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A high-gain free-electron laser is modeled using an expansion of the radiation field in terms of guided
Laguerre-Gaussian modes of a virtual dielectric waveguide �E. Hemsing, A. Gover, and J. Rosenzweig, pre-
ceding paper, Phys Rev. A 77, 063830 �2008��. The radiation profile evolution, power gain, and detuning
efficiency characteristics are investigated for seeding with fundamental Gaussian and higher-order Laguerre-
Gaussian input modes on a Gaussian e-beam in the collective regime. The full wave evolution solution at
different seed radiation injection conditions results in determination of the optimal waist size and waist position
of the seed radiation beam for maximum power coupling efficiency. Results for guided mode evolution and
power gain are shown to be consistent with simulations performed with the code GENESIS 1.3. The amplifica-
tion and spontaneous generation of FEL radiation with orbital angular momentum is also considered.
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I. INTRODUCTION

In paper I of this work �1�, a set of coupled excitation
equations is derived for the slowly growing mode coeffi-
cients of the electromagnetic �EM� signal field of a high-gain
free-electron laser �FEL� with the effects of longitudinal
space-charge waves included. The formulation utilizes an ex-
pansion of the time-harmonic EM fields in terms of eigen-
modes of a weakly guiding virtual dielectric medium as a
mechanism to describe the propagation of radiation guided
by the source electron beam �e-beam� during exponential
gain. The dielectric in the model is referred to as “virtual”
since no such external waveguide structure exists in the
physical system. The dielectric is imagined to surround the
axially propagating e-beam and is used as a tool to describe
guided waves over many diffracting Rayleigh lengths. This
approach is also motivated by the variety of functional forms
that can be obtained for the expansion modes, which are
determined by the choice of transverse spatial dependence of
the dielectric refractive index. This feature is attractive be-
cause it permits the freedom to choose a particular basis set
in which the coupling and propagation of specific mode
structures can be investigated directly. It also makes it pos-
sible to study a variety of FEL configurations with arbitrarily
shaped e-beam current and density cross sections. The ex-
pansion modes can also be selected to be close in form to the
modes describing the actual FEL system �if they are approxi-
mately known, or can be found through iteration�, thereby
reducing the number of modes required to converge the so-
lution to the correct value and thus boosting the computa-
tional efficiency.

Here we focus on a complete orthogonal guided basis set
of Laguerre-Gaussian �LG� modes which are of particular
interest since they are ubiquitous in descriptions of paraxial
wave propagation in circularly symmetric structures. LG
modes are related by a simple transformation to Hermite-
Gaussian modes, which also satisfy the paraxial wave equa-
tion and are common in descriptions of Gaussian optics in

systems with rectilinear symmetries. These functions are
both available in the guided mode description by choosing a
quadratic index medium �QIM� for the form refractive index
of the virtual dielectric. This correspondence establishes a
useful connection between the guided modes of the FEL and
naturally occurring free-space modes, and enables a straight-
forward examination of the propagation of radiation exiting
the undulator, as well as investigation of the coupling char-
acteristics of individual modes in the FEL interaction.

The utility of the LG modes as a convenient FEL model-
ing basis is further realized in the exploration of specific
coupling to higher-order spatial modes. This is of increasing
recent interest, particularly due to the development of high-
brightness, x-ray FELs in which spatial structure in the trans-
verse intensity distribution can be used for investigations of
molecular and atomic scale processes. Hollow modes, in the
form of l�0 azimuthal LG modes, have recently been a
topic of intense research since such modes are known to
possess l� units of orbital angular momentum �OAM� per
photon as a consequence of an azimuthal component of the
linear momentum �2�. For next-generation x-ray FELs that
will have the ability to probe the structure of matter on short
length and time scales, the generation of such modes may be
relevant, since the OAM can be transferred from the photon
field to the sample material. Such interactions using conven-
tional laser sources have been previously shown to drive tar-
get particles to rotate or orbit the EM beam axis, allowing
the possibility of light driven mechanical devices, or the use
of torque from photons as a exploratory tool �3�. Recent
work has shown that vortex beams that contain OAM modes
can be generated using mode-conversion elements placed in
the x-ray beam path �4�. However, modern high power x-ray
FELs may limit the utility of such extrinsic methods due to
damage constraints. For this reason, it is of interest to ex-
plore the possibility of generating OAM modes by intrinsic
coupling to the source e-beam. In addition, in visible very
high average power FELs, it may be advantageous to utilize
higher order modes that not only have larger angular spread,
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but also have a null in the intensity on-axis. In this way, one
greatly eases the problem of thermal loading at the first ra-
diation beam-directing mirror optic downstream of undulator
�5,6�. The coupling to these modes, as well as to other
higher-order paraxial modes, can be investigated directly by
an expansion of the high-gain FEL radiation field in terms of
guided LG eigenmodes of a QIM.

