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We study an extended velocity-selective coherent population trapping �VSCPT� model where vacuum-
induced coherence �VIC� is considered. This effect takes place when two nonorthogonal electric dipole mo-
ments of a �-type three-level atom couple with a common continuous vacuum. First, we introduce the main
results of a conventional VSCPT model in the nondegenerate and unsymmetrically driven situation. Then, we
work out the dynamic equation of the system in the presence of VIC expressed in both internal and external
degrees of freedom. We report on the generation of atomic external coherences due to VIC, which counteract
the feeding action of spontaneous emission to the trapping state and indicate its limited function negative to the
formation of the trapping state if the atomic center-of-mass motion is considered.
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I. INTRODUCTION

Quantum interference between different transition path-
ways of a multilevel atomic system coupling with a common
continuous vacuum results in a type of coherence, called
vacuum-induced coherence �VIC�. Since it was predicted by
Agarwal �1�, various schemes have been studied which re-
lease many interesting effects, such as, narrowing �2� or even
cancellation �3–5� of spontaneous emission, amplification
without population inversion �6�, phase-dependent popula-
tion inversion and phase control of spontaneous emission �7�,
and even exhibiting considerable squeezing �8�, etc. To ob-
serve these effects, however, two electric-dipole moments of
an atom with, for example, V- or �-type level structure, must
be nonorthogonal and also if they share a common atomic
state, the other two states should lie close. The problem of
how to make the arrangement of nonorthogonal dipole mo-
ments has been addressed and alternative possibilities have
been suggested �9�.

Coherently driven �-type three-level atomic schemes
have been frequently used in quantum optics and other re-
lated fields. This is due to their special property of the co-
herent population trapping �CPT� �10�, the phenomenon that
stems from nonabsorption as the atom is trapped in the linear
combination of its two ground states, the so-called dark state.
The applications of this effect include, e.g., electromagneti-
cally induced transparency �11�, storage of light �12�, and
light controlling of the atomic center-of-mass motion
�CMM� �13,14�, etc. In the presence of VIC, however, the
systems may give rise to new behaviors. It was found that
the CPT may disappear if the two transition dipole moments
of the atom are parallel to each other and driven by the same
laser fields �15�. Otherwise it can be preserved at the cost of
lengthening the time scale for its formation �16�. A further
study showed that in the presence of VIC, an inversionless
gain is obtainable if an additional incoherent pumping field is
added �17�. All these investigations and, to our knowledge,
other existing works were made without taking either the

atomic CMM or VIC into consideration. In this paper, we
study the role of both VIC and CMM in the generation of the
atomic trapping state via a typical coherently driven �-type
atomic scheme, the velocity-selective coherent population
trapping �VSCPT� �13�. We show how to describe VIC by
using the master equation method and reveal the physics of
the effect of VIC on the formation of this trapping state after
the atomic CMM is taken into consideration. Optical coher-
ence in quantum systems with cold multilevel atoms driven
by light is perhaps the most important source available in
modern optics, and quantum interference between different
transition pathways usually plays an role of anticoherence or
decoherence and thus cannot be neglected in some cases. The
present work is our first attempt to look into this subject.

The paper is organized as follows. In Sec. II we introduce
the VSCPT theory, then present the master equation descrip-
tion of VIC, and finally work out the equations of the
density-matrix elements of the whole system. In Sec. III we
make the comparative study on the dynamic evolutions of a
VSCPT in the absence and presence of VIC via numerical
simulations and present the relevant physical analysis. In
Sec. IV, we make some concluding remarks.

II. DYNAMIC EQUATION OF THE SYSTEM

A. The VSCPT theory

We start by introducing the main part of original VSCPT
theory �13�. The �-type atom-optical interaction scheme un-
der consideration can be generalized as follows: a laser field
of frequency �L1

�or wave number k1� propagates toward
+Oz, coupling with the atomic transition between the ground
state �g1� and the excited state �e0�. A counterpropagating
laser field of frequency �L2

�or wave number k2� couples
with the another atomic transition between the second
ground state �g2� and �e0�. The pair of laser fields is assumed
to be linearly polarized. In the dipole and rotating wave ap-
proximation, ignoring the interatomic action, we can express
the Hamiltonian of the system as follows:*yanggj@bnu.edu.cn
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Ĥ � =
p̂2

