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In this paper, we investigate the dynamics of the Bloch vector of a single two-level atom which interacts
with a single quantized electromagnetic field mode according to the Jaynes-Cummings model, where the field
is initially prepared in a thermal state. The time evolution of the Bloch vector S�t� seems to be in complete
disorder because of the thermal distribution of the initial state of the field. Both the norm and the direction of
S�t� oscillate hard and their periods seem infinite. We observe that the trajectory of the time evolution of S�t�
in the two- or three-dimensional space does not form a closed path. To remove the fast frequency oscillation
from the trajectory, we take the time average of the Bloch vector S�t�. We examine the histogram of
��Sz�n�t��n=0,1 , . . . ,N� for small �t and large N. It represents an absolute value of a derivative of the inverse
function of Sz�t�. �When the inverse function of y=Sz�t� is a multivalued function, the histogram represents a
summation of the absolute values of its derivatives at points whose real parts are equal to y on the Riemann
surface.� We examine the dependence of the variance of the histogram on the temperature of the field. We
estimate the lower bound of the entanglement between the atom and the field.
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I. INTRODUCTION

The Jaynes-Cummings model �JCM� is a solvable quan-
tum mechanical model of a single two-level atom in a single
electromagnetic field mode �1–5�. This model is originally
designed for studying a spontaneous emission. The interac-
tion term is obtained by the rotating wave approximation. In
this interaction, each photon creation causes an atomic deex-
citation and each photon annihilation causes an atomic exci-
tation.

If the photon number is sharply defined in the initial state
of the field, the JCM shows the Rabi oscillations in the popu-
lations of the atomic levels. If the initial state of the field is a
coherent state, the oscillation of the mean photon number
collapses and revives in the JCM. In this way, the JCM re-
veals the quantum natures of the radiation.

Because the JCM is exactly solvable, it is investigated
from various viewpoints. The JCM whose boson field is pre-
pared in a thermal state is discussed in Refs. �6–8�. Thermo-
dynamics of the JCM is discussed in Ref. �9�. In this analy-
sis, the grand partition function of both the atom and the
boson field is considered. Extended JCMs are studied as dis-
sipative models �10,11�.

Recently, the JCM has been used for describing the evo-
lution of the entanglement between the atom and the field
�12,13�. In Refs. �12,13�, the electromagnetic field is as-
sumed to be initially prepared in a thermal state. In these
papers, the JCM is regarded as a source of the entanglement
between the atom and the field. In Ref. �14�, this idea is
advanced and generation of the entanglement between two
atoms interacting with a single-mode thermal field according
to the JCM is discussed. In this model, the atoms which are

initially in a separable state obtain the entanglement through
the time evolution.

In Ref. �15�, evolution of the entanglement between an
atom and a single-mode field described with the JCM under
phase damping is studied. In Ref. �16�, an atom interacting
with two cavity modes is considered and it is shown that this
system can be reduced to the JCM. Using this system, gen-
eration of entangled coherent states is discussed. In Refs.
�17,18�, the entanglement in an extended JCM where two
atoms interact with a single-mode field is studied.

As an interesting phenomenon related with the time evo-
lution of the entanglement in the JCM, so-called sudden
death effect is studied �19–21�. In these references, two iso-
lated atoms, each of which is located in its own Jaynes-
Cummings cavity, are assumed. If these atoms are in a cer-
tain entangled state initially, the entanglement disappears in a
finite time. This phenomenon is experimentally demonstrated
in Ref. �22�. In Ref. �23�, an attempt to find invariant en-
tanglement among atoms and fields in two isolated JCM is
done.

In this paper, we consider the dynamics of the Bloch vec-
tor of a two-level atom interacting with a single mode boson
according to the JCM, where the initial state of the boson is
in thermal equilibrium. The time evolution of the Bloch vec-
tor S�t� seems to be in a state of complete disorder because
of the thermal distribution of the initial state of the boson
field. The trajectory of S�t� oscillates hard and seems to wan-
der without a purpose. We try to find a property that charac-
terizes this seemingly chaotic movement of S�t�.

If Sx�0��0 or Sy�0��0, the time evolution of the Bloch
vector S�t� draws a trajectory in the two- or three-
dimensional space. We observe that this trajectory does not
form a closed path. To remove the fast frequency oscillation
from the trajectory, we take the time average of the S�t� as
�S	=limT→��1 /T�
0

TdtS�t�. We find that �Sx	 and �Sy	 are
equal to zero ∀ �, �, and �0, where � is an inverse of the
temperature for the initial thermal state of the field, � is an
angular frequency of the field and ��0 is an energy gap of
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the two-level atom. �Sz	 takes a certain function of �, �, and
�0.