In this paper, the coupled excitation equations of the gen-
eralized virtual dielectric expansion description are specified
and solved for an LG expansion basis. Results are compared
to numerical simulations performed using the FEL code GEN-

ESIS 1.3 �7�. The radiation fields are examined in the context
of differential power gain, spot size evolution, input seed
coupling efficiency, detuning efficiency enhancement, and
higher-order mode coupling. The LG Gaussian mode basis
also provides a straightforward way to examine the accuracy
of the single Gaussian mode approximation �SGM� devel-
oped in paper I for predicting the supermode r.m.s. spot size.
The coupling to, and in situ generation of, dominant higher-
order LG signal fields that contain OAM at the fundamental
operating frequency is also suggested and briefly examined.

II. COUPLED EXCITATION EQUATIONS

In the formulation derived in paper I, the time-harmonic
signal fields of the FEL are approximated as dominantly
transverse, forward propagating guided waves, and are writ-
ten as a sum over basis modes with slowly growing coeffi-
cient amplitudes

Ẽ� ��r� = �
q

Cq�z�E�̃ �q�r��eikzqz. �1�

The axial wave number for each mode q is taken to be real
here and is given by kzq. In a linear model, the e-beam charge
density is written as n�r� , t�=n0f�r��+Re�ñ1�r�e−i�t� where
n0 is the on-axis electron density and f�r�� is the transverse
density profile of the e-beam. The density modulation ñ1�r�
is also expanded in terms of the transverse waveguide eigen-
modes

ñ1�r� =
k�0

e
�

q

Bq�z�Ẽ�q�r��ei��/vz0
�z, �2�

where Bq�z� is the slowly varying amplitude of the density
modulation with transverse dependence given by the mode

function Ẽ�q�r��. This expansion allows the density wave
with phase dependence ��z /vz0

− t� to be described in terms
of the orthogonal field basis functions. The coupled excita-
tion equations for the FEL interaction derived in paper I are

d

dz
Cq�z� = − i�qĝq

�Bq�z�ei�qz − i�
q�

�q,q�
d Cq��z�ei��q�−�q�z,

d2

dz2Bq�z� + �p
2�

j

Fq,jBj�z� = −
1

ĝq
��q

�
q�

Qq,q�Cq��z�e−i�q�z,

�3�

where �q=� /vz0
− �kzq+kw� is the detuning parameter, �p

=�e2n0 /��z
2�0mvz0

2 is the longitudinal plasma wave number

on axis in a one-dimensional �1D� model, �2=�z
2�1+K2 /2�,

�q=Kk2 /4�kzq, K=e�B̃�w� /mckw is the undulator parameter,

where �B̃�w� is the undulator field magnitude, kw=2	 /
w is
the undulator wave number and ĝq

�= �êz� êw� · êq
� is the polar-

ization alignment factor which measures the relative align-
ment of the transverse electron motion in the undulator �êz
� êw� with the electric-field mode polarization direction �êq�.
The EM field mode overlap in the virtual dielectric is given
by �q,q�

d , the mode coupling coefficient Qq,q� gives the EM
field coupling to the wiggling, density-modulated e-beam �or
e-beam optical current�, and Fq,q� is the beam profile overlap
coefficient, which measures the spatial overlap of the e-beam
profile with the expansion modes q ,q�.

