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Chirality quantum phase transition in the Dirac oscillator
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We study a relativistic spin-1/2 fermion subjected to a Dirac oscillator coupling and a constant magnetic
field. An interplay between opposed chirality interactions culminates in the appearance of a relativistic quan-
tum phase transition, which can be fully characterized. We obtain analytical expressions for the energy gap,
order parameter, and canonical quantum fluctuations across the critical point. Moreover, we also discuss the
effect of this phase transition on the statistics of the chiral bosonic ensemble, where its super- or sub-
Poissonian nature can be controlled by means of external parameters. Finally, we study the entanglement
properties between the degrees of freedom in the relativistic ground state, where an interesting transition
between a biseparable and a genuinely tripartite entangled state occurs.
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I. INTRODUCTION

Classical phase transitions describe an abrupt change in
the physical properties of a system caused by the modifica-
tion of its temperature. This phenomenon usually entails a
change in the symmetry of the phases involved, and is com-
monly driven by thermal fluctuations. Consequently, classi-
cal phase transition cannot persist at zero temperature where
the absence of thermal fluctuations forbids the sudden
change of phase. Nonetheless, other kinds of fluctuations ex-
ist at zero temperature, the so-called quantum fluctuations,
which can also be responsible for a dramatic change in the
properties of the system. In this case, the change is driven by
the modification of certain couplings that describe the inter-
actions between the microscopic constituents of the system,
and is usually known as a quantum phase transition [1].

These critical phenomena arise in the thermodynamical
limit of certain many-body systems, where the number of
particles N— . Usually, the description of such systems is
extremely complex and one must deal with numerical meth-
ods. Nevertheless, there exist certain situations where a sim-
plified model, which can be exactly solved, captures the full
essence of the problem displaying such an abrupt change of
the system properties. For instance, a collection of N two-
level atoms interacting with a single mode of the radiation
field, known as the Dicke model, displays a quantum phase
transition whose features can be justified by means of a
simple two-mode Hamiltonian in the thermodynamical limit
[2,3]. Other two-mode Hamiltonians which also display criti-
cal phenomena have been studied in the field of quantum
optics [4,5] or in nuclear physics [6].

In this work, we shall be concerned with a relativistic toy
model that involves two phonon modes and also displays a
quantum phase transition. This critical phenomenon occurs
in a fermionic relativistic harmonic oscillator, also known as
a Dirac oscillator [7,8], when an additional constant mag-
netic field is applied. This relativistic fermion of mass m and
charge —e is described by the following Dirac equation:

iﬁ% =[ca(p — imBor + eA) + Bmc*| W), (1)

where |W) stands for the Dirac four-component spinor, r and
p represent the position and momentum operators,  is the
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Dirac oscillator frequency, ¢ stands for the speed of light and
B:=diag(l,-1), ;: =off-diag(c;,0;) are the Dirac matrices
related to the usual Pauli matrices [9]. Here, the magnetic
field is introduced by minimal coupling p— p+e¢eA, where A
is the vector potential related to the magnetic field through
B=V AA. On the other hand, the Dirac oscillator coupling is
introduced by a nonminimal coupling p—imBwr, where w
stands for the Dirac oscillator frequency.

Here, we shall focus on a two-dimensional setup where
the Dirac matrices become the well-known Pauli matrices
a,=0,,a,=0,,B=0,. In this scenario, Eq. (1) can be ex-
pressed as

3w
L

2
o > o(p;—imBo.x;+ eA)) + a.mc* || W),
j=1

2)

where | ) is a two-component spinor which mixes spin-up
and -down components with positive and negative energies.
Remarkably enough, the Dirac oscillator coupling endows
the particle with an intrinsic left-handed chirality which is
only present in this two-dimensional scenario [10]. Con-
versely, the magnetic field coupling favors a right-handed
chirality [11], and therefore an intriguing interplay is set up.
This system can be considered as a relativistic extension of
chiral harmonic oscillators, which carry dual aspects of a
certain symmetry (i.e., chirality in the plane). Such nonrela-
tivistic systems have been studied from a fundamental point
of view [12], and an interesting connection to topological
Chern-Simons gauge theories has also been pointed out
[13,14].

In this paper, we show how this relativistic chiral oscilla-
tor presents several intriguing critical properties, and offer an
ideal scenario where to study the effect of opposed chirality
interactions in a two-dimensional setting. In Sec. II, we show
how the relativistic Hamiltonian in Eq. (2) can be exactly
mapped onto a pair of simultaneous Jaynes-Cummings (JC)
and anti-Jaynes-Cummings (AJC) interactions [15,16] with
right- and left-handed chirality, respectively. This result dif-
fers substantially from previous situations where only a dis-
tinctive chiral interaction appeared [10,11], and opens up the
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possibility to study a unique interplay between left- and
right-handed interactions. In Sec. III, we describe two limit-
ing cases: a weak magnetic field regime where the system
displays a remarkable left-handