and �0 increase much faster

with increasing propagation distance compared with the nor-
malized second and third moments, which is a consequence
of the intermittent nature of the dynamics.

In order to evaluate the system’s BER we need to consider
the main dynamical mechanisms leading to error generation.
One mechanism, which has been widely studied in relation
with Raman cross talk �10,16–18,40,41�, is due to pulse de-
cay induced by loss of energy in collisions. This mechanism
is associated with the small-� tail of the amplitude PDF.
Another mechanism, which has only recently been studied in
relation with Raman cross talk, is due to the interplay be-
tween frequency �and position� dynamics and amplitude dy-
namics �9�. In this case, the error is generated due to large
values of the position shift, which are associated with large
frequency shifts, and induced by relatively large values of
the soliton amplitude. Notice that the lognormal statistics of
the soliton amplitude leads to further enhancement of the
BER contribution from the latter mechanism, since the
large-� tail of the lognormal PDF lies above the correspond-
ing tail of the Gaussian PDF. We are therefore interested in
the soliton position shift, which is given by

y0�z� = y0
�s��z� + y0

�c��z� , �25�

where

y0
�s��z� = −

16�R

15



0

z

dz�

0

z�
dz��0

4�z�� �26�

and

y0
�c��z� = −

64N�Rs

3T



0

z

dz�

0

z�
dz��0

2�z�� �27�

are the contributions from the self- and cross-frequency
shifts, respectively. The position shift with a fixed amplitude
�0�z�=�0�0�=1 is ỹ0�z�= ỹ0

�s��z�+ ỹ0
�c��z�, where ỹ0

�s��z�
=−�8�Rz2� /15 and ỹ0

�c��z�=−�32N�Rsz2� / �3T�. The relative
position shift is �y0�z�=�y0

�s��z�+�y0
�c��z�, where �y0

�s��z�
=y0

�s��z�− ỹ0
�s��z� and �y0

�c��z�=y0
�c��z�− ỹ0

�c��z�. We assume that

ỹ0 can be compensated by employing filters. Therefore the
energy measured by the detector at a distance z is

I��0,�y0� = �0
2


−T/2

T/2

dt cosh−2��0�t − �y0�� . �28�

An occupied time slot is considered to be in error if
I��0 ,�y0�� I�z=0� /2�1. We estimate the BER by numeri-
cally integrating Eqs. �26� and �27� coupled to Eq. �18� for
different realizations of the disorder ��z� and calculating the
fraction of errored occupied time slots. The z dependence of
the BER obtained by this calculation is described in Sec. III.

III. NUMERICAL SIMULATIONS

In the previous section we calculated the statistics of the
soliton parameters and the BER by employing the adiabatic
perturbation theory and neglecting effects associated with
emission of continuous radiation. We note that the latter ef-
fects can be particularly important for the system described
by Eq. �15�. Indeed, the second term on the right-hand side
of this equation has the form of disorder in the linear gain/
loss coefficient. Such a term can lead to instability with re-
spect to emission of continuous radiation, which is of second
order in �R. It is therefore important to compare the results
obtained in the previous section by the reduced adiabatic
method with results of numerical simulations with the more
complete model, described by Eq. �15�.

Notice that the fourth term on the right-hand side of Eq.
�15� includes �0. Since both �0 and c1 are of order �R this
term is of order �R

2 , whereas the other perturbation terms in
the equation are of order �R. Moreover, since �0 is a
z-dependent random variable it is computationally com-
plicated to solve Eq. �15� in its exact form. To overcome
this problem, we replace �0 in Eq. �15� with its value for the

case where the amplitude is fixed and equal to 1: �̃0�z�
=−�32N�Rsz� / �3T�− �8�Rz� /15. Thus the perturbed NLS
which we solve numerically is

i�z� + �t
2� + 2���2� = − �R��t���2 + i�R��z�� − c1�t�

+ ic1�̃0�z�� . �29�

The initial condition is taken in the form of an ideal soliton:
��t ,z=0�=cosh−1�t�, with �0�0�=1, �0�0�=0, y0�0�=0, and
�0�0�=0.