The coupled equations in Eq. �3� fully describe the exci-
tation and dynamic evolution of the signal field and density
modulation during the FEL interaction, from the startup pe-
riod through the high-gain regime. The equations can be
solved for an arbitrarily shaped e-beam profile. The effects of
longitudinal space charge are also included, assuming that
the characteristic transverse e-beam radius is greater than the
bunching wavelength �r0��z
� such that fringing fields are
neglected. It will be shown here, however, that the equations
still adequately describe many of the pertinent features of the
FEL when r0��z
.

III. GUIDED LAGUERRE-GAUSSIAN MODES

The basis eigenmodes used in the expansions of the fields
and the density modulation satisfy the dielectric field equa-
tion

��
2 E�̃ �q�r�� + �n�r��2k2 − kzq

2 �E�̃ �q�r�� = 0, �4�

where the variation in the refractive index is taken to be
small in the paraxial approximation �n�r��2�k. The spatial
dependence of n�r��2 in Eq. �4� fully determines the func-
tional form of the expansion basis in the excitation equa-
tions. To obtain the desired guided Laguerre-Gaussian modes
we choose the refractive index of a QIM, with a specified
quadratic spatial dependence of the form

n2�r� = n0
2 − 	 r

zR

2

, �5�

where zR=kw0
2 /2 is the Rayleigh length and w0 is the char-

acteristic waist size of a transversely Gaussian mode profile.
The refractive index on axis n0 can be set to unity for sim-
plicity. By inserting Eq. �5� into Eq. �4� we obtain guided LG
modes which have the form �8–10�

Ẽ�;p,l�r,� = Ãp,l� 2

	w0
2

p!

�p + �l��!
�− 1�p

�e−ile−r2/w0
2	 r�2

w0

�l�

Lp
�l�	2r2

w0
2 
 , �6�

where Lp
l �x�=� j=0

p �p+ l� ! �−x� j / j ! �p− j� ! �l+ j�! is an associ-

ated Laguerre polynomial and Ãp,l is a normalization con-

stant such that ��Ẽ�;p,lẼ�;p�,l�
� d2r�=�p,p��l,l��Ãp,l�2. The
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mode index q now takes on two values �p , l� corresponding
to the radial and azimuthal mode indices, respectively. �We
will use both q and p, l mode indices interchangeably when
the multiple indexes are cumbersome�. LG modes of this
type provide a convenient working basis to model the FEL
radiation for geometries that are largely axisymmetric over
the interaction length. The field modes in Eq. �6� are identi-
cal in the transverse dependence to free-space LG fields that
satisfy the paraxial wave equation, when the free-space
modes are evaluated at the optical beam waist. The explicit
dependence on the Rayleigh length zR in Eq. �5� defines a
specific form for the dielectric profile in which a free-space
Laguerre-Gaussian mode with waist size w0 �defined here as
the r.m.s. radius of the Gaussian field profile� will propagate
as a guided eigenmode of the virtual dielectric. In this con-
struct, if the guiding features of the e-beam in an FEL during
exponential gain are equivalent to those of the QIM, only a
single mode in the expansion is required to fully describe the
supermode.

The axial wave numbers of the QIM eigenmodes in Eq.
�6� differ from the wave numbers of vacuum paraxial modes
�10,11�. The waves are modified both in the total wave num-
ber by the presence of the homogeneous dielectric contribu-
tion kn0, and by a transverse wave number factor attributed
to the guided focusing of the paraxial wave due to the para-
bolic spatial dependence. Inserting Eq. �5� and �6� into Eq.
�4� we obtain the axial wave number associated with each
guided mode kzq=kz;p,l:

kz;p,l
2 = k2n0

2 −
4

w0
2 �2p + �l� + 1� . �7�

This describes modal dispersion in the virtual dielectric
wherein each mode propagates with an axial phase velocity
� /kz;p,l.

Since the axial field component of the LG modes has a
magnitude on the order of 
 /w0 times as large as the asso-
ciated transverse component, the fields can be considered to
be dominantly transverse. For TE modes, we then have a
simple relation between the electric and magnetic compo-

nents: E�̃ �q=−�� /kzq�êz�B�̃ �q. The mode power, defined as

Pq= 1
2Re����E�̃ �q�r���H�̃ �q

� �r��� · êzd
2r�� becomes

Pp,l =
kz;p,l

2�0�
�Ãp,l�2. �8�

The dielectric mode coupling parameter �q,q�
d in Eq. �3� is

defined in general in paper I, and can be evaluated explicitly
using the LG basis

��p,l�,�p�,l��
d =

k2

2kz;p,l
�l,l���n0

2 − 1��p,p� −
2

w0
2k2

�� p ! p�!

