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A set of mode-coupled excitation equations for the slowly growing amplitudes of dielectric waveguide
eigenmodes is derived as a description of the electromagnetic signal field of a high-gain free-electron laser
�FEL�, including the effects of longitudinal space charge. This approach of describing the field basis set has
notable advantages for FEL analysis in providing an efficient characterization of eigenmodes, and in allowing
a clear connection to free-space propagation of the input �seeding� and output radiation. The formulation
describes the entire evolution of the radiation wave through the linear gain regime, prior to the onset of
saturation, with arbitrary initial conditions. By virtue of the flexibility in the expansion basis, this technique can
be used to find the direct coupling and amplification of a particular mode. A simple transformation converts the
derived coupled differential excitation equations into a set of coupled algebraic equations and yields a matrix
determinant equation for the FEL eigenmodes. A quadratic index medium is used as a model dielectric
waveguide to obtain an expression for the predicted spot size of the dominant system eigenmode, in the
approximation that it is a single Gaussian mode.
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I. INTRODUCTION

The optical guiding of light in free-electron lasers �FELs�
is a well-known phenomena that results during amplification
when the coherent interaction between the source electron
beam �e-beam� and the electromagnetic �EM� field intro-
duces an inward curvature in the phase front of the light,
refracting it back toward the lasing core of the e-beam �1–3�.
During the gain process the e-beam can behave similar to a
guiding structure that suppresses diffraction, reducing trans-
verse power losses, and enhancing the EM field amplifica-
tion. For a sufficiently long interaction length, the guided
EM field eventually dynamically settles into a propagating,
self-similar eigenmode of the FEL system, which, although
describing a system in which the field amplitude grows ex-
ponentially as a function of longitudinal coordinate z, has a
fixed form for the transverse profile and stationary spot size
�4,5�.

Several different approaches currently exist for describing
the FEL linear gain process. Analytic derivations of guided
FEL eigenmodes have been performed previously by direct
derivation of the eigenmode equations from the coupled
Maxwell-Vlasov equations �4,6,7�; through solutions to the
Maxwell equations using Green’s functions �8�; or through
expansion of the FEL signal field in terms of eigenmodes of
a hollow, conducting-boundary waveguide �5�, eigenmodes
of a step-index fiber �3�, and free-space paraxial waves �9�.
Such analytic descriptions of the three-dimensional FEL
equations, particularly those that exploit radiation mode ex-
pansions to find the FEL eigenmodes, have certain utility for
providing physical insight into the character of the radiation.
Since, in a high-gain FEL, the e-beam that propagates
through the periodic undulator operates simultaneously as an
optical source and as a waveguide structure, an expansion
mode description of the FEL light permits investigation of
the amplification, guiding and coupling efficiency of the in-
dividual basis modes to the e-beam.

In general, the choice of analytical model and expansion
basis depends on the FEL geometry and operational charac-
teristics. Since the fields inside the e-beam are optically
guided during high-gain, a guided expansion basis is a natu-
ral choice, but may be plagued by inefficiency in describing
the EM field structure if the guiding characteristics of the
e-beam are markedly different from those of the virtual
waveguide that yields the particular basis set. �The wave-
guide is referred to as “virtual” because no such waveguide
is assumed to be present in the physical system.� In Ref. �5�
an analysis is presented for calculating the gain-guided FEL
supermode by means of a field expansion using eigenmodes
of a hollow waveguide with conducting walls. This method
can be useful at short wavelengths �e.g., x-ray FEL�, even
when no such physical boundary exists and the optical beam
is guided only by the e-beam. Clearly, in this example analy-
sis and in general, this approach is legitimate if the presence
of the artificial boundary does not affect the physical result.
The virtual waveguide dimensions must be taken wide
enough so that the fields in the actual problem vanish at the
virtual boundaries, but not so wide that many modes are
required to describe the radiation field such that the calcula-
tion is inefficient or does not converge. As an alternate ap-
proach described here, a general method that uses eigen-
modes of a smooth, transversely anisotropic dielectric
waveguide can be used to model the field while avoiding
both the undesirable influence of artificial boundary condi-
tions and precise a priori knowledge of the characteristic
transverse dimensions of the waveguide features of the
e-beam. This approach also provides flexibility in the form
of the expansion basis, which is determined by the refractive
index distribution. Of particular interest in any expansion
mode approach is the coupling to the naturally occurring
Hermite-Gaussian �HG� or Laguerre-Gaussian �LG� modes
that describe free-space wave propagation in the paraxial
limit. This connection is useful for relating the FEL modes to
free-space propagating modes, which are present both before
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and after the exponential gain process occurs in the undula-
tor. With this connection one may, for example, compactly
and clearly describe the input radiaiton needed for efficiently
seeding the FEL. One may also robustly describe the propa-
gation of the FEL light after saturation, allowing a clear un-
derstanding of the demands made on downstream optics, and
on expected mode structure at FEL diagnostics or experi-
ments themselves. In the virtual dielectric waveguide expan-
sion, a form of the refractive index that varies quadratically
in the transverse dimension yields a basis of guided LG or
HG paraxial waves. This facilitates the desired natural de-
scription of the FEL radiation, and is the motivation of the
present work.