We perform Monte Carlo simulations with Eq. �29� with
about 5�104 disorder realizations. The equation is inte-
grated by employing the split-step method with periodic
boundary conditions. Numerical errors resulting from radia-
tion emission and the use of periodic boundary conditions
are overcome by applying artificial damping at the vicinity of
the boundaries of the computational domain. The size of the
domain is taken to be −100� t�100 so that the absorbing
layers do not affect the dynamics of the soliton pulses. The t
step and z step are taken as �t=0.048 and �z=0.001, respec-
tively.

We focus attention on a transmission system with 101
channels operating at 10 Gbits/s per channel. It should be
emphasized that state-of-the-art experiments with dispersion-
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managed solitons demonstrated multichannel transmission
with 109 channels at 10 Gbits/s per channel over a distance
of 2�104 km �26�. Several other experiments achieved total
bit-rate capacities exceeding 1 Tbits/s for shorter propagation
distances �27,49,50�. We use the following set of parameters,
which is similar to the one used in multichannel transmission
experiments with conventional solitons �43�. Assuming that
T=5, ��=10, s=1 /2, and �i�0�=1 for all channels, the
pulse width is 20 ps, �R=3�10−4, the channel spacing is
75 GHz, and D2=1. Taking �2=−1 ps2 /km, the soliton peak
power is P0=1.25 mW. For these values the width of the
lognormal PDF in Eq. �19�, which represents the strength of
disorder effects, is 8DN�R

2z=1.8�10−3z for the reference
channel. For z=25, corresponding to transmission over
2�104 km, 8DN�R

2z=0.046.
The z dependences of the n=2,3 ,4 normalized moments

of �0
�s�, �0

�c�, and �0 as obtained by numerical solution of the
perturbed NLS are shown in Fig. 1 together with the results
of the adiabatic perturbation theory. The numerical simula-
tion results for �0

�s� and �0
�c� were obtained by solving the

reduced models

i�z� + �t
2� + 2���2� = − �R��t���2 + i�R��z�� �30�

and

i�z� + �t
2� + 2���2� = i�R��z�� − c1�t� + ic1�̃0�z��

�31�

with �̃0�z�=−�32N�Rsz� / �3T�, respectively. The results ob-
tained by numerical solution of the perturbed NLS equation
are in good agreement with those obtained by the adiabatic
perturbation theory. Moreover, one can see that the fourth
moments of �0

�s�, �0
�c�, and �0 increase much faster with in-

creasing z compared with the second and third moments, in
accordance with the intermittent nature of the dynamics. In
addition, the normalized moments of �0

�s� grow faster than
those of �0

�c�. This can be explained by noting that the rate of
change of �0

�s� is proportional to �0
4, whereas d�0

�c� /dz is pro-
portional to �0

2. Notice, however, that the values of the nor-
malized moments of the total frequency shift �0 are very
close to those of �0

�c�. This is due to the fact that for the
system described above �0

�c� is typically much larger than
�0

�s�.
The BER of the reference channel is calculated by the

procedure described in Sec. II B. That is, we calculate the
measured intensity using Eq. �28�, and declare an occupied
time slot to be in error if I��0 ,�y0�� I�z=0� /2�1. The z
dependence of the BER obtained by numerical integration of
Eq. �29� is shown in Fig. 2 together with the result obtained
by employing the adiabatic perturbation procedure. The
agreement between the perturbed NLS simulations and the
corresponding adiabatic theory calculations is good. Further-
more, it is seen that the BER attains relatively large values,
which range from about 3�10−5 for z=16 �X=1.28
�104 km� to about 10−1 at z=25.0 �X=2�104 km�. We
remark that the BER values obtained by integrating Eq. �31�,
which takes into account only y0

�c�, are very close to the ones
obtained by solving Eq. �29�, which takes into account both
y0