We take the histogram of samples ��Sz�n�t��n
=0,1 , . . . ,N� for small �t and large N. We understand that it
represents an absolute value of a derivative of the inverse
function of Sz�t�. �When the inverse function of y=Sz�t� is a
multivalued function, the histogram represents a summation
of the absolute values of its derivatives ��d /dy�Sz

−1� at points
whose real parts are equal to y on the Riemann surface,
where Sz

−1 is the inverse function of y=Sz�t�.� We approxi-
mate obtained histograms at a high temperature by the prob-
ability function of the normal distribution. We examine the
dependence of the variance of the samples on the tempera-
ture �.

We examine the time evolution of the entanglement be-
tween the atom and the field in our model by estimating the
entanglement of formation of the density matrix which lies
on the 2�2 dimensional projected subspace of the atom and
the field. Because this projection is a local operation, the
entanglement of formation computed in the reduced 2�2
dimensional subspace gives the lower bound of the entangle-
ment of formation of the whole system �the atom and the
field�.

This paper is organized as follows: In Sec. II, we derive
an equation which governs the time evolution of the Bloch
vector S�t�. In Sec. III, we examine the trajectory of S�t� and
observe that it does not form a closed path. In Sec. IV, we
take the time average of S�t� for the case where the field is
resonant with the atom. In Sec. V, we take the histogram of
data of Sz�t� sampled at intervals of �t. In Sec. VI, we take
the time average of S�t� for the nonresonant case. In Sec.
VII, we consider the lower bound of the entanglement of
formation between the atom and the field. In Sec. VIII, we
give brief discussions.

II. TIME EVOLUTION OF THE BLOCH VECTOR

In this section, we give the equation of the time evolution
of the Bloch vector of the atom. The Jaynes-Cummings
model is a system that is described by the following Hamil-
tonian:

H =
�

2
�0�z + ��a†a + �g��+a + �−a†� , �1�

where

�� =
1

2
��x � i�y� , �2�

�x = �0 1

1 0
�, �y = �0 − i

i 0
�, �z = �1 0

0 − 1
� , �3�

and �a ,a†�=1. The Pauli matrices ��i, i=x ,y ,z� are operators
of the atom and a and a† are operators of the field. In this
paper, we assume that g is a constant, so that it does not
depend on �0 or �. Let us divide H as follows �4,5�:

H = ��C1 + C2� , �4�

C1 = ��1

2
�z + a†a� , �5�

C2 = g��+a + �−a†� −
��

2
�z, �6�

where ��=�−�0. We can confirm

�C1,C2� = 0. �7�

Because C1 can be diagonalized at ease, we take the fol-
lowing interaction picture. We write a state vector of the
whole system in the Schrödinger picture as �	�t�	. A state
vector in the interaction picture is defined by

�	I�t�	 = exp�iC1t��	�t�	 . �8�

�We assume �	I�0�	= �	�0�	.� Because of Eq. �7�, the time
evolution of �	I�t�	 is given by

�	I�t�	 = U�t��	�0�	 , �9�

where

U�t� = exp�− iC2t� . �10�

We define the density operator of the initial state of the
atom and the boson field as


AF�0� = 
A�0� � 
F, �11�


A�0� = 
i,j��0,1�


A,ij�0��i	AA�j� , �12�


F =
exp�− ���a†a�

Tr exp�− ���a†a�
= �1 − e−����exp�− ���a†a� ,

�13�

where

�0	A = �1

0
�, �1	A = �0

1
� , �14�

and � is an inverse of the temperature. �The indices A and F
imply the atom and the field, respectively.�

The density operator of the atom in the interaction picture
evolves according to


A�t� = 
i,j��0,1�


A,ij�t��i	AA�j� , �15�


A,ij�t� = 
k,l��0,1�


A,kl�0�Akl,ij�t� for i, j � �0,1� , �16�

Akl,ij�t�=A�i�TrF�U�t���k	AA�l� � 
F�U†�t���j	A, �17�

where TrF means a partial trace over the field. Because

A,10�t�=
A,01�t�� and 
A,11�t�=1−
A,00�t�, we examine

A,00�t� and 
A,01�t� only. We can derive Akl,ij�t� as follows:
The unitary evolution operator of the whole system U�t�
given by Eqs. �6� and �10� is rewritten as
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U�t� = exp�− it�− ��/2 ga