�p + �l�� ! �p� + �l��!�j=0

p

�
j�=0

p� 	p + �l�
�l� + j 


�	p� + �l�
�l� + j� 
�− 1� j+j�+p+p��j + j� + �l� + 1�!

j ! j�!  ,

�9�

where � n
k �=n ! /k ! �n−k�! is the binomial coefficient. We note

that, since n2�r� is axisymmetric, ��p,l�,�p�,l��
d vanishes be-

tween modes with different azimuthal dependence �l� l��.
Analytic expressions for the beam profile overlap factor

Fq,q� can be found for many functional e-beam profile distri-
butions. Here, the e-beam is assumed to have a fixed, Gauss-
ian transverse profile f�r��=exp�−r2 /r0

2� throughout the in-
teraction length, where r0 is the r.m.s. radius. In terms of the
LG mode expansion basis, Fq,q� becomes

F�p,l�,�p�,l�� =
Ãp�,l�

Ãp,l

�l,l��− 1�p+p�

�p ! p� ! �p + �l�� ! �p� + �l���!

�
�p + p� + �l�� ! � w0

2

2r0
2�p+p�

� w0
2

2r0
2 + 1�p+p�+�l�+1

�2F1	− p�;− p;− p� − p − �l�;1 − 	2r0
2

w0
2 
2
 ,

�10�

where 2F1�a ;b ;c ;x�=�n=0
� �a�n�b�nxn / �c�nn! is the hypergeo-

metric series and �a�n=a�a+1��a+2�¯ �a+n−1� is the ris-
ing factorial. For a single Gaussian EM mode, F�0,0�,�0,0�

=1 / �1+
w0

2

2r0
2 �. The e-beam mode coupling parameter Qq,q� is

thus

Q�p,l�,�p�,l�� = JJ �p
2
�kz;p�,l� + kw�2

8kz;p,l
	K

�

2

ĝ�p,l�
� ĝ�p�,l��F�p,l�,�p�,l��.

�11�

For modes where the electric-field polarization matches the
direction of wiggling motion of the electrons ĝ�p,l�=1. This
“polarization matched” condition is assumed throughout the
remainder of this paper.

Equations �9�–�11� are the individual elements of the cou-
pling and overlap terms in the FEL evolution and excitation
equations in Eq. �3�, solved specifically using the guided LG
mode basis. With these terms, the eigensolution of Eq. �3� for
the dominant FEL supermode can be found as a superposi-
tion of LG modes. The supermode emerges during high-gain
and propagates self-similarly and with an exponentially
growing field amplitude. Accordingly, the supermode field is

defined as Ẽ� SM�r�=eikSMz�p,lbp,lE�̃ p,l�r�� and maintains a fixed
transverse profile given by the constant mode coefficients bp,l

and the distinct complex wave number kSM=k+�k̃. The
modification of the free-space wave number due the FEL

interaction is given by �k̃, and is found from the solution to
the supermode matrix equation

��I����k̃ − ��2 − �p
2M�� ��I���k̃ + ���

d − �k=� + Q�� �b� = 0� , �12�

where the matrix elements of M�� are given by Mq,q�
= �kzq� /kzq�Fq,q�, and the matrices ���

d and Q�� are comprised

of the elements in Eqs. �9� and �11�, respectively. The param-
eter � is the detuning in a 1D model and the matrix �k=
has elements �kz;p,l−k��p,p��l,l�. The dominant mode of the
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system is given by the solution to the determinant of

Eq. �12� with the most negative imaginary value of �k̃.
The corresponding 3D power gain length is given by LG