�s� and y0
�c�. In fact, since the difference between the two
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FIG. 1. �Color online� Normalized moments of the reference
channel soliton’s cross-frequency shift �a�, self-frequency shift �b�,
and total frequency shift �c� vs propagation distance z for a multi-
channel system with 101 channels at 10 Gbits/s per channel. The
solid, dashed-dotted, and dashed lines correspond to the n=2,3 ,4
normalized moments obtained by the adiabatic perturbation method,
using Eqs. �22� and �24� in �a�, Eqs. �21� and �23� in �b�, and Eqs.
�20�–�22� in �c�. The circles, squares, and crosses represent the n
=2,3 ,4 normalized moments obtained by numerical integration of
Eq. �31� in �a�, Eq. �30� in �b�, and Eq. �29� in �c�.
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BER curves is indistinguishable on the scale of Fig. 2, we
choose to omit the result obtained with Eq. �31�. The fact
that the two models �Eqs. �29� and �31�� give such close
BER values is explained by noting that the cross-frequency
shift is typically much larger than the self-frequency shift for
the multichannel system considered here.

As explained in Sec. II and in Ref. �9�, the two main
mechanisms for error generation in the multichannel system
are �1� pulse decay and �2� large position shifts. While the
first mechanism is associated with small pulse amplitudes,
the second one is predominantly due to large amplitudes.
Hence in order to better understand the roles of these two
error-generating mechanisms one has to study the mutual
PDF G��0 ,�y0�. Figure 3 shows G��0 ,�y0� for the refer-
ence channel soliton at the final propagation distance z=25.
The result obtained by numerical solution of Eq. �29� �Fig.
3�a�� is in good agreement with the prediction of the adia-
batic perturbation theory �Fig. 3�b��. Moreover, the mutual
distribution function is strongly asymmetric about the �y0
=0 and �0=1 axes. This asymmetry is a direct consequence
of the strong coupling between position dynamics and am-
plitude dynamics, as can be seen from Eqs. �26� and �27�. We
emphasize that this behavior is very different from the one
observed for soliton propagation in single-channel systems in
the presence of amplifier noise, where the mutual PDF is
approximately symmetric with respect to both �y0=0 and
�0=1 �6,8�. We also note that the mutual PDF shown in Fig.
3 is skewed toward larger �0 values, which can be explained
by the skewed character of the lognormal distribution F��0�.

IV. CONCLUSIONS

We investigated propagation of optical pulses in massive
multichannel optical fiber communication systems, focusing
on the interplay between delayed Raman response and bit

pattern randomness. We derived a mean-field description of
the propagation, which is given by a perturbed stochastic
NLS equation that takes into account changes in pulse en-
ergy and momentum. This perturbed NLS model includes the
effects of emission of continuous radiation, which were ne-
glected in the simpler adiabatic perturbative approach used
in Ref. �9�. The inclusion of radiation emission effects is
especially important for massive multichannel setups, since
the interplay between Raman cross talk and bit pattern ran-
domness can be described as disorder in the linear gain co-
efficient, and such disorder leads to an instability of the ra-
diative modes. Our numerical simulations with the stochastic
NLS model show that the normalized moments of the soliton
frequency shift grow exponentially with propagation dis-
tance. Furthermore, the dynamics leads to relatively high
values of the BER at intermediate and large propagation dis-
tances and to an asymmetric form of the mutual PDF of
amplitude and position. The main contribution to the soli-
ton’s position shift and BER is due to the s-dependent part of
the Raman-induced cross-frequency shift, an effect that was
neglected in a previous treatment of two-channel systems
�14�. The numerical simulations results are compared with
predictions of the reduced adiabatic perturbation theory. This
comparison is a crucial step toward achieving a full under-
standing of the problem, since the soliton’s position and am-
plitude shifts at intermediate and long propagation distances
are relatively large, and there is no guarantee that a reduced
perturbative description would hold in this case. Based on
the good agreement between simulations and perturbation
theory we conclude that the interplay between Raman scat-
tering and bit pattern randomness plays a very important role
in massive multichannel transmission systems.