2m
+ E0�e0��e0� + E1�g1��g1� + E2�g2��g2� +

�

2
��1�e0�

��g1�exp�i�k2z − �L1
t�� + �2�e0�

��g2�exp�− i�k2z − �L2
t��	 + H.c., �1�

where m stands for the atomic mass and Eq �q=0,1 ,2� the
energy of the qth atomic state. The quantity �q=dqEq /� is
the related Rabi frequency, where Eq is the amplitude of the
qth laser field and dq the dipole matrix element defined by

dq= �e0��̂q · d̂�gq� and �e0��̂q · d̂�gq��=0 for q ,q� �q�q��=1,2
with �̂q being the unit polarization vector of the qth laser

field and d̂ being the atomic dipole moment operator. In the
later we’ll show how to realize this atom-laser configuration
in practice.

To simplify discussion, we denote �q=�Lq
−�q as the de-

tuning between the qth laser field and atomic transition with
frequency given by �q= �E0−Eq� /�, and make the transfor-

mation Ĥ
exp� i
� tĤ0�Ĥ� exp�− i

� tĤ0� with Ĥ0= �E1
−��1��g1��g1�+ �E2−��2��g2��g2�+E0�e0��e0�. Furthermore,
what we are interested in takes place when atomic tempera-
ture is much lower, for example, even below the value cor-
responding to one-photon recoil energy, so that the atomic
CMM must be treated quantum mechanically and the expan-
sion exp��ik1,2z�=�p�p��p��k1,2� becomes suitable. For the
above reasons, we can finally obtain the Hamiltonian of the
system

Ĥ =
p̂2

2m
+ ��1�g1,p − �k1��g1,p − �k1� + ��2�g2,p + �k2�

��g2,p + �k2� +
�

2 �
p

���1�e0,p��g1,p − �k1� + �2�e0,p�

��g2,p + �k2�� + H.c.� . �2�

Equation �2� indicates that the atomic states should now be
described by �e0 , p�, �g1 , p−�k1�, �g2 , p+�k2�, where each
state is labeled by both internal and external quantum num-
bers. It can be easily seen that there exists a family F�p�
= ��g1 , p−�k1� , �g2 , p+�k2� , �e0 , p�	 �18�, which is closed un-

der the coherent action of Ĥ.
The two states

�	−�p�� = ��2�g1,p − k1� − �1�g2,p + k2��/� ,

�	+�p�� = ��1
��g1,p − k1� + �2

��g2,p + k2��/� �3�

are of central importance in understanding the atomic trap-
ping process, where �= ���1�2+ ��2�2�1/2. Among them the
state �	−�p�� is an optically nonabsorptive dark state. The
atom oscillates between �	−�p�� and �	+�p�� at frequency

�12�p� under the coherent action of Ĥ, where we have intro-
duced new atom-field detunings with Doppler shift effects
�12 for the two-photon Raman process and, for future use,
�0i �i=1,2� for the one-photon process as follows:

�12�p� = �k1
2/2m − �k2

2/2m + p�k1 + k2�/m + �1 − �2,

�01�p� = pk1/m − �k1
2/2m − �1,

�02�p� = − pk2/m − �k2
2/2m − �2. �4�

If the atom falls into the state �	−�p�� with a momentum

p = p0 =
��k1

2 − k2
2� + 2m��1 − �2�
2�k1 + k2�

, �5�

however, the oscillation stops and the atom remains in
�	−�p0�� permanently.

The lifetimes of the states �	��p��, which are described
by their departure rates 
��p�, can be estimated �19�. For
example, as �i��q, �q, and �1=�2=�, �1=�2=�, where
�q is the decay rate of the atom from the state �e0� to �gq�
�q=1,2�, and as the momentum p taking the value in the
area very closed to p0, the departure rate 
−�p� from �	−�p��
takes a simple form


−�p� = 4�12
2 �p,k1,k2,�1,�2��/�2. �6�

Obviously, as p= p0 we have �
−�p=p0
=0, which means that

the state �	−�p0�� is indeed dark. While the departure rate

+�p� from �	+�p�� can be given approximately by its ex-
pression at the point p0 and reads

�
+�p�p0
= ���/2�2/���p0,k1,k2,�1,�2�2 + ��/2�2� , �7�

where ��p0 ,k1 ,k2 ,�1 ,�2�=−�k1k2 /2m− �k1�2+k2�1� / �k1
+k2�. We note that by taking k1=k2=k, �1=�2=0, and �
�r, where �r=�k2 /2m is the one-photon recoil frequency,
Eqs. �6� and �7� return to the results for a degenerated and
resonant VSCPT system discussed in Ref. �13�.