ga† ��/2 ��
= 

n=0

�
�− 1�nt2n

�2n�!
��D + g2�n 0

0 Dn �
+ 

n=0

�
i�− 1�nt2n+1

�2n + 1�!
�− ���D + g2�n/2 gaDn

ga†�D + g2�n ��Dn/2 �
= �u00 u01

u10 u11
� , �18�

where

D = ���

2
�2

+ g2a†a , �19�

u00 = cos�t�D + g2� −
i

2
��

sin�t�D + g2�
�D + g2

,

u01 = iga
sin�t�D�

�D
,

u10 = iga†sin�t�D + g2�
�D + g2

,

u11 = cos�t�D� +
i

2
��

sin�t�D�
�D

. �20�

From Eqs. �17�–�20�, we obtain

A00,00�t� = �1 − e−����

�
n=0

�
���/2�2 + g2�n + 1�cos2��D̃�n + 1�t�

D̃�n + 1�

�e−n���,

A11,00�t� = �1 − e−����
n=1

�

g2n
sin2��D̃�n�t�

D̃�n�
e−n���,

A01,01�t� = �1 − e−����

�
n=0

� �cos��D̃�n + 1�t�

−
i

2
��

sin��D̃�n + 1�t�
�D̃�n + 1�

�
��cos��D̃�n�t� −

i

2
��

sin��D̃�n�t�
�D̃�n�

�e−n���,

�21�

A01,00�t� = A10,00�t� = A00,01�t� = A10,01�t� = A11,01�t� = 0,

�22�

where

D̃�n� = ���

2
�2

+ g2n . �23�

�The trace over the field is taken by the basis vectors of the
photon number states.�

We introduce the Bloch vector S�t�= (Sx�t� ,Sy�t� ,Sz�t�)
which is given by


A�t� =
1

2
�I + S�t� · �� , �24�

where I is the identity operator and �= ��x ,�y ,�z�. Because

A�t�†=
A�t� and 
A�t��0, S�t� is a real vector and satisfies
�S�t��2�1. From Eqs. �16�, �22�, and �24�, we obtain

S�t� = L���t�S�0�

= � L��
�1� �t� L��

�2� �t� 0

− L��
�2� �t� L��

�1� �t� 0

0 0 L��
�3� �t�

�S�0� + � 0

0

L��
�4� �t�

� ,

�25�

where

L��
�1� �t� = Re�A01,01�t�� ,

L��
�2� �t� = Im�A01,01�t�� ,

L��
�3� �t� = A00,00�t� − A11,00�t� ,

L��
�4� �t� = A00,00�t� + A11,00�t� − 1. �26�

This is the equation of the time evolution of S�t�.

III. TRAJECTORY OF THE BLOCH VECTOR

In this section, we observe the trajectory of the time evo-
lution of S�t�. To simplify the discussion, we concentrate on
the case where the field is resonant with the atom, that is,
��=0. Furthermore, we regard �0 as a constant. Thus, the
model has two variables, t and �. We replace �g�t with t and
����=���0� with �, where we assume g�0 and �0�0.
They imply that the time t is in units of �g�−1 and the inverse
of the temperature � is in units of ���0�−1. From the above
assumptions and Eqs. �21�, �23�, �25�, and �26�, we obtain
the following equation:

S�t� = L�t�S�0� = �L1�t� 0 0

0 L1�t� 0

0 0 L3�t�
�S�0� + � 0

0

L4�t�
� ,

�27�

where

L1�t� = �1 − e−��
n=0

�

cos��n + 1t�cos��nt�e−n�, �28�
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L3�t� =
1

2
�1 − e−�� +

e2� − 1

2e� 
n=1

�

cos�2�nt�e−n�, �29�

L4�t� = −
1

2
�1 − e−�� +

�e� − 1�2

2e� 
n=1

�

cos�2�nt�e−n�. �30�

�We note Im�A01,01�t��=0 for ��=0. In the algebraic form
of Im�A01,01�t��, summations of cos��n+1�g�t�sin��n�g�t�
e−n��� /�n and cos��n�g�t�sin��n+1�g�t�e−n��� /�n+1 for the
index n from 0 to � appear, where �sin��n�g�t� /�n�n=0= �g�t.
However, they converge to finite values. Similar discussions
are explained in Sec. IV.� Looking at Eq. �27�, we understand
that the trajectory �a curve in the three-dimensional space of
S parametrized by t� is uniquely determined by the initial
state S�0� for given �.

Figure 1 shows a trajectory of S�t� whose initial state and
temperature are given by S�0�= �1,0 ,0� and �=0.5, respec-
tively. In this case, Sy�t�=0 for t�0 and the curve of S�t� lies
on the xz plane. The trajectory of Fig. 1 oscillates hard and
seems to be in complete disorder. This is because S�t� is a
tuple of superpositions of cos��n+1t�cos��nt�e−n� and
cos�2�nt�e−n� for n=0,1 ,2 , . . . as shown in Eqs. �28� and
�30�.

If the operator L�t� defined in Eq. �27� satisfies the rela-
tion L�t2�=L�t2− t1�L�t1� ∀ t1 , t2, the following thing can
happen. If the trajectory reaches a point �at t2� where it has
passed before �at t1�t2��, it forms a closed path and S�t�
moves along this closed path for t� t2. �See Fig. 2.� How-
ever, this thing does not happen because L�t2�=L�t2
− t1�L�t1� does not hold in general. In fact, we can observe an
example where the trajectory intersects itself and does not
form a closed path in Fig. 3.