The exponential growth of the normalized moments of
soliton parameters is indicative of intermittent dynamics in
the following sense: for certain realizations of pulse se-
quences �in the other frequency channels� the reference chan-
nel soliton can experience relatively large changes in its am-
plitude, which lead to relatively large position shifts and
BER values. This dynamic behavior is quite surprising, since
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FIG. 2. �Color online� The z dependence of the BER for the
reference channel in a 101-channel transmission system operating at
10 Gbits/s per channel. The circles represent the adiabatic perturba-
tion prediction obtained by using Eqs. �18�, �26�, and �27�, while
the stars correspond to the result of numerically integrating Eq.
�29�.
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FIG. 3. Mutual PDF G��0 ,�y0� for the reference channel soli-
ton at z=25 as obtained by numerical integration of Eq. �29� �a�,
and as predicted by the adiabatic perturbation method �b�.
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intermittency is usually associated with strongly nonlinear
systems such as turbulence and chaotic flow �2�, whereas
optical fiber systems are only weakly nonlinear. In a recent
paper �51�, one of the authors suggested that this unexpected
similarity might not be coincidental, but rather a conse-
quence of the similarity between the dynamic behavior of the
soliton amplitude in the fiber optics system and the behavior
of the local average of energy dissipation in turbulent flow.

Note that the dynamic behavior described in the current
paper is not limited to conventional optical solitons. Indeed,
it is known that the effects of delayed Raman response on a
single collision between two strongly DM solitons are very
similar to the effects in the conventional soliton case �15�.
Therefore we expect that similar results would hold for DM
multichannel transmission systems as well. A different type
of nonlinearity that can lead to similar dynamics is due to
nonlinear loss/gain. In this case pulse propagation is de-
scribed by a perturbed NLS equation, in which the
−�R��t���2 term is replaced by ��c���2�, where �c is the
cubic nonlinear loss/gain coefficient. It can be shown that the
main effect of a fast collision in the presence of nonlinear
loss/gain is a change in the soliton amplitude, which is given
by an equation of the form �6� with sgn����R replaced by
�2�c / ���. If additional perturbations that affect the soliton
frequency and position exist, the dynamics of the frequency
or position will usually be coupled to the amplitude dynam-
ics in a manner similar to the one described in Sec. II. Con-
sequently, our results should also be applicable for propaga-
tion of NLS solitons in systems with nonlinear loss or gain.

We conclude by remarking that the stochastic NLS model
developed in the current paper is still an approximate de-
scription of the actual dynamics. Thus it would be interesting
to compare the results of numerical simulations with this
stochastic model with full-scale numerical simulations with
Eq. �1� and random initial conditions in all channels.

APPENDIX: COMPARISON OF POSITION SHIFTS
INDUCED BY DELAYED RAMAN RESPONSE

AND KERR NONLINEARITY

In this Appendix we compare the magnitudes of the posi-
tion shift induced by the Raman cross-frequency shift and
the position shift caused due to the influence of Kerr nonlin-
earity on the collisions. The latter effect is considered to be
dominant in few-channel soliton-based transmission systems
�43�. The comparison is done by calculating the average of
the second moment for these two positions shifts.

1. Position shift due to Kerr nonlinearity

The position shift experienced by a reference-channel
soliton in a single collision with a �-channel soliton in the
presence of Kerr nonlinearity is given by �see, e.g., �14,43��

�y0
�K� =

4 sgn�����

�2 . �A1�

The dynamic equation for the position of the reference chan-
nel soliton is obtained by summing over all collisions occur-

ring within the interval �zc
�1�, dividing by �zc

�1�, and going to
the continuum limit. This calculation yields

dy0
�K�

dz
=

8s

T��
	
i�0

sgn��i�
�i�

+ 4��z� , �A2�

where

��z� =
1

�zc
�1� 	

i�0

sgn��i�
�i

2 	
j=�k−1�i+1

ki

�̃ij . �A3�

From Eq. �A3� it follows that ���z���0 and ���z���z���
=D���z−z��, where

D� =
4s�1 − s�

T��3 	
i=1

N
1

i3 . �A4�

Notice that the first term on the right-hand side of Eq. �A2� is
zero due to symmetry. Even when this term is nonzero, it is
the same for all pulses within the same channel, and thus can
be compensated for. Therefore the stochastic effects of
collision-induced position shifts due to Kerr nonlinearity are
described by

y0
�K��z� = 4


0

z

dz���z�� . �A5�

Employing Eq. �A3� and the central limit theorem we obtain
that the PDF of y0

�K��z� approaches a Gaussian distribution
with �y0

�K��z���0, and

�y0
�K�2�z�� = 16D�z . �A6�

Notice that �y0
�K�2�z�� grows only linearly with increasing z

and decreases like ��−3 with increasing ��.