Spontaneous emission has a function redistributing the
atomic population among the different momentum families
by allowing the atoms to jump unilaterally from �e0 , p0
+ �−�i�ki+u� in the family F�p0+ �−�q�kq� into �gq , p0
+ �−�q�kq� in the family F�p0� at the probability Wq+�u� de-
fined by �20�

Wq��u� =
3

8

1

�kq
1 �

u2

�2kq
2� �q = 1,2� �8�

for �u���kq. In this way, all atoms, no matter what initial
momenta they have, will finally accumulate in �	−�p0��. The
atomic temperature can be decided by the half-width of the
momentum distribution peak, which is located at p0 given by
Eq. �5�. If the interaction time is long enough, its half-width
becomes smaller than the one-photon recoil momentum, cor-
responding to a temperature below the one-photon recoil en-
ergy.

B. Master equation description of VIC

The master equation method is an effective way to deal
with problems related to the irreversible process experienced
by an atomic system coupled with a continuous vacuum. In
the interaction picture the Hamiltonian describing this cou-
pling system in our case can be described by
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HI = �
q=1,2

�
k̃�l

 �ck

2�0V
�1/2

�d�q · �̂l�k̂���q
+akl exp�ik̃ · r̃ − i��qt�

+ H.c., �9�

where we have adopted the electric dipole approximation

and the rotating wave approximation. The quantity d�q is the

vector of the qth atomic dipole moment and �̂l�k̃� �l=1,2�
the unit polarization vector of the vacuum mode character-

ized by the unit wave vector k̂ �=k̃ / �k̃�� and polarization
number l. The operator âkl �†âkl� stands for the annihilation
�creation� operator of this vacuum mode and fulfils the rela-
tion �âkl ,

†âk�l��=��k−k����l− l��, etc. �q
+ ��q

−� is the atomic
rising �lowering� operator corresponding to atomic transition
�gq�↔ �e0�. r̃ represents the position the atom is located at

and ��q=�k−�q the detuning between the frequency �k
�=kc� of the k mode and the qth atomic transition frequency.

Since we are not interested in the details of the dynamics
of the continuous vacuum modes, we derive a master equa-
tion for the reduced atomic operator by using the standard
quantum optics theory �1,21,22�, where two important as-
sumptions are taken: �a� the coarse-grained factorization of
the density operator of the combined atom-field system into
the product of atom ���t�� and field density operators, �b� the
Born-Markoff approximation. The Born approximation de-
pends on the weak coupling between the vacuum and the
atom. The Markoff approximation holds because the vacuum
has fairly flat density of states. Using above approximations
and tracing over the vacuum field states, we can finally de-
rive the master equation for the reduced atomic operator.
This equation reads

L��t� = − �
q,q�=1,2

3

4
��q�q���q�

�q
�3/2� d��k̂�

4�
Dqq�

� �k̂,k̂��q
+�q�

−
��t�exp�− i��qq�t� +  �q

�q�
�3/2� d��k̂�

4�
Dqq�

� �k̂,k̂���t��q
+�q�

−

�exp�− i��qq�t� + �q�

�q
�3/2� d��k̂�

4�
Dqq�

�k̂,k̂��q
− exp− i

�q�

c
k̂ · r���t�expi

�q�
c

k̂ · r��q�
+ exp�i��qq�t�

+  �q

�q�
�3/2� d��k̂�

4�
Dqq�

�k̂,k̂��q
− exp− i

�q

c
k̂ · r���t�expi

�q

c
k̂ · r��q�

+ exp�i��qq�t�� , �10�

where ��qq�=�q−�q� ;Dqq��k̂ , k̂� is the coupling pattern be-
tween the transition dipole moments and the vacuum mode

propagating in the direction of the solid angle ��k̂�, and it is
defined as

Dqq��k̂,k̂� = �
l�k̂

��̂q · �̂l�k̂�����̂q� · �̂l�k̂�� , �11�

with ε̂q=d�q / �d�q� being the unit vector of the qth atomic di-

pole moment d�q. The exponential functions exp��i
�q

c k̂ ·r�
describe the recoil motion after the atom absorbs a photon
from or emits a photon into this vacuum mode. To derive Eq.
�10� we have ignored the Lamb shift dependent contribu-
tions.