If Sx�0��0 or Sy�0��0, S�t� draws a trajectory in the
two- or three-dimensional space. From the above consider-
ations, we understand that this trajectory does not form a
closed loop in general.

IV. TIME AVERAGE OF THE BLOCH VECTOR FOR ��
=0

In this section, we take the time average of the Bloch
vector for the case where the field is resonant with the atom

���=0�. As shown in Fig. 1, the evolution of S�t� is in
complete disorder. To remove the fast frequency oscillation,
we consider the time average of S�t� as

�S	 = lim
T→�

1

T
�

0

T

dtS�t� . �31�

From Eqs. �27�–�30�, we obtain

�S	 = ��L1	 0 0

0 �L1	 0

0 0 �L3	
�S�0� + � 0

0

�L4	
� , �32�

�L1	 = �1 − e−�� lim
T→�

1

T
n=0

�

��n + 1sin��n + 1T�cos��nT�

− �ncos��n + 1T�sin��nT��e−n�, �33�

�1 �0.5 0.5 1
Sx

�0.4

0

Sz

FIG. 1. The trajectory of S�t� �0� t�100� whose initial state
and temperature are given by S�0�= �1,0 ,0� and �=0.5, respec-
tively. �We assume ��=0.� The horizontal and vertical lines repre-
sent Sx and Sz, respectively. They are dimensionless quantities. In
this case, the trajectory lies on the xz plane. In the numerical cal-
culation of L1�t� and L4�t� defined in Eqs. �28� and �30�, the sum-
mations of the index n is carried out up to 500.

0

Sz

Sx

1
t=0

t1P

t2

FIG. 2. The trajectory of S�t� whose initial state is given by
S�0�= �1,0 ,0�. �We assume ��=0.� The horizontal and vertical
lines represent Sx and Sz, respectively. They are dimensionless
quantities. If L�t2�=L�t2− t1�L�t1� ∀ t1 , t2, the trajectory forms a
closed loop. If the trajectory passes a point P at t1 and reaches P at
t2��t1� again, S�t� moves along the closed loop for t� t2. This is
because the evolution of S�t� is determined by L�t− t2�S�t2�. Actu-
ally, L�t2�=L�t2− t1�L�t1� does not hold in general and the trajec-
tory does not form the closed path.

�1 �0.5 0.5 1
Sx

�0.4

�0.2

0

Sz

FIG. 3. The trajectory of S�t� �0� t�6� whose initial state and
temperature are given by S�0�= �1,0 ,0� and �=0.5, respectively.
�We assume ��=0.� The horizontal and vertical lines represent Sx

and Sz, respectively. They are dimensionless quantities. We can ob-
serve that the trajectory intersects itself and does not form a closed
loop. In the numerical calculation of L1�t� and L4�t� defined in Eqs.
�28� and �30�, the summations of the index n is carried out up to
500.
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�L3	 =
1

2
�1 − e−�� +

e2� − 1

4e� lim
T→�

1

T
n=1

�
sin�2�nT�

�n
e−n�,

�34�

�L4	 = −
1

2
�1 − e−�� +

�e� − 1�2

4e� lim
T→�

1

T
n=1

�
sin�2�nT�

�n
e−n�.

�35�

Let us take the limit of T→� in Eqs. �33�–�35�. First, we
evaluate �L1	. We can obtain the following relation about
�L1	 from Eq. �33�:

− V1 � �L1	 � V1, �36�

where

V1 = �1 − e−�� lim
T→�

1

T
n=0

�

��n + 1 + �n�e−n�

=
e2� − 1

e� lim
T→�

1

T
n=0

�

�ne−n���0� . �37�

From Eq. �37�, we can derive the following relation:

V1 
e2� − 1

e� lim
T→�

1

T
n=0

�

ne−n�. �38�

Because


n=0

�

ne−n� =
e�

�e� − 1�2 , �39�

we obtain

V1  lim
T→�

1

T

e� + 1

e� − 1
. �40�

Thus, if ��0, V1=0, and �L1	=0. Moreover, we can derive
�L1	=0 for �=0 from Eq. �33� immediately. Hence, we ob-
tain �L1	=0 ∀ �.