2. Position shift due to the Raman cross-frequency shift

We now estimate the magnitude of the position shift in-
duced by the Raman cross-frequency shift. From Eq. �27�
and the definition of �y0

�c��z� it follows that

��y0
�c�2�z�� = �y0

�c�2�z�� − 2ỹ0
�c��z��y0

�c��z�� + ỹ0
�c�2�z� .

�A7�

The term �y0
�c�2�z�� is given by

�y0
�c�2�z�� = �64N�Rs

3T
�2


0

z

dz1

0

z

dz3

0

z1

dz2

0

z3

dz4

���0
2�z2��0

2�z4�� . �A8�

Since the expression on the right-hand side of Eq. �A8� is
invariant under the exchange of z1 with z3 and z2 with z4 we
obtain

�y0
�c�2�z�� = 2�64N�Rs

3T
�2


0

z

dz1

0

z1

dz3

0

z1

dz2

0

z3

dz4

���0
2�z2��0

2�z4�� . �A9�

The two inner integrals can be decomposed in the following
manner:
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0

z1

dz2

0

z3

dz4��0
2�z2��0

2�z4��

= 2

0

z3

dz2

0

z2

dz4��0
2�z2��0

2�z4��

+ 

z3

z1

dz2

0

z3

dz4��0
2�z2��0

2�z4�� . �A10�

Notice that in both double integrals in Eq. �A10� z2�z4 in
the inner integral. Therefore we can use

��0
2�z2��0

2�z4�� = �0
4�0�exp�8DN�R

2�z2 + 3z4�� . �A11�

Substituting Eqs. �A9�–�A11� into Eq. �A8� and performing
integration yields

�y0
�c�2�z�� = � Ns

36TDN
2 �R

3 �2

�5 exp�32DN�R
2z� − 32 exp�8DN�R

2z�

��1 + 24DN�R
2z� + 9�3 + 96DN�R

2z + 512DN
2 �R

4z2�� ,

�A12�

where �0�0�=1 is used. Notice that the first term inside the
square brackets on the right-hand side of Eq. �A12� grows
exponentially with both N2 and z. The second and third terms
on the right-hand side of Eq. �A7� are given by

2ỹ0
�c��z��y0

�c��z�� = � 8Ns

3TDN�R
�2

z2�exp�8DN�R
2z� − 8DN�R

2z − 1�

�A13�

and

ỹ0
�c�2�z� = �32N�Rs

3T
�2

z4. �A14�

Using Eqs. �A7� and �A12�–�A14� we calculate the z depen-
dence of ��y0

�c�2� and compare the result with the z depen-
dence of �y0

�K�2�. This comparison is performed for the fol-
lowing three sets of parameters: �A� ��=10 and N=50, �B�

��=7 and N=50, and �C� ��=7 and N=64, where the other
parameters are the same as the ones considered in Sec. III.
Setup A corresponds to the 101-channel system discussed in
Sec. III, setup B to a 101-channel system with 50 GHz chan-
nel spacing, and setup C to a 129-channel system with 50
GHz channel spacing. The comparison is shown in Fig. 4. It
is seen that ��y0

�c�2� exceeds �y0
�K�2� for intermediate propa-

gation distances for all three setups. Moreover, for large
propagation distances �y0

�K�2� is smaller than ��y0
�c�2� by more

than an order of magnitude. In addition, while ��y0
�c�2� in-

creases significantly with an increasing number of channels,
the N dependence of ��y0

�K�2� is un-noticeable on the scale of
Fig. 4. We therefore conclude that the Raman-induced cross-
frequency shift gives the dominant contribution to the total
position shift in massive multichannel soliton-based trans-
mission systems at intermediate and large propagation dis-
tances.
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