= �2�Im��k̃���−1.
If the system is modeled with only the fundamental

Gaussian mode, only the �p , l�= �0,0� elements of the matri-
ces are considered, and Eq. �12� becomes a single algebraic
equation. This scenario is explored in paper I and is called
the single Gaussian mode approximation or SGM. There, by
comparing the difference between axial wave numbers of the
guided modes �Eq. �7�� with the axial wave numbers of free-
space paraxial modes due to the FEL interaction �10�, we
obtain a simplified relation between the Gaussian mode spot
size wg, the Gaussian e-beam r.m.s. radius r0 and the 1D
coupling gain parameter Q= �2kw��3,

	1 +
wg

2

2r0
2
�1 −

2

kwg
2Q1/33

= 1. �13�

The solution for wg can be used as an estimate for the super-
mode spot size of an FEL that is dominated by the funda-
mental transverse mode. This technique also provides a use-
ful value for the expansion mode size w0 that is used in Eq.
�6�, and is explored for the model FEL in Fig. 1.

IV. NUMERICAL MODELING

To ascertain the character of the FEL system described by
the evolution equations in Eq. �3� and the supermode matrix
equation in Eq. �12�, we use the visible to infrared spontane-
ous or seeded amplifier �VISA� FEL at Brookhaven National
Laboratory as an exploratory model �5,12,13�. The VISA ex-
periment uses a planar undulator geometry and currently op-
erates in self-amplified spontaneous emission �SASE� mode,
but will come online shortly also operating as an amplifier of
an input radiation signal �seeding�. It provides a convenient
FEL model for examination of the signal field profile and

power evolution in a strong-guiding, diffraction-dominated
system �LG�zR�L�. It is also ideal for investigations of LG
mode generation since both hollow and spiral transverse EM
intensity patterns have been observed during SASE opera-
tions, both of which are suggestive of single or multiple in-
terfering OAM modes �14�. The relevant VISA operating pa-
rameters are given in Table I.

The VISA FEL is first examined in the ideal case of a pure
signal amplifier �SASE effects turned off� to isolate the be-
havior of the input seed mode as it initiates the FEL interac-
tion and evolves toward the supermode. Ten expansion
modes �p=0–9, l=0� are included in all calculations �un-
less otherwise noted�, and the expansion spot size is taken to
be w0=3r0, in accordance with the best results obtained for
efficiency from the SGM approximation in Fig. 2. �Any
value of w0 can be chosen, of course, since it is a free pa-
rameter in the expansion. But for a finite number of modes,
the greatest efficiency is generally obtained by choosing a
value close to that of the eventual FEL eigenmode.� The
evolution of the radiation beam is investigated from the seed
radiation point to the end of the undulator by solving the
coupled mode Eq. �3� for different values ws0, which are the
spot sizes the input Gaussian seed modes. The seed radiation
beams are introduced coaxially to the undulator and copropa-
gate with the e-beam. Figures 3 and 4 follow the longitudinal
evolution of the signal field for several input spot sizes, with

�

�

�
�

�
�

� � � � �

X
X

X X X X X X X X X

0
0

0 0 0 0 0 0 0 0 0
0.06 0.08 0.10 0.12 0.14

2
3
4
5
6
7
8

0 500 A
X 300 A
� 100 A

r0 (mm)

w
r0

FIG. 1. �Color online� Comparison of the supermode spot size
wSM /r0 identified by markers �, X, and �, with the predicted size
from the SGM approximation wg /r0, identified by lines. Three val-
ues for the peak e-beam current are modeled for VISA parameters,
over a range of e-beam radii. Markers depict results from solutions
to the supermode matrix Eq. �12�. At each marker, the detuning in
the supermode matrix is set to �=−1 /kwg

2 in accordance with the
SGM formulation, where wg is given by Eq. �13�. The full solutions
to Eq. �13� are identified by the colored lines. The large X signifies
the usual VISA operating regime, from Table I.

TABLE I. Seeded VISA parameters.

Parameter Symbol Value

Undulator period 
w 1.8 cm

Undulator length L 4 m

Undulator parameter K 1.26

e-beam relativistic factor �0 123.18

Signal wavelength 
 1064 nm

e-beam r.m.s. radius r0 80 �m

Peak e-beam current I0 300 A

w0=4 r0

w0=2 r0

w0=3 r0

0 2 4 6 8 1011

12

13

14

15

p

LG (cm)

FIG. 2. �Color online� Predicted gain length at resonance for the
VISA FEL as a function of the maximum value of the radial mode
p included in the excitation equations �solid line is from GENESIS�.
Different values of the expansion waist size w0 generate a range of
values for LG with only the lowest modes included in the expansion
equations, but quickly converge to the correct value as more higher-
order modes are added. The best results here are given for w0

=3r0, which is closest to the spot size of the supermode, as given by
the full solutions and shown in Figs. 3 and 4.
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the Gaussian beam waist located at the undulator entrance
z0=0, for the system operating at resonance �=0. The r.m.s.
e-beam radius r0 is fixed throughout the interaction length,
and is set to r0=80 �m as determined by the physical emit-
tance and �-matching constraints for the physical VISA un-
dulator focusing lattice. In Fig. 3 the effects of longitudinal
space charge are turned off, and in Fig. 4 they are included
for comparison. For each modeled seed injection, the system
shows clear dynamic evolution toward the supermode. The
input fields are shown to undergo a short period of diffrac-
tion during startup before high gain develops. This dynamic
behavior is also sensitively recorded in the differential
power, where fluctuations are clearly observed before the
field eventually settles into fixed gain, fixed profile propaga-
tion. This regime of the supermode is also where the effects
of longitudinal space-charge waves are most pronounced,
identified by the observed reduction in the exponential gain
per unit length �Fig. 4�. The VISA-FEL is an exemplar of
this intermediate regime where the effects of space-charge
waves are significant, but not dominant, and must be in-
cluded in the full calculation for accuracy. In both cases
�space-charge on and off�, the predicted evolution calculated
from the coupled excitation equations in Eq. �3� closely
matches the results from simulations performed with GEN-

ESIS 1.3 �7�, which also includes the effects of fringing in the
space-charge fields. This suggests that, even in the VISA

regime where r0��z
, the “parallel plate capacitor” assump-
tion made for the modulated space-charge fields in the exci-
tation equations still provides reliable results.

In a seeded FEL system, the output power efficiency can
be affected, and enhanced, by several design or radiation
injection schemes �15�. Experimentally, the simplest method
to maximize the available efficiency is to operate off-
resonance, i.e., “detune” the system by increasing the e-beam
energy �or by increasing the input seed frequency�. This ef-
fect has been recently observed experimentally �16�, and is
explored here with the LG dielectric mode expansion for the
VISA FEL. Figure 5 shows the dependence of the power
gain length LG on the electron beam energy. It is clear that
the shortest gain length is obtained with a positive shift from
resonance in the e-beam energy ���0�.

The relationship between the efficiency and the gain char-
acteristics is also of practical interest for prediction of the
optimal spot size and axial waist position of the injected seed
mode. Once the supermode is established, the FEL should
behave similarly to a single-mode waveguide 1D FEL, but
modified by the overall beam profile overlap factor F that
quantifies the departure of the 3D peak gain from the 1D
value. The VISA FEL operates in the strongly coupled re-
gime, where the 1D power gain is given by the G1D

= �1 /9�e�3Q1/3L �17�. In the 3D scenario, the gain is expected
to differ from the 1D model, both in the exponential depen-
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FIG. 3. �Color online� Evolution of the intensity profile �left� and differential power �right� modeled for the VISA FEL operating as a
single-pass seed amplifier. Input seed waists ws0=3r0,4r0, and 5r0 of a free-space Gaussian mode are injected coaxially to the e-beam and
are positioned at the undulator entrance. The supermode evolves after the fluctuations settle �1.5 m downstream of injection. Solid lines are
solutions to theory from Eq. �3� and points are from GENESIS simulations. The onset of saturation processes is evident near the undulator exit
in the GENESIS data, using a P=0.1 �W radiation power input, and the shot noise turned off. The effects of longitudinal space-charge waves
are neglected. Inset: Normalized transverse intensity �solid� and phase �dashed� profile distribution of the supermode. The vertical axis is in
radians.
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FIG. 4. �Color online� Spot size and power evolution. Running conditions are identical to those in Fig. 3, but with the effects of
longitudinal space-charge waves included ��p=3.22 m−1�. Points indicate results from GENESIS simulations. Inset: Normalized transverse
intensity �solid� and phase �dashed� profile distribution of the supermode.
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dence and in the proportionality. We therefore define a 3D
power gain parameter