Second, we evaluate �L3	. We can obtain the following
relation about �L3	 from Eq. �34�:

− V3 �
e2� − 1

4e� lim
T→�

1

T
n=1

�
sin�2�nT�

�n
e−n� � V3, �41�

where

V3 =
e2� − 1

4e� lim
T→�

1

T
n=1

�
e−n�

�n
��0� . �42�

Moreover, we can derive the following relation:

V3 
e2� − 1

4e� lim
T→�

1

T
n=1

�

e−n�. �43�

Because n=1
� e−n�=1 / �e�−1�, we obtain

V3  lim
T→�

1

T

e� + 1

4e� = 0. �44�

Thus, we obtain

�L3	 =
1

2
�1 − e−�� . �45�

By a similar derivation, we can obtain

�L4	 = −
1

2
�1 − e−�� . �46�

V. HISTOGRAM OF Sz(t) SAMPLED AT INTERVALS
OF �t

In this section, we think about the histogram of
��Sz�n�t��n=0,1 , . . . ,N� for small �t and large N. To sim-
plify the discussion, we assume ��=0 and S�0�= �0,0 ,0�.
The time evolution of S�t� is described as S�t�= (0,0 ,L4�t�),
where L4�t� is given by Eq. �30�.

We investigate the time evolution of L4�t� by the follow-
ing way. Fixing � at a certain value and defining a small time
interval �t, we collect �N+1� samples of L4�n�t� for n
=0,1 , . . . ,N, where N is large enough. Next, we make
a histogram of these �N+1� samples �L4�0� ,
L4��t� , . . . ,L4�N�t��. We adjust the class interval of bins of
the histogram, so that the line graph of the histogram ap-
proaches a smooth curve.

This histogram represents an absolute value of a deriva-
tive of the inverse function of L4�t�. As shown in Fig. 4, the
probability that there is a sample L4�n�t� in the range of the
bin of the histogram �y ,y+�y� is proportional to

�L4
−1�y + �y� − L4

−1�y�
�y

� , �47�

where t=L4
−1�y� is an inverse function of y=L4�t� and �y is a

class interval of the bin. �Here, we assume L4
−1�y� is not a

multivalued function.� If we take the limit of small �y, this
probability reaches

y

t0

y

y+∆y

y=L4(t)

L4
-1(y) L4

-1(y+∆y)

FIG. 4. The graph of y=L4�t�. The horizontal and vertical lines
represent t and y �or L4�, respectively. t is in units of �g�−1 and y �or
L4� is a dimensionless quantity. t=L4

−1�y� is an inverse function of
y=L4�t�.
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� � lim
�y→0

L4
−1�y + �y� − L4

−1�y�
�y

� = � d

dy
L4

−1�y�� . �48�

If L4
−1�y� is a multivalued function, the probability is propor-

tional to a summation of ��d /dy�L4
−1� at points whose real

parts are equal to y on the Riemann surface.
Let us evaluate the histogram of L4�t� in the low-

temperature limit. In the low-temperature limit, we can de-
scribe L4�t� as

y = lim
�→�

L4�t� = −
1

2
�1 − cos 2t� . �49�

Thus, the histogram is proportional to

� dt

dy
� =

1
�1 − �2y + 1�2

for − 1 � y � 0. �50�

Next, we consider the histogram of L4�t� for the high
temperature. If ��1, we can expect that L4�t� varies at ran-
dom around a mean with a certain variance. Hence, we can
approximate the histogram by the probability function of the
normal distribution,

1
�2��

e−�y − ��2/�2�2�, �51�

where � and �2 are a mean and a variance of samples, that
is,

� =
1

N + 1
n=0

N

L4�n�t� �52�

and

�2 =
1

N + 1
n=0

N

�� − L4�n�t��2. �53�

If N�t is large enough, � is nearly equal to �L4	. �From Eq.
�30�, we can show −1�L4�t��0. Thus, we can expect that
L4�t� varies at random in the range of �−1,0�. However, Eq.
�51� is defined on −�y�. Here, we neglect this incon-
sistency.�

In Figs. 5–7, we show the histogram of L4�t� for �=10, 1,
and 0.01, respectively. In Fig. 5, Eq. �50� fits for the histo-
gram well. In Fig. 7, Eq. �51� fits for the histogram well, too.
�In Fig. 7, the shape of the histogram is not symmetrical. A
slope of the left-hand side is steeper than a slope of the
right-hand side. The author cannot find a physical meaning
of this observation.� The histogram of Fig. 6 seems to be an
intermediate shape of Figs. 5 and 7.

In Fig. 8, we plot the variance �2 of samples against � for
0.01���10. For small �, we can approximate plotted
points by �2���=c1�c2 for 0.01���0.1, where c1=0.0516
and c2=2.95. The author cannot find a reason why the func-
tion of �2��� for small � has such a simple form.