Optical guiding in an FEL occurs in the exponential gain
regime, when the focusing effects in the source e-beam tend
to balance the natural diffraction of the generated EM radia-
tion. Obviously, an expansion set consisting of guided modes
can be used to accurately describe the field during long sec-
tions of gain-guiding, over which the otherwise free-space
fields have many Rayleigh lengths to diffract. Such an ex-
pansion can also accurately describe short sections of dy-
namic profile evolution �such as the FEL start-up period in a
high-gain amplifier�. But guided modes may not efficiently
capture �in the sense of providing a compact description� the
field behavior during long sections of weak guiding when
diffraction is dominant, as during saturation or low-gain. The
regimes of validity for a description using guided modes may
be estimated by inspection of the relative values of the opti-
cal Rayleigh length zR=kr0

2 �assuming for the moment that
the field has the same characteristic radius as the e-beam, r0�,
the e-folding radiation power gain length LG, and the overall
length of the FEL interaction length L. In the guided mode
expansion here, we restrict our attention to high-gain �LG
�L� FEL systems, prior to the onset of saturation, for which
the weakly diffracting �LG�L�zR� or strong-guiding �LG
�zR�L� conditions are valid, and the guided mode expan-
sion description can be used efficiently.

In this work, a virtual dielectric expansion description of
high-gain FEL radiation is presented. The excitation of the
slowly-growing mode amplitude coefficients in the presence
of a local source current is derived. The e-beam is linearized
in the cold-beam fluid approximation and a set of coupled
excitation equations, modified from Ref. �5�, is obtained. The
coupled equations are then recast by a simple transformation
into a matrix equation for solutions of the FEL supermode as
a function of parameters for energy detuning, longitudinal
space-charge effects and mode coupling to the e-beam. The
theory presented here provides a framework for detailed nu-
merical studies performed in a follow-up paper �paper II�.
There, results that highlight the advantages of the dielectric
eigenmode expansion approach are presented and analyzed.

II. DIELECTRIC WAVEGUIDE EXPANSION MODES IN
THE PRESENCE OF A LOCAL SOURCE

The radiation fields E� �r , t� and H� �r , t� emitted by the cur-
rents in the FEL can be expanded in terms of transverse

radiation modes �E�̃ � ,H�̃ �� of a guiding structure, with slowly
growing amplitudes that vary only as a function of the axis

and e-beam propagation coordinate z. Neglecting backward
propagating waves �which is well justified in an FEL�, the
general field expansion is

Ẽ� ��r�� = �
q

Cq�z�E�̃ �q�r��eikzqz,

H̃� �r�� = �
q

Cq�z�H�̃ �q�r��eikzqz �1�

where H�̃ �q= �1 /Zq�êz�E�̃ �q is the magnetic field expansion
mode, kzq is the qth mode axial wave number and the imped-
ance is Zq= �k /kzq���0 /�0 for TE modes. In general, the sum
extends over both the guided and the cutoff modes, and the
modes form a complete set �10�. The expansion modes are
orthogonal and normalized to the mode power

Pq�q,q� =
1

2
Re�	 	 �E�̃ �q�r�� � H�̃ �q�

� �r��� · êzd
2r�� .

�2�

In free-space, the equation for the full time-harmonic fields
in the presence of a source is

�2Ẽ� + k2Ẽ� = − i��0J̃� , �3�

where the total field is E� �r , t�=Re�Ẽ� �r�e−i�t� and k=� /c is
the free-space wave number. The transverse charge density
gradient of the e-beam in an FEL is typically small and is
neglected. For a given choice of expansion basis, the field
expansions in Eq. �1� can be inserted into Eq. �3� to obtain a
differential equation for the amplitude coefficents Cq�z� �5�.
Here, we explore the case where the expansion mode Ẽ�q is
an eigenmode of a dielectric waveguide with refractive index
n�r��. Assuming small transverse variation �n�r��2�k, the
eigenmodes can be regarded as dominantly transverse, and
the dielectric eigenmode equation is