In Eq. �10� the terms contain the factors exp��i��qq�t�,
which implies that any interesting phenomena including the
VIC effect will be erased due to the optical coherent vibra-
tion at a frequency ��12=�1−�2 if ��12 is large. In order to
avoid this, we consider the nearly degenerated case of �1

��2=�0 and obtain

L��t� = Lq��t� + Lqq���t� = − �
q=1,2

�q

2
��q

+�q
−��t� + ��t��q

+�q
−�

+ �
q=1,2

3

2
�q� d��k̂�

4�
Dqq�k̂,k̂��q

−

�exp− i
�0

c
k̂ · r���t�expi

�0

c
k̂ · r��q

+

+ �
q,q��q�q��=1,2

3

2
��q�q�� d��k̂�

4�
Dqq��k̂,k̂��q

−

�exp− i
�0

c
k̂ · r���t�expi

�0

c
k̂ · r��q�

+ , �12�

where the notation Lq��t� stands for the terms on the second
and the third lines, describing the conventional spontaneous
emission, and especially, the term on the third line describes
the feeding action of the atom from the excited state to the
ground states. The term Lqq���t�, which is related to the last
line in Eq. �12�, describes the VIC effect.

To solve the master equation Eq. �12�, we define the
atomic density-matrix elements in the bases of F�p� in the
following way:

�00�p,p�� = �e0,p���e0,p�� ,
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�01�p,p�� = �e0,p���g1,p� − �kẑ� ,

�02�p,p�� = �e0,p���g2,p� + �kẑ� ,

�12�p,p�� = �g1,p − �kẑ���g2,p� + �kẑ� ,

�11�p,p�� = �g1,p − �kẑ���g1,p� − �kẑ� ,

�22�p,p�� = �g2,p + �kẑ���g2,p� + �kẑ� , �13�

and the other matrix elements fulfill �qq�p ,p�=�q�q
� �p� ,p�.

Here we have taken ẑ as the unit vector in the Oz direction
and used the momentum vector p �p= �px , py , pz= p��, instead
of a scalar p, because after considering spontaneous emis-
sion, the atomic CMM is direction dependent. At present, we
look into the contribution of Lqq���t�, which only leads to the
equation for the element �qq��p ,p�� �q ,q��q�q��=1,2�

d

dt
�qq��p,p��

=
3

2
��q�q�� d��k̂�

4�
Dqq��k̂,k̂��00�p + �− 1�q�kẑ

+ �kk̂,p� + �− 1�q��kẑ + �kk̂� . �14�

Furthermore, by tracing d
dt�qq��p ,p�� over px and py, de-

fining the unit vectors ε̂q �q=1,2� and k̂, respectively, as

ε̂1 = �a1,a2,a3� ,

ε̂2 = �b1,b2,b3� ,

k̂ = �sin � cos �,sin � sin �,cos �� , �15�

where ai and bi �i=1,2 ,3� can be decided via a specifically
setting, and considering the equation

Dqq��k̂,k̂� = ε̂q · ε̂q�
− �ε̂q · k̂���ε̂q�

· k̂� , �16�

we finally obtain

d

dt
�qq��p,p�� = ��q�q��

−�k

�k

du��a1
�b1 + a2

�b2�W+�u�

+ 2a3
�b3W−�u���00�p + �− 1�q�kẑ + u,p�

+ �− 1�q��kẑ + u� , �17�

where we have carried out the integration of the variable �,
used the probability function W��u� given by Eq. �8� by
omitting the subscript i �i=1,2� because of the degenerate
requirement k1=k2=k, and changed the integration variable
cos �→u /�k. Following a similar procedure, we can derive
the equations for all elements of the whole system and will
present them in the next section.