VI. TIME AVERAGE OF THE BLOCH VECTOR FOR ��
Å0

In this section, we evaluate the time average of the Bloch
vector for the nonresonant case ����0�. Here, we set �

=1 �� is in units of ��. We fix g and �0 and regard them as
constants. Thus, the model has three variables, �, �, and t.
From Eqs. �21�, �25�, �26�, and �31�, we obtain the following
relation:

�S	 = � �L��
�1� 	 �L��

�2� 	 0

− �L��
�2� 	 �L��

�1� 	 0

0 0 �L��
�3� 	

�S�0� + � 0

0

�L��
�4� 	

� , �54�

where

�L��
�1� 	 = �1 − e−��� lim

T→�

1

T

�
n=0

� � n + 1

�D̃�n + 1�
sin��D̃�n + 1�T�cos��D̃�n�T�

−
n

�D̃�n�
cos��D̃�n + 1�T�sin��D̃�n�T��e−n��,

�1 �0.25�0.5�0.75 0
L40

100

200

300

400

500

FIG. 5. The histogram of ��L4�n�t��n=0,1 , . . . ,9999� where �
=10, �t=0.05, and the class interval of each bin is equal to 0.005.
The horizontal line represents L4 that is a dimensionless quantity.
The vertical line represents the number of samples in each bin and
it is a dimensionless quantity, as well. A thin line graph represents
the histogram of samples �L4�n�t��. A thick curve represents the
approximate function a /�1− �2y+1�2 where a=35.5. In the figure,
the thick curve is lying on the thin line graph and we can hardly
distinguish between them. In the numerical calculation of L4�t� de-
fined in Eq. �30�, the summation of the index n is carried out up to
1000.

�0.7 �0.6 �0.5 �0.4 �0.3 �0.2 �0.1 0
L40

40

80

120

FIG. 6. The histogram of ��L4�n�t��n=0,1 , . . . ,9999� where �
=1, �t=0.05, and the class interval of each bin is equal to 0.0035.
The horizontal line represents L4 that is a dimensionless quantity.
The vertical line represents the number of samples in each bin and
it is a dimensionless quantity, as well. In the numerical calculation
of L4�t� defined in Eq. �30�, the summation of the index n is carried
out up to 1000.
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�L��
�2� 	 = −

��

2
�1 − e−��� lim

T→�

1

T

�
n=0

�
sin��D̃�n + 1�T�sin��D̃�n�T�

�D̃�n + 1�D̃�n�
e−n��,

�L��
�3� 	 = �1 − e−���

n=1

� �e�� ���/2�2

D̃�n�
+

1

2
�e�� − 1�

g2n

D̃�n�
�e−n��

+
e2�� − 1

4e�� lim
T→�

1

T 
m=1

�
g2m

D̃�m�

sin�2�D̃�m�T�
�D̃�m�

e−m��,

�L��
�4� 	 = �1 − e−���

n=1

� �e�� ���/2�2

D̃�n�
+

1

2
�e�� + 1�

g2n

D̃�n�
�e−n��

+
�e�� − 1�2

4e�� lim
T→�

1

T 
m=1

�
g2m

D̃�m�

sin�2�D̃�m�T�
�D̃�m�

e−m�� − 1.

�55�

Using the method shown in Sec. IV, we can take the limit
T→� in Eq. �55� and we obtain

�L��
�1� 	 = �L��

�2� 	 = 0,

�L��
�3� 	 = �1 − e−���

n=1

� �e�� ���/2�2

D̃�n�
+

1

2
�e�� − 1�

g2n

D̃�n�
�e−n��,

�L��
�4� 	 = �1 − e−���

n=1

� �e�� ���/2�2

D̃�n�
+

1

2
�e�� + 1�

g2n

D̃�n�
�e−n��

− 1. �56�

Looking at Eq. �56�, we obtain

lim
�→0

�L��
�3� 	 = lim

�→0
�L��

�4� 	 = 0, �57�

lim
�→�

�L��
�3� 	 =

����2 + 2g2

����2 + 4g2 , �58�

and

lim
�→�

�L��
�4� 	 = −

2g2

����2 + 4g2 . �59�

The above results imply lim�→0�S	=0 ∀ S�0� and

lim
�→�

�S	 = �0,0,
�����2 + 2g2�Sz�0� − 2g2

����2 + 4g2 � ∀ S�0� .

�60�

From Eq. �60�, we can explain the following: If we start from
S�0�=0 �the complete mixed state 
A�0�= �1 /2�I� in the low-
temperature limit, we can expect to obtain a slightly purified
state of S= (0,0 ,−2g2 / �����2+4g2�) on average after the
enough time evolution.

VII. ENTANGLEMENT BETWEEN THE ATOM
AND THE THERMAL FIELD

In this section, we consider the evolution of the lower
bound of the entanglement of formation between the atom
and the thermal field in the JCM. In our model defined in
Sec. II, the initial state of the atom and the field is separable.
However, because of the Jaynes-Cummings interaction, we
can expect that the entanglement is generated between the
atom and the field during the time evolution and their bipar-
tite state becomes inseparable. Such a mechanism of en-
tanglement generation is discussed in Refs. �12,13�, as well.
Recently, many researchers have regarded the JCM as a
source of the entanglement �14–23�.