��
2 E�̃ �q�r�� + �n�r��2k2 − kzq

2 �E�̃ �q�r�� = 0. �4�

The use of dielectric eigenmodes as an expansion basis must
be accompanied by additional terms in Eq. �3�. These terms
are included to offset the virtual polarization currents that
arise from the refractive index of the virtual waveguide,
since no such waveguide exists along the e-beam axis in the

physical system. The polarization current is given by J�̃p�r��
= i��0��r��Ẽ� �r��= i��0�n�r��2−1�Ẽ� �r�� where n�r��
=���r�� /�0. Mathematically, this process amounts to adding

�n�r��2−1�k2Ẽ� �r�� to both sides of Eq. �3�. From the dielec-
tric eigenmode Eq. �4�, the fields are assumed to be domi-
nantly transverse, and Eq. �3� becomes

�2Ẽ� � + n�r��2k2Ẽ� � = − i��0J̃�� + �n�r��2 − 1�k2Ẽ� �r�� .

�5�

Plugging in the expansion fields from Eq. �1�, the dielectric
eigenmode equation in Eq. �4� is used to eliminate the trans-
verse Laplacian term, and the excitation equation for the
mode q in the presence of a local source current is given by
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d

dz
Cq�z� = −

1

4Pq
e−ikzqz	 	 J̃���r�� · E�̃ �q

� �r��d2r�

− i�
q�

	q,q�
d Cq��z�e−i
kzqq�z, �6�

where

	q,q�
d =

��0

4Pq
	 	 �n�r��2 − 1�E�̃ �q��r�� · E�̃ �q

� �r��d2r�.

�7�

The difference between the axial wave numbers of the modes
is 
kzqq�=kzq−kzq�. The term 	q,q�

d characterizes the mode
overlap in the dielectric, and physically represents the virtual
polarization currents that are necessarily subtracted when us-
ing eigenmodes of a virtual dielectric waveguide.

III. ELECTRON-BEAM FLUID AND COUPLED
EXCITATION EQUATIONS

A linear plasma fluid model for a cold e-beam �negligible
energy spread� can be used to describe the signal excitation
in an FEL interaction �5�. A relativistic e-beam in an FEL
experiences transverse oscillations, or wiggling, driven by an
interaction with a periodic structure or undulator. This peri-
odic motion drives an axial ponderomotive force that modu-
lates the axial electron velocity such that, to first-order, the
axial velocity of a cold beam within a static undulator can be
expanded as vz�r� , t�=vz0

+Re�ṽz1
�r��e−i�t� where vz0

=�zc is
the dc component and ṽz1

is the modulation at signal fre-
quency �. Longitudinal variations in the velocity like those
found in planar undulator systems are ignored for the mo-
ment. The velocity modulation ṽz1

develops a density bunch-
ing modulation that is similarly described in a linear model
as n�r� , t�=n0f�r��+Re�ñ1�r��e−i�t� where n0 is the on-axis
electron density and f�r�� is the transverse density profile of
the e-beam. The lowest order ac component of the longitu-
dinal current density results from both the axial velocity and

density modulations and is J̃z�r��=−e�n0f�r��ṽz1
�r��

+vz0
ñ1�r���. If the transverse divergence of the current density

modulation is assumed small �� · J̃���J̃z /�z, the continuity
equation can be written as

d

dz
J̃z = − i�eñ1�r�� . �8�

The relativistic force equation for the axial velocity modula-
tion is

d

dz
ṽz1

�r�� − i
�

vz0

ṽz1
�r�� = −

e

��z
2mvz0

�Ẽz
SC + �ṽ� � B̃� �z� �9�

where the axial space-charge field Ẽz
SC= J̃z / i��0 is due to the

current density modulation. It is assumed that the e-beam
radius is large compared to the bunching wavelength in the
e-beam frame r0��z, so the fringing fields and the trans-
verse space-charge effects are neglected. The interaction be-
tween the transverse electron motion and the transverse mag-

netic fields results in an axial ponderomotive field �ṽ� � B̃� �z

=�qCq�z�Ẽpm,q�r��ei�kzq+kw�z where Ẽpm,q�r��= 1
2 �ṽ� �q�B�̃ �w

�

+ ṽ� �w
� �B�̃ �q� · êz, B̃�w is the transverse magnetic field of the

undulator, and ṽ�q�r�� is the transverse electron velocity due
to the Lorentz force of the qth mode of the signal field. The
undulator wave number is identified as kw=2� /�w, and the
transverse velocity due to the magnetic undulator field is

ṽ� �w= �−icK /��êz� êw, where K=e
B̃�w
 /mckw is the undu-

lator parameter and êw=B�̃ �w / 
B�̃ �w
 is the unit vector of the
undulator field.

By combining Eqs. �8� and �9� and using the definition of
the modulated longitudinal current density, the density
bunching evolution can be expressed as a second order dif-
ferential equation. We obtain the result from Ref. �5� with
transverse fields for the density modulation evolution during
the FEL interaction

� d2

dz2 − 2i
�

vz0

d

dz
+

�p0

2 f�r�� − �2

vz0

2 �ñ1�r��

= i
�p0

2 f�r��

vz0

2

�0

e
�

q

�kzq + kw�Cq�z�Ẽpm,q�r��ei�kzq+kw�z,

�10�

where the longitudinal relativistic plasma frequency on axis
is �p0

2 =e2n0 /��z
2�0m. The beam current is I0=

−evz0
n0f�r��d2r� and the effective beam area through the

normalization condition f�r��d2r�=Ae. For a uniform
cross-sectional distribution of the e-beam, f�r��=1 for r
�r0 and zero otherwise. For a Gaussian distribution f�r��
=exp�−r2 /r0

2�.
The transverse component of the current density that ex-

cites the signal wave is written in terms of the density modu-
lation as

J̃���r�� = −
1

2
eñ1�r��ṽ� �we−ikwz. �11�

The charge density modulation ñ1�r�� appears both in the field
mode excitation Eq. �6� and in the density modulation evo-
lution Eq. �10�. These equations are coupled through the
ponderomotive field, which illustrates the relationship be-
tween the density modulation and the excited signal field in
an FEL. Both equations can be simplified by expressing the
density modulation as a sum over the expansion basis func-
tions and slowly varying amplitudes

ñ1�r�� =
k�0

e
�

q

Bq�z�Ẽ�q�r��ei�/vz0
z. �12�

Plugging this expression into Eqs. �11�, �10�, and �6�, and
integrating over the transverse dimensions in Eq. �10�, the
orthogonality of the eigenfunctions can be used to simplify
the equations and to write both coupled equations in terms of
the slowly growing amplitudes Cq�z� and Bq�z� of the signal
field and the density modulation, respectively. This yields the
coupled FEL excitation equations
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d

dz
Cq�z� = − i�qĝq

�Bq�z�ei�qz − i�
q�

	q,q�
d Cq��z�ei��q�−�q�z,

d2

dz2Bq�z� + �p
2�

j

Fq,jBj�z� = −
1

ĝq
��q

�
q�

Qq,q�Cq��z�e−i�q�z,

�13�

where �q=� /vz0
− �kzq+kw� is the characteristic detuning pa-

rameter for a given mode q, �q=Kk2 /4�kzq, and �p
=�p0

/vz0
is the longitudinal plasma wave number of a uni-

formly distributed electron beam profile used in a 1D model.
The factor ĝq

�= �êz� êw� · êq
� is the polarization alignment fac-

tor and measures the relative alignment of the transverse
electron motion in the undulator �êz� êw� with the �complex-
conjugated� electric-field mode polarization direction �êq

��.
When the wiggling motion direction matches the mode po-
larization �which may not be the case for the input mode in a
seeded FEL scenario� ĝq=1.

The coupling between the e-beam and the signal field is
given by the mode coupling coefficient

Qq,q� = JJ
�p

2�0

8Pq
�kzq� + kw�	 	 f�r��Ẽpm,q��r��

�ṽ� �w · E�̃ �q
� �r��d2r�, �14�

where JJ= �J0���−J1����2 is now included for a strong pla-
nar undulator �JJ=1 for a helical undulator geometry�. J0
and J1 are the first and second order Bessel functions and

�=K2 / �4+2K2�. The ponderomotive field Ẽpm,q� is evaluated
explicitly for TE modes in the Appendix, and we obtain a
simplified form

Qq,q� = JJ�p
2
�kzq� + kw�2

8kzq
�K

�
�2

ĝq
�ĝq�Fq,q�, �15�

where Fq,q� is referred to as the beam profile overlap coeffi-
cient and quantifies the spatial overlap of the e-beam profile
with the expansion modes q ,q�:

Fq,q� =
	 	 f�r��Ẽ�q��r��Ẽ�q

� �r��d2r�

	 	 
Ẽ�q�r��
2d2r�

. �16�

This coefficient also appears in connection with the longitu-
dinal plasma wave dynamics left-hand side of the second
equation in Eq. �13�.

It also may be illuminating to also define the current
bunching amplitude

ĩq�z� = −
1

4Pq
e−i��/vz0

−kw�z	 	 J̃���r�� · E�̃ �q
� �r��d2r�

�17�

which is interpreted as the slowly varying amplitude of the

transverse optical current. Replacing J̃�� with its definition
from Eq. �11� and plugging in the density modulation expan-

sion from Eq. �12�, the integration over the transverse space
is straightforward by the orthogonality of the eigenmodes.