C. Dynamic equation of the VSCPT system

To derive the dynamic equation of the extended VSCPT
system, we show first how to realize the �-type atom-light

interaction described by Eq. �2� under the condition of two
nonorthogonal dipole elements. Figure 1 suggests a possible
arrangement where the polarization of one field acting on
this transition dipole element is perpendicular to the another
transition dipole element, so that one field drives only one
transition. To this end we choose the following unit vectors
of the atomic dipole elements:

ε̂1 = �sin �1,cos �1,0� ,

ε̂2 = �sin �2,cos �2,0� , �18�

and have ε̂1 · ε̂2=cos � ��=�1−�2�. By taking both coherent
and incoherent processes into consideration, we arrive at the
full equations of the density-matrix elements for the whole
system. They read

��00

�t
= − ��1 + �2

2
+ i��p,p����00 − i��1��10 − �01�

+ �2��20 − �02�� ,

��01

�t
= − �1

2
+ i�01� �p,p����01 − i��2�21 + �1��11 − �00�� ,

��02

�t
= − �2

2
+ i�02� �p,p����02 − i��1�12 + �2��22 − �00�� ,

��12

�t
=

��1�2

2
cos ��

−�k

�k

duW+�u��00�p − �k + u,p� + �k + u�

− i�12� �p,p���12 − i��1�02 − �2�01� ,

��11

�t
=

�1

2
�

−�k

�k

duW+�u��00�p − �k + u,p� − �k + u�

− i�1��01 − �10� ,

��22

�t
=

�2

2
�

−�k

�k

duW+�u��00�p + �k + u,p� + �k + u�

− i�2��02 − �20� �19�

and their conjugations
��10

�t = �
��01

�t ��,
��20

�t = �
��02

�t ��,
��21

�t = �
��12

�t ��,
where we have denoted �ij�p , p�� as �ij �i , j=0,1 ,2� for no-

FIG. 1. Schematic diagram of atom-laser interaction. ε̂q �q
=1,2� is the unit vector of the qth atomic dipole moment and �̂q the
unit polarization vector of the qth laser field. �̂q is chosen so that
one field drives only one transition.
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tation simplicity, and if no specification, will follow this rule.
In Eq. �19� we have introduced a simple function ��p , p��
defined as ��p , p��= p2 /2m�− p�2 /2m�, and with it we rede-
fined the following atom-field detunings with Doppler shift
effect �12� �p , p�� for the two-photon Raman process and
�0i� �p , p�� �i=1,2� for the one-photon process:

�01� �p,p�� = ��p,p� − �k� − �1,

�02� �p,p�� = ��p,p� + �k� − �2,

�12� �p,p�� = ��p − �k,p� + �k� + �1 − �2. �20�

It is easy to see that if p= p� Eq. �20� is the same as Eq. �4�
for k1=k2=k.

From Eqs. �17� and �19� we find an interesting fact that
the evolution of any density-matrix element couples not only
to the single-family elements �ij�p , p� but also to the inter-
family ones �ij�p , p�� �p�p��. If ignoring �ij�p , p�� �p
�p��, from Eq. �19� we can recover the dynamic equation of
the conventional VSCPT system �13�. It is known that the
atom-laser interaction configuration described by Eq. �2�
conserves angular momentum and thus prevents coherent re-
distribution of photons between the two counterpropagating
waves from taking place, and furthermore, spontaneous
emission in free space is of translational invariance. There-
fore, in the evolution the system will keep the property of no
interfamily density-matrix elements if it initially does. As to
the elements �ij�p , p�� with p�p�, they are known as atomic
external coherences, e.g., �00�p , p��= �e0 , p���e0,p�� with p
�p�, which means the coherence of the atomic population in
the excited state in the external degree of freedom and comes
into effects only due to the presence of VIC. In fact the
feature of external coherence has been found in the disper-
sion of a two-level atom in a standing wave, where, due to
coherent redistribution of photons between the two counter-
propagating running waves by absorption in one wave and
stimulated emission in the other wave, the atomic state �e , p�
in the evolution couples to the states �e , p�2n�k� with n
being an arbitrary natural number. Therefore, to solve the
problems, an infinite number of elements �e , p���e , p�� with
�p− p��=2n�k must be considered. One of the differences
between this two-level system and the one we are discussing
is that, as a result of interacting with a continuous vacuum,
the atomic momentum difference �p− p�� for each external
coherence �e , p���e , p�� in the presence of VIC can take value
without any restriction.