G3D =
1

9
�effe

F�3Q1/3L, �14�

where �eff is the 3D supermode excitation efficiency. The
magnitude of both 3D parameters �eff and F can be found for
a variety of FEL operational schemes in order to ascertain
the optimal running conditions. In a seeded FEL, the longi-
tudinal position and waist size of the input seed may have a
significant effect on the excitation efficiency of the super-
mode, particularly for strongly diffracting systems where
zR�L. Maximum power output is obtained for a proper bal-
ance between a small injection spot size to maximize power
coupling to the e-beam, and a large spot size to minimize
power loss from diffraction. Figure 6 shows the dependence
of �eff on the longitudinal position and waist size of a Gauss-
ian input seed coupling with a Gaussian e-beam for the
VISA FEL running parameters. Results indicate that the peak
efficiency is obtained when the seed waist is approximately
2–3 times the r.m.s. e-beam size, and within the first few 1D
gain lengths inside the undulator. By further detuning the
system by +0.39% in energy to minimize the gain length �as
shown in Fig. 5�, the peak available efficiency is increased

substantially �Fig. 6, right plot�, and the optimal injection
occurs when the seed waist is positioned slightly further
downstream. It is noted that the optimal waist size for seed
injection ws0�3r0 is roughly equal to that of the eventual
supermode, as shown in Fig. 3.

The coupling to higher-order paraxial modes, particularly
those with �l��0, can be readily explored in the LG expan-
sion basis. By inspection of the mode coupling parameter in
Eq. �11�, it can be shown that there is no cross-coupling
between different azimuthal modes for an axisymmetric
Gaussian e-beam profile. In addition, none of the l�0 modes
are excited during seeding with axisymmetric Gaussian input
fields, so only the l=0 modes contribute to the expansion. It
is interesting in this simplified context to consider the ampli-
fication of pure azimuthal mode structures for scenarios
when it may be necessary to obtain a short pulse, high-peak
power OAM mode from the FEL. Since in most cases the
fundamental mode usually dominates, generation of a domi-
nant OAM mode can occur if a preferential and significant
geometric chirality is intrinsic to the system. Such is the case
if, for example, either the seed laser contains nonzero OAM,
or if the e-beam has a strong helical modulation along the
longitudinal axis that will excite a helical phase structure in
the radiation field.

Seeding and amplification of pure OAM modes can be
examined with the injection of a ls�0 LG mode, where ls is
the azimuthal index of the seed. Results obtained from solv-
ing Eq. �3� for both a Gaussian and an ls=1 OAM seed mode
are displayed in Fig. 7. The evolution of both inputs shows
the development of an eventual FEL eigenmode, both in the
intensity profile and in the power gain. It is evident from the
plot that there is a decrease in the differential power gain for
each increase in the azimuthal mode number of the seed
field. This trend continues for seeding with higher order
OAM modes and is attributed to the reduction in the effec-
tive coupling between the e-beam and the field for increasing
l values, as given by Eq. �11�. This is due, in large part,
because the radial profile of modes with �ls��0 vanishes on
axis, and the central null becomes larger transversely for
increasing values of ls. For this reason, it was necessary to
detune the system to �=−8.2 m−1 to achieve significant
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FIG. 5. �Color online� Gain length versus detuning for Gaussian
seed input and Gaussian e-beam profile. The dashed line indicates
resonance ��=123.18� for the VISA FEL at 1064 nm. The shortest
gain length is obtained for a 0.39% increase in e-beam energy factor
to �=123.65.
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gain. Also, in contrast to seeding with modes with different
radial mode numbers ps �either as pure modes or as a super-
position�, the eventual output FEL signal fields generated
from seeds with different azimuthal mode numbers ls do not
evolve to equal transverse sizes. This is because, for an axi-
symmetric e-beam profile f�r��= f�r�, the modes with differ-
ent p values couple to each other, but the different l modes
do not. Thus, an excited higher-order radial mode can
couple, cascading down toward the fundamental radial mode
of the system �usually the Gaussian�, but the higher-order l
modes are locked. This, combined with the reduced gain
length, demonstrates that the character of the final output
OAM mode is specifically determined by the input seed
field. The ls mode of the seed is the lone azimuthal mode
excited in the FEL interaction for the cold e-beam, and thus
defines the fundamental azimuthal mode of the final EM sig-
nal field. The system evolves to a state characterized by the
features associated with the ls�0 seed mode, including the
waist size, gain length, and helical phase evolution. As a
result, all of the gain delivered to the radiation field is de-
posited only into the l= ls input OAM mode, and a scenario
that delivers pure OAM amplification, in the absence of
SASE effects, is realized. In the presence of SASE, in order
to ignore it’s effects, one must seed with power well in ex-
cess of SASE startup power, and also take care that the total
�potentially higher� gain in the fundamental does not allow
this SASE mode to compete with the final power in the de-
sired l�0 LG mode.