Thus, a simplified expression is obtained for ĩq�z� in terms of
the density modulation amplitudes

ĩq�z� = − i�qĝq
�Bq�z� . �18�

Substitution of this into Eq. �13� allows one to solve the
coupled FEL excitation equations in terms of the optical cur-
rent amplitudes.

In the 1D limit, the axial wave numbers are degenerate
kzq=k, the e-beam profile is constant f�r��→1 and the over-
lap factor becomes Fq,q�=�q,q�. The e-beam coupling coeffi-
cient is then written in 1D simplified form Q
=JJk��pK /2�2��z�2= �2kw��3, where �
= �JJe2K2n0 /32�0�3mc2kw

2 �1/3 is the well-known Pierce pa-
rameter often used in FEL theory.

The first of the coupled equations in Eq. �13� describes
the excitation of the mode amplitude Cq of a dielectric wave-
guide eigenmode due to the transverse wiggling motion of
the bunching current throughout the FEL interaction. The
second equation in Eq. �13� describes the evolution of the
density bunching amplitude, which is excited in the e-beam
by the EM signal field. The effect of the longitudinal space-
charge in the beam is calculated in the second term of the
second equation, and takes into account the effects of longi-
tudinal plasma oscillations �Langmuir waves� in the FEL in-
teraction. The effects of fringing fields due to a transverse
variation in the axial space-charge field can be examined in a
more complete 3D scenario �11�, but are presently neglected
in the approximation that r0��z.

The initial conditions for Eqs. �13� specify the operating
characteristic of the FEL. For example, when operating as a
single-pass amplifier �seeded FEL� there is negligible initial
density and velocity modulation �
Bq�0� ,dBq�z� /dz
z=0=0�
and the initial seed field is nonzero �Cq�0��0�. For a self-
amplified spontaneous emission �SASE� FEL, the amplified
shot noise can be related to the prebunching conditions
�
Bq�0��0,dBq�z� /dz
z=0�0� and the input signal field van-
ishes �Cq�0�=0�.

The coupled expressions in Eq. �13� describe the evolu-
tion of the e-beam modulation currents and the excitation of
the EM signal field during the FEL interaction, inclusive of
longitudinal space-charge effects. During high-gain opera-
tions when the radiation field grows exponentially, the self-
guiding effects become dominant over the diffraction, and
the radiation field can be accurately described by a collection
of waveguide modes. The virtual dielectric eigenmode basis
used for the radiation field expansion can be any complete
set that satisfies the dielectric waveguide Eq. �4�. In the gen-
eral expansion presented here, the form for n�r�� can be
freely chosen to yield different functional forms for the ex-
pansion modes, allowing flexibility to choose a basis that is
perhaps better suited to describe a given FEL system. Some
of the most typical forms include an index with a quadratic
spatial dependence which results in Hermite-Gaussian or
Laguerre-Gaussian expansion modes �12� �examined in de-
tail for LG modes in paper II�, or a step-profile optical fiber
�3,10� which yields Bessel functions. The closer that the
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choice of the virtual dielectric waveguide distribution is to
the real solution to the given FEL system, the fewer the
number of modes that will be required to converge the equa-
tions in Eqs. �13� to the correct solution for the FEL.

IV. SUPERMODE MATRIX SOLUTIONS

In the high-gain regime of an FEL with finite e-beam
width, the radiation field tends to concentrate near the beam
and produce a power amplified radiation wave with a self-
similar transverse field distribution that propagates along the
interaction length. This specific complex-valued combination
of the expansion modes is referred to as the supermode, or
the eigenmode of the high-gain FEL. In a long undulator, the
fundamental supermode evolves spontaneously since it has
the highest gain. The initial conditions �i.e., the transverse
profile and phase distribution of the injected radiation field or
density prebunching� affect the mode excitation composition
and evolution. However, these initial conditions only affect
the supermode establishment length. Evenutally, in an unde-
pleted system, the supermode will become dominant in a
long enough undulator, prior to the onset of saturation.