III. NUMERICAL SIMULATION AND DISCUSSION

To look into the VSCPT effect under the influence of VIC
in detail, in this section we solve numerically the Eq. �19�
�23�. The following figures show the results under different
parametric conditions. All parameters and quantities are di-
mensionless because we have made the following scale
transformations t�r⇒ t, p2 /2m��r⇒ p2, �i /�r⇒�i,
�i /�r⇒�i, �i /�r⇒�i, and �u2 /2m�r⇒u2 �i=1,2�. In all
of the situations considered in this paper, we have taken �1
=�2=0, �1=�2=10, �1=�2=10, and assumed that initially

the atom is in a symmetric superposition of its two ground
states �g1� and �g2� and its momentum fulfills the Gaussian
distribution with a standard half-width of �p=3�k. In the
numerical simulations, we have set the range of the variable
p from −n�k to n�k with the interval �p=�k /n, where n is a
natural number large enough that the interesting part of the
solution of Eq. �19� �near p0� is not affected by the truncation
of p and that �p is small compared with the narrowest struc-
ture appearing in the p dependence of the solution.

The efficiency of the VSCPT system can be reflected di-
rectly through the momentum distribution of the atomic
CMM along Oz, which is given by

P�pat
z � = �00�pat

z ,pat
z � + �11�pat

z + �k,pat
z + �k�

+ �2�pat
z − �k,pat

z − �k� . �21�

For the sake of comparison, first let us look into the situation
in the absence of VIC. In order to get a complete knowledge
of VSCPT, we consider a general atom-light coupling con-
figuration, where the nondegeneracy is included. Figure 2
displays the results obtained at time t=100 for three values
of � ��=k2 /k1�: �a� �=1.0, �b� �=0.75, and �c� �=0.50. In
each figure the atomic momentum distribution is with the
features the same as or similar to those predicted by Aspect
et al. �13�. That is, there are two peaks located, respectively,
at pat

z = �−�i�
k1+k2

2 . The height of the peak indicates the prob-
ability of finding the atom trapped in the two ground state,
and its width is proportional to the atomic temperature. In the
nondegenerate situation of k2 /k1�1 �Figs. 2�b� and 2�c��, in
addition to these two peaks, there is a wide but lower bump
in the right part of the figure, and it moves right further as
k2 /k1 decreases or as time develops as has been confirmed by
the numerical simulation. This phenomenon is attributed
mainly to the fact that after interacting with a pair of photons
coming from the two counterpropagating laser fields of dif-
ferent wave numbers, the atom will get the recoil momentum
proportional to ��k1−k2� in the same direction as that the
photon with larger wave number propagates in. Obviously
this phenomenon is harmful to the trapping effect we are
concerned with. Compared to the degenerate configuration,
more time is needed for a nondegenerate system to finish the
trapping process.

In Fig. 3 we present a comparative study of VSCPT in the
presence and absence of VIC, where we have chosen three
different values of the angle � between the two transition
dipole elements �a� �=� /2, �b� �=� /3, and �c� �=� /6. It
can be seen that the atomic momentum distribution in the
presence of VIC keeps a feature similar to that in the absence
of VIC. But in detail there are differences. The evident one is
that the height of the peak is lowered and will be lowered
more as the angle � decreases, thus the probability to find the
atom in the trapping state is reduced. Compared to the feed-
ing effect of spontaneous emission, however, the effect of
VIC is weak and only lengthens the time for the trapping.

To get further knowledge of the effect of VIC on VSCPT,
we study the situations without and with considering the
atomic CMM. In the former case, the atomic population in
the trapping state �	−���	−�= ���2�g1�−�1�g2��� /�� fulfills
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d

dt
�	−���	−� =

1

�2 ��1�1
2 + �2�2

2 − 2��1�2�1�2 cos ���00,

�22�

where �1=�2 has been chosen. The first two terms on the
square bracket of Eq. �22� describe the feedings of spontane-
ous emission to the two ground states, and the last term
shows the contribution of VIC. The effect of VIC on the
CPT, which is found to be negative, cannot be underesti-
mated because it can even cancel the feeding effect as long
as a proper set of the parameters, e.g., �1=�2=�, �1=�2
and �=0, is taken �15,16� and the final population in the
state �	−� will keep the same as that given by the initial
condition. In the latter case, however, we have

d

dt
�	−�p����	−�p��

= 2��
−�k

�k

duW+�u���00�p − �k − u,p − �k − u�

− cos � Re��00�p − �k + u,p + �k + u��	 �23�

for �1=�2=�, �1=�2, and �1=�2. The first and second
terms on the right-hand side of Eq. �23� describe the contri-
butions of spontaneous emission and VIC, respectively. To
obtain this equation, we have assumed that the atom is ini-
tially in the excited state or the symmetric superposition of
its two ground states, so that from the very beginning the two
ground states are affected equally by spontaneous emission
or by VIC. As the result of taking the atomic CMM and the