Generation of coherent OAM light without a seed field
input can be investigated in this model by introducing a
dominant helical density modulation on the e-beam. The
density modulation in Eq. �2� identifies the longitudinal
bunching in terms of the expansion mode functions. Nonzero
values for B0,0�0� identify a prebunching modulation at the
fundamental that can be related to longitudinal shot noise, or
a SASE startup scenario. The coefficients Bp,l�0 for �l��0
describe azimuthal structures in the e-beam, and helical
structures occur when Bp,l�Bp,−l. Figure 8 shows the trans-
verse intensity and phase at the undulator exit for a solution
of the excitation equations with a relative initial density
modulation of B0,1 /B0,0=105 �all other coefficients are zero�
for VISA. The relative magnitude of each amplitude is de-
termined by iteration, such that the higher-order hollow
mode becomes visibly dominant in the transverse intensity

profile. It is particularly clear from the phase that the struc-
ture is that of a dominant �p , l�= �0,1� LG mode �helical
phase evolution�, and that the field is gain-guided from the
slight appearance of inward curvature near the axis.

It is noted that the amplification of light with OAM
should impart a self-consistent orbital momentum to the
source e-beam. The effects of this interaction on the overall
e-beam dynamics are calculated to be small relative to the
dominant FEL interactions considered here, and are ne-
glected.

These results on the amplification of OAM modes at the
fundamental frequency of the FEL device suggest that, since
an initial bunching modulation at the fundamental mode
typically dominates the interaction, amplification of a domi-
nant azimuthal mode requires a dominant azimuthal excita-
tion at startup. We have shown that this can be achieved
either by injection of an OAM seed mode with the appropri-
ate intensity amplitude �if available at the operating fre-
quency�, or by introduction of the appropriate spatial modu-
lation that is not azimuthally symmetric to the injected beam.
The magnitude of these respective initial conditions provides
a guideline for required parameters needed to obtain OAM
modes in the presence of SASE, and will be explored further
in future work.

V. CONCLUSIONS

We have presented a study of the high-gain VISA FEL in
the virtual dielectric mode description, specified for a guided
Laguerre-Gaussian mode expansion basis, with an emphasis
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FIG. 7. �Color online� Comparison of signal field propagation for FEL seeding with a pure Gaussian mode �dashed� and a l=1 OAM
mode �solid�, when the effects of plasma space-charge waves are included. Both input seed waists are located z0=25 cm inside the undulator
entrance, with the e-beam detuned to �=−8.2 m−1.
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on OAM mode operation. This interest in OAM modes is
driven by the desire to obtain hollow intensity modes that
provide power-handling advantages, as well as by applica-
tions that depend on the orbital angular momentum in the
light pulse. The results of the evolution excitation equations
and the supermode matrix equations derived in paper I of
this work show good agreement with GENESIS simulations,
with the effects of longitudinal space-charge included. The
LG mode basis provides a natural description of guided FEL
radiation by virtue of its connection to the paraxial modes of
free space, and allows the investigation of coupling to modes
that contain orbital angular momentum. Results suggest that

due to the dominance of the fundamental modes of the typi-
cal FEL system, the excitation of a dominant OAM mode
requires either an OAM seed, or a significant azimuthal den-
sity modulation in the e-beam.
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