To find the optimal injection parameters that match and
expedite the establishment of the supermode, one must solve
Eqs. �13� with the appropriate initial conditions. To simply
find the system supermodes, however, it is enough to find the
eigensolutions to Eq. �13�. These are the combinations of the
expansion mode profiles that propagate self-similarly, i.e.,
with constant amplitude coefficients and with distinct com-
plex wave numbers �8�. In the presence of gain, each super-
mode wave number will be different from the wave number

of free-space and can be written with a perturbative term �k̃
that is due to the FEL interaction

kSM = k + �k̃ , �19�

where Re��k̃� anticipates an effective modified refractive in-

dex to that of free-space, and Im��k̃� is related to the gain.
Since the supermodes evolve after the initial startup period
and have fixed transverse profiles along z, one can substitute
Cq�z�=bqei�kSM−kzq�z for the mode amplitude coefficients Eq.
�1�. The mode amplitude coefficients bq are constants, and
the z dependence is contained solely in the mode-
independent exponential term. The time-harmonic electric
field of the supermode is then

Ẽ� SM�r�� = ��
q

bqE�̃ q�r���eikSMz. �20�

This describes a transverse field that is fixed in transverse
profile, but is growing exponentially in amplitude along z.
Inserting this transformation into Eq. �13� converts the
coupled second-order differential equations into a set of
coupled algebraic equations

��k̃ − ��2���k̃ − 
kq�bq + �
q�

	q,q�
d bq��

− �p
2�

j
� kzj

kzq
Fq,j���k̃ − 
kj�bj + �

q�

	 j,q�
d bq���

+ �
q�

Qq,q�bq� = 0, �21�

where �=� /vz0
−k−kw is the detuning parameter for a 1D

model �kzq=k�, and 
kq=kzq−k. The coupled equations in
Eq. �21� can be solved to yield values for the supermode

coefficients bq in terms of the perturbation �k̃. It is conve-
nient to write Eq. �21� in a simplified matrix determinant
form


�I����k̃ − ��2 − �p
2M�� ��I���k̃ + 	��

d − 
k=� + Q�� 
 = 0. �22�

The matrix elements of M�� are given by Mq,q�
= �kzq� /kzq�Fq,q� and similarly for 	��

d= �	q,q�
d �, Q�� = �Qq,q�� and


k== �
kq�q,q�� . The matrix I�� is the identity.

The solutions to Eq. �22� yield 3N solutions for �k̃, where

N is the number of expansion modes. Each �k̃ can then be
inserted in Eq. �21� to find a nontrivial solution �if one ex-
ists� for the mode amplitude coefficients of an eigenmode of
the FEL system. From Eq. �20� and the definition of kSM in

Eq. �19�, it can be seen that the solution for �k̃ with the most
negative imaginary component drives the highest gain, and
dominates over the rest of the eigenmodes. This value is used
in solving Eq. �21� and will yield the coefficients of the
dominant supermode, with the 3D power gain length, or

e-folding length, given by LG= �2
Im��k̃�
�−1.
We note that when 
k= , 	��

d=0�� , the matrix equation in Eq.
�22� reduces to a generalized matrix form of the canonical
FEL cubic equation with longitudinal space charge. In the
additional limit of a large, effectively constant transverse
beam profile f�r��→1 so Fq,q�=�q,q� and Qq,q�→Q�q,q�, and
Eq. �22� takes the form of the familiar 1D FEL cubic equa-
tion with the mode-independent beam coupling parameter Q
and the axial plasma wave number �p.

V. SINGLE GUIDED GAUSSIAN MODE APPROXIMATION

During high-gain, the proper balance between the natural
diffraction of the coherent radiation and the guided focusing
of the radiation due to the e-beam determines the eventual
spot size wSM of the EM supermode field. This can be ob-
tained with the dielectric expansion formulation in a natural
way, through the solutions to the excitation Eq. �13� or the
supermode determinant Eq. �22�, using N modes in the field
expansion. Clearly, choosing a suitable expansion basis �i.e.,
one that is close in form to that of the supermode field� can
greatly reduce the number of expansion modes required to
precisely describe the FEL supermode. In some cases, it may
even be sufficient to use only a single mode to model the
field, in order to estimate the relevant supermode character-
istics without solving the full equations. A single mode ap-
proximation can also be used to streamline the computation
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of the full solutions by providing an approximate value for
the expansion basis waist size w0 which is used as a scaling

parameter in the basis eigenfunctions Ẽq�r� ;w0�. The super-
mode waist size �and thus the parameter w0� can sometimes
be roughly approximated as equal to the e-beam radius
wSM�r0 for an axisymmetric e-beam distribution, but the
actual value may vary significantly depending on the operat-
ing parameters of the FEL. To better quantify this estimate
for the general case, we analyze the guided supermode spot
size by approximating it as a single Gaussian mode �SGM�
that propagates with a fixed spot size wg. Gaussian modes,
such as the HG and LG modes discussed previously, are
found as solutions to Eq. �4� with a refractive index n�r�2 that
varies quadratically in the transverse dimension, describing
what is known as a weakly guiding quadratic index medium
or QIM. In this context, the SGM analysis also provides
insight into the physical origin of the characteristic guiding
of the supermode in terms of guided paraxial Gaussian
modes from conventional fiber waveguide theory.