FIG. 2. Atomic momentum
distribution P�pat

z � at time t=100
for different driven conditions: �a�
�=1.0, �b� �=0.75, and �c� �
=0.50. The other parameters are
�1=�2=0, �1=�2=10, �1=�2

=10, and n=30. The solid curves
represent the final atomic momen-
tum distributions and the dotted
curves the initial Gaussian mo-
mentum distributions. All param-
eters and quantities in this and the
following figures have been scaled
and are dimensionless.

FIG. 3. Comparison between
the trapping effects in the absence
and the presence of VIC at time
t=20 for �a� �=� /2, �b� �=� /3,
�c� �=� /6, and n=15. Other pa-
rameters and the definitions of the
curves and the axis are the same
as those in Fig. 2.
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propagating directions of the driven lasers into consideration,
the atomic states are the p dependence and naturally, there is
�00�p , p���00�p , p�� as p�p� due to VIC. Thus, on the con-
trary to the situation described by Eq. �22�, the effects of the
feeding and VIC on CPT cannot cancel each other out com-
pletely, even if �=0. Compared to the optical coherence,
however, the external coherences are usually weak. If ini-
tially they are absent or there are no other special ways to
strengthen them, the feeding effect of spontaneous emission
plays a dominant role in the CPT process. This argument is
illustrated further by the comparisons of the atomic popula-
tion in the trapping state �	−�p0�� �Figs. 4�a� and 4�b�� and of
its the change rate �	−�p0�� d

dt��	−�p0�� �Fig. 4�c�� between
the case with the absence of VIC �see Fig. 4�a� and the solid
curve in Fig. 4�c�� and the case with the presence of VIC �see
Fig. 4�b� and the dotted curve in Fig. 4�c��. In Fig. 4�c� the
two curves are above the horizontal axis, which confirms that
the CPT process exists in the both cases, but this process
proceeds in the presence of VIC slowly than it does in the
absence of VIC. Figures 4�a� and 4�b� indicates that the
atomic population difference accumulated in �	−�p0�� be-
tween the two cases is small, not more than 10% until t
=20. Thus, compared to the feeding action, the VIC effect is
indeed weak, at least under the present parametric condition.
Both spontaneous emission and VIC are of the radiation-
vacuum dependence and lead to a continuous variation of the
atomic momentum. However, spontaneous emission transfers
the atomic population from a family to another, which is
known as the feeding effect, but cannot create any external
coherence, while VIC behaves in the opposite way, and it
counteracts the feeding action through external coherences.

IV. CONCLUSION

In conclusion, we have studied VSCPT of a coherently
driven �-type three-level atomic system where the two

electric-dipole moments are settled nonorthogonally. First we
have shown the main results of a conventional VSCPT model
with a nondegenerate and unsymmetrically driven configura-
tion and indicated that it takes less time to trap the degener-
ated atoms with a pair of counterpropagating resonant laser
fields. Then we worked out the dynamic equation of the
atomic system in the presence of VIC and expressed it in
both internal and external degrees of freedom. We have ob-
served that the trapping effect for the moving atoms is weak-
ened because the atomic external coherences induced by VIC
counteract the feeding action of spontaneous emission. We
have studied the behavior of the system operating in the
situations without and with concerning atomic CMM, and
found no evidence of the completely VIC-dependent cancel-
lation of trapping effect in the latter case as a result of the
cooperation of both internal and external coherences. To our
knowledge there has been a number of papers discussing the
VIC effect on the atomic trapping or other related properties
of optical systems, but much less effort has been devoted to
the subject of the atomic CMM controlled by lights. It may
be worth extending the present study into other quantum
optical systems where the decoherence action of the quantum
interference between different transition pathways to desired
optical coherences must be considered.
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FIG. 4. Atomic population dis-
tribution in the state �	−�p�� at
time t=20 for �a� �=� /2 and �b�
�=� /6. The solid and dotted
curves in �c� describe
d
dt �	−�p0����	−�p0�� in the corre-
sponding cases �a� and �b�, respec-
tively. Other parameters are the
same as those in Fig. 3.
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