�0.006 �0.0055 �0.005 �0.0045 �0.004
L40

100

200

FIG. 7. The histogram of ��L4�n�t��n=0,1 , . . . ,9999� where �
=0.01, �t=0.05, and the class interval of each bin is equal to 1.0
�10−5. The horizontal line represents L4 that is a dimensionless
quantity. The vertical line represents the number of samples in each
bin and it is a dimensionless quantity, as well. A thin line graph
represents the histogram of samples �L4�n�t��. A thick curve repre-
sents the approximate function �a / ��2����exp�−�y−��2 / �2�2��,
where a=163, �=−0.004 97, and �2=6.31�10−8. �We note �L4	
=−0.004 98.� In the numerical calculation of L4�t� defined in Eq.
�30�, the summation of the index n is carried out up to 1000.

0.01 0.05 0.1 0.5 1 5 10
Β

1�10�7

0.00001

0.001

0.1

Σ2

FIG. 8. Plots of the variance �2 of samples �L4�n�t�� against �
for 0.01���10. Black circles represent plotted data. For each
black circle, 10 000 samples are taken �n=0,1 , . . . ,9999� and we
set �t=0.05. The horizontal line represents � that is in units of
���0�−1. The vertical line represents �2 that is a dimensionless
quantity. In both horizontal and vertical lines, ticks are set in the
logarithmic scale. In the range of 0.01���0.1, plots can be ap-
proximated by �2���=c1�c2, where c1=0.0516 and c2=2.95. This
approximate function is shown as a line graph in the figure.
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Let us pursue the time evolution of the entanglement be-
tween the atom and the field in our model. To simplify the
discussion, we assume ��=0 and g�0. Furthermore, we
assume the atom initially to be in a pure state of
�1 /�2���0	A+ �1	A�, which implies the Bloch vector S�0�
= �1,0 ,0� and the density matrix


A�0� =
1

2
�1 1

1 1
� . �61�

The time evolution of the whole state is described as


AF�0� = 
A�0� � 
F → 
AF�t� = U�t��
A�0� � 
F�U†�t� ,

�62�

where 
A�0� is given by Eq. �61�, 
F is given by Eq. �13�,
and U�t� is given by Eq. �18�.

Here, we are interested in studying the entanglement for
the mixed state of the bipartite system AF �the atom and the
field�. �Because 
F given by Eq. �13� is a mixed state, 
AF�t�
in Eq. �62� is also a mixed state in general.� Moreover, al-
though the dimension of the system A is finite �the two-
dimensional system�, the dimension of the system F is infi-
nite. Entanglement for such a system is difficult to define.

Some measures of entanglement are proposed at present,
for example, the relative entropy of entanglement, entangle-
ment of formation, and so on. However, because analytical
methods are not found for these measures of the entangle-
ment in general, it is difficult to compute the value of the
entanglement for an arbitrary bipartite state. However, ex-
ceptionally, an explicit formula of the entanglement of for-
mation for an arbitrary 2�2 state is obtained �24�. Thus, as
the measure of the entanglement, we choose the entangle-
ment of formation.

To investigate the entanglement of the bipartite mixed
state 
AF�t� given by Eq. �62�, we take the following method.
To reduce the dimension of the system F �the field� from an
infinite number to a finite number, we project the entire state
of the atom and the field 
AF�t� onto a subspace whose di-
mension is given by 2�2 as

RAF�t� = ��0	FF�0� + �1	FF�1��
AF�t���0	FF�0� + �1	FF�1�� ,

�63�

where ��0	F , �1	F� are the photon number states. �We consider
the subspace spanned by the basis vectors ��i	A
� �j	F : i , j� �0,1��.� Because this operation �the projection�
is carried out only in the system F locally, the entanglement
never increases. Hence, the entanglement of RAF�t� is a lower
bound of the entanglement of 
AF�t�.

After slightly long calculation, we can obtain RAF�t� in the
form of a matrix which is represented in the basis vectors
��0	A�0	F , �0	A�1	F , �1	A�0	F , �1	A�1	F�,

RAF�t� =
1

2
�1 − e−���

r00,00 r00,01 r00,10 r00,11

r00,01
� r01,01 r01,10 r01,11

r00,10
� r01,10

� r10,10 r10,11

r00,11
� r01,11

� r10,11
� r11,11

� ,

�64�

where

r00,00 = cos2 t + e−� sin2 t ,

r00,01 = ie−� sin t cos �2t ,

r00,10 = cos t ,

r00,11 = − i sin t cos t + ie−� sin t cos t ,

r01,01 = e−� cos2�2t + e−2� sin2�2t ,

r01,10 = 0,

r01,11 = e−� cos t cos�2t ,

r10,10 = 1,

r10,11 = − i sin t ,

r11,11 = sin2 t + e−� cos2 t , �65�

and we replace ��� with � and gt with t. �Here, we assume
g�0.�

Here, for convenience, we rewrite RAF�t� as follows:

RAF�t� = pAF�t��AF�t� , �66�

where

pAF�t� = Tr�RAF�t�� = �1/4��1 − e−���4 + 3e−� + e−2�

+ e−��1 − e−��cos 2�2t� �67�

and

�AF�t� =
RAF�t�

Tr�RAF�t��
. �68�

��AF�t� is a normalized density matrix of RAF�t�, that is,
Tr��AF�t��=1�.