The refractive index that yields axisymmetric guided
Gaussian eigenmodes in Eq. �4� is

n2�r� = n0
2 − � r

zR
�2

, �23�

where zR=kwg
2 /2 is the Rayleigh length and wg is the char-

acteristic r.m.s. radius of the Gaussian field profile given by

Ẽq�r� ;wg�. The axial wave number, in the paraxial approxi-
mation is therefore given by

kz0 � kn0 −
2

n0kwg
2 . �24�

A single Gaussian mode then corresponds to only the
�q ,q��= �0,0� matrix elements in the supermode determinant
in Eq. �22�. For n0�1, an explicit analytic expression is
obtained for the dielectric mode coupling parameter 	0,0

d =
−1 /kwg

2. Ignoring the effects of space-charge waves ��pL
���, the form of Eq. �22� for a single Gaussian mode is

��k̃ − ��2��k̃ +
1

kwg
2� + Q0,0 = 0, �25�

where 
k0�−2 /kwg
2 has been obtained from Eq. �24�. Equa-

tion �25� then becomes a modified 1D FEL cubic equation
where Q0,0=Q F0,0 is the SGM gain parameter, which de-
scribes the modification of the 1D e-beam mode coupling
parameter Q by the filling factor �Eq. �16�� of the fundamen-
tal Gaussian EM mode F0,0. One can then define a shifted
perturbation parameter

�k = �k̃ +
1

kwg
2 �26�

and then set the detuning to �=−1 /kwg
2. Equation �25� then

becomes a simple 1D FEL cubic equation at resonance,

�k3 + Q0,0 = 0. �27�

In this form, the solution for �k that corresponds to the domi-
nant high-gain mode is straightforward, and well known
from FEL theory:

�k =
1 − i�3

2
Q0,0

1/3. �28�

In a high-gain FEL, the supermode wave number kSM in Eq.
�19� is defined as the wave number of a plane wave k that is
modified through the FEL interaction by the perturbative fac-

tor �k̃. Combining the definition of kSM in Eq. �19� with �k
from Eq. �26� we can write

kSM = k + �k −
1

kwg
2 �29�

for a single Gaussian supermode. Since the supermode is
assumed to propagate as a guided Gaussian mode with a
fixed spot size and velocity, the real �propagating� part of the
supermode wave number is equated to the propagating
Gaussian mode wave number in the dielectric waveguide

Re�kSM� = kz0. �30�

Combining the real parts of Eqs. �28�–�30�, and recognizing
n0=1+Q1/3 /2k�1 as the effective refractive index on axis
from a 1D FEL model, we obtain a relation for the super-
mode spot size in terms of the 1D coupling and the filling
factor

1

kwg
2 =

Q1/3

2
�1 − F0,0

1/3� . �31�

Assuming that the e-beam has a Gaussian transverse profile
f�r��=exp�−r2 /r0

2�, the filling factor is simply F0,0
= �1+wg

2 /2r0
2�−1. We finally obtain an expression for the su-

permode spot size wg in terms of the 1D coupling parameter
Q and the e-beam radius r0:

�1 +
wg

2

2r0
2��1 −

2

kwg
2Q1/3�3

= 1 �32�

Solutions to Eq. �32� for wg can be easily obtained numeri-
cally for given FEL running parameters. The calculated SGM
spot size provides a useful prediction of the supermode spot
size wSM for a Gaussian e-beam lasing at the fundamental
and which in turn suggests an appropriate value for the ex-
pansion waist w0 to facilitate computational efficiency for
solving the full excitation equations.

It is useful to note that while kSM was defined as a modi-
fication of a plane wave in Eq. �19�, in the SGM approxima-
tion, one could also consider defining kSM through a modifi-
cation of a free-space paraxial Gaussian mode. In other
words, to consider the effect of the FEL interaction on con-
verting a free-space Gaussian wave to a guided Gaussian
mode of the FEL.

Free-space modes evaluated at the optical beam waist w0
have an associated axial wave number

k̂z0
2 = k2 −

2

w0
2 . �33�

Expressing the supermode wave number as a modified
paraxial wave of free-space, it takes the form
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kSM = k̂z0 + �k , �34�

where, just as before, the supermode is a guided eigenmode
of the QIM Re�kSM�=kz0 but it is now also expressed as a

deviation from the Gaussian free-space mode k̂z0 by the FEL
interaction given by �k. Equating the real parts from Eqs.

�19� and �34�, we find that k+Re��k̃�= k̂z0+Re��k�. By rear-

ranging and using k̂z0−k�−1 /kwg
2 for a single free-space

mode, we recover the exact expression for �k in Eq. �26�.
Thus, the SGM approximation of an FEL with a Gaussian
transverse e-beam profile describes the conversion of plane
wave into a guided Gaussian mode at a detuning of �=
−1 /kwg

2 in an equivalent way as it describes the conversion
of a free-space paraxial Gaussian mode into a guided Gauss-
ian mode, operating at resonance ��=0�.

VI. CONCLUSIONS

The signal field of a high-gain FEL has been described in
terms of a sum over orthogonal eigenmodes of a virtual di-
electric waveguide. A set of coupled excitation equations for
the e-beam density modulations and the field amplitudes in
the presence of longitudinal space-charge effects has been
derived. This approach can be effectively used to predict
relevant FEL parameters such as signal field spot size and
intensity distribution for any point along the interaction
length, and for any arbitrary initial conditions. It further pro-
vides a novel and practical method to analyze the coupling
and generation of particular modes, such as those associated
with free-space propagation, in the FEL system. It is a gen-
eral method for calculating the optically guided FEL eigen-
modes for any transverse e-beam current and profile distri-
bution, based on a straightforward numerical solution to an
algebraic dispersion equation. A follow-up analysis of this
work will explore these concepts in detail.
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APPENDIX: e-BEAM COUPLING COEFFICIENT

A generalized, explicit expression for the mode coupling
coefficient Qq,q� of any spatial expansion basis can be ob-
tained starting from the ponderomotive field

Ẽpm,q�r�� =
1

2
�ṽ� �q � B�̃ �w

� + ṽ� �w
� � B�̃ �q� · êz. �A1�

From the relativistic Lorentz force equation we can write the
transverse velocities as �11�

ṽ� �w = − i
e

�mkw
êz � B�̃ w,

ṽ� �q�r�� = − i
e

�m�� − kzqvz0
�
�E�̃ �q�r�� + vz0

êz � B�̃ �q�r���

= − i
e

�m�
E�̃ �q�r�� , �A2�

where in the last equality for ṽ� �q it has been assumed that

E�̃ �q=−�� /kzq�êz�B�̃ �q for TE modes, in keeping with the
dominantly TEM mode expansion sets of the present work.

With the equations in Eq. �A2� the expression for Ẽpm,q be-
comes

Ẽpm,q�r�� = i
e�kzq + kw�
2�m�kw

�êz � B�̃ w�� · E�̃ �q�r�� . �A3�

The complex phasor notation for the undulator field Bw

=Re�B�̃ we−ikwz� allows a general description for any type of
undulator polarization. Defining a general transverse field

polarization unit vector as êw=B�̃ w / 
B̃w
, for a linear undula-
tor êw= êy �with vertical polarization�, the field is given as

Bw = 
B̃w
êy cos kwz �A4�

and in a helical undulator êw= �êx� iêy� /�2 for right-handed
�+� or left-handed �−� field orientations and

Bw =

B̃w

�2

�êx cos kwz � êy sin kwz� . �A5�

The undulator parameter is defined as K=e
B̃w
 / �kwmc�.
Note that the same K value corresponds to an on-axis maxi-

mum field amplitude of 
B̃w
 in a linear undulator, and an

on-axis maximum field amplitude of 
B̃w
 /�2 in a helical
undulator. In terms of K, Eq. �A3� can be written as

Ẽpm,q�r�� = i
kzq + kw

2k

K

�
�êz � êw

� � · E�̃ �q�r�� . �A6�

Substitution of this expression and the mode power normal-
ization from Eq. �2� into Qq,q� results in a general expression
for the mode coupling coefficients:

Qq,q� = JJ�p
2
�kzq� + kw�2

8kzq
�K

�
�2

ĝq
�ĝq�Fq,q�, �A7�

where ĝq= �êz� êw
� � · êq is the polarization alignment factor,

which measures the relative direction of transverse electron
motion in the undulator compared with the electric field po-
larization of the mode q. The spatial overlap factor Fq,q� is
defined as
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Fq,q� =
	 	 f�r��Ẽ�q��r��Ẽ�q

� �r��d2r�

	 	 
Ẽ�q�r��
2d2r�

. �A8�

The general expression for the mode coupling coefficient in
Eq. �A7� permits analysis of mode coupling for radiation
modes that vary transversely in their complex field amplitude

and in their polarization relative to the undulator. It is also
clear that in order to obtain maximal coupling between two
modes q and q�, they must be polarization matched to each
other �ĝq= ĝq�� and to the direction of electron motion in the
undulator �ĝq=1�, as well as have finite spatial overlap with
both the e-beam distribution. In the single mode limit �q
=q��, Eq. �A8� simplifies to the commonly used “filling fac-
tor” parameter.
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