The original definition of the entanglement of formation
of an arbitrary density matrix 
AB, which is a bipartite state
of systems A and B, is as follows. Let us suppose 
AB is
shared by Alice and Bob. And suppose that, asymptotically
as n→�, Alice and Bob can prepare �
AB��n from k Bell
pairs using local operations and classical communication.
The entanglement of formation of 
AB is given by

E�
AB� = lim
n→�

kmin

n
, �69�

where kmin is the minimum of k for given n �25�.
An explicit formula of the entanglement of formation of a

2�2 dimensional �normalized� bipartite density matrix 
AB
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is given as follows. First, we compute the concurrence of 
AB
from which we can calculate the entanglement of formation
of 
AB. We define a matrix 
̃AB as


̃AB = ��y � �y�
AB
� ��y � �y� , �70�

where 
AB
� is the complex conjugate of 
AB that is represented

in the basis vectors of {�i	A�j	B : i , j� �0,1�}. We write the
eigenvalues of 
AB
̃AB as �1, �2, �3, and �4, where �1��2
��3��4��0�. The concurrence C�
AB� is given by

C�
AB� = max�0,��1 − ��2 − ��3 − ��4� . �71�

The entanglement of formation of 
AB is given by E(C�
AB�),
where

E�C� = −
1 + �1 − C2

2
log2

1 + �1 − C2

2

−
1 − �1 − C2

2
log2

1 − �1 − C2

2
. �72�

Here, we want to estimate the entanglement of formation
of RAF�t�= pAF�t��AF�t�, which is not a normalized density
matrix. The entanglement of formation of RAF�t�, E(RAF�t��,
should be written as E(RAF�t�)= pAF�t�E�C(�AF�t�)�. Because
the analytical form of �AF�t� obtained from Eqs. �64�, �65�,
and �68� is very complicated, it is difficult to obtain
C(�AF�t�) in an explicit formula. Thus, we estimate
C(�AF�t�) �and E�RAF�t��� numerically. The variations of
E(RAF�t�) against t� �0,2�� with fixed �=10, 2, and 1 are
shown in Fig. 9.

In Fig. 9, E(RAF�t�) against t seems to vary periodically.
Because we concentrate on the photon number states �0	F and
�1	F only, the effect of the thermal distribution of the field is
neglected. Looking at Fig. 9, we notice that if � takes a large
value �at a low temperature�, a certain amount of the en-
tanglement arises between the atom and the field. As � be-
comes smaller �as the temperature becomes higher�, the am-
plitude of oscillation of E(RAF�t�) becomes smaller.
However, this observation does not imply that the entangle-
ment of formation of the entire system �the atom and the
field� becomes smaller as the temperature becomes higher,
because E(RAF�t�) is just the lower bound of the entangle-
ment of formation of 
AF�t�. From these results, we may
regard the thermal JCM as the source of the entanglement.

VIII. DISCUSSIONS

In this paper, we examine the dynamics of the Bloch vec-
tor of the two-level atom in the thermal Jaynes-Cummings
model �JCM�. In the evolution of the Bloch vector, for
example, if ��=0, infinite summation of
cos��n+1t�cos��nt�e−n� and cos�2�nt�e−n� for n=0,1 ,2 , . . .
appears and this makes it difficult to treat the problem ex-
actly.

In our model, the thermal effects are introduced only in
the initial state of the boson field. To discuss the thermody-
namics of the JCM strictly, we must think of the grand par-
tition function of the whole system �the atom and the boson
field� and pursue its nonequilibrium time evolution. Al-
though the JCM has been studied by many researchers, un-
derstanding about the thermal JCM seems not to be enough.

In this paper, we try to obtain a global property that char-
acterizes the confused behavior of the Bloch vector. We ob-
serve the trajectory of the Bloch vector and take its time
average. We take the histogram of the z components of the
Bloch vector sampled at intervals of �t. However, we must
wonder whether these results are good global aspects of the
trajectory that is in complete disorder.

Recently, entanglement generation during the evolution of
JCM has been studied from the viewpoint of the quantum-
information theory �12–18�. On the other hand, the entangle-
ment sudden death in the JCM is also discussed �19–23�.
These matters are explained in Sec. I. In Sec. VII, we con-
sider the evolution of the entanglement of formation between
the atom and the thermal field. The thermal JCM may be-
come an important source of the entanglement in the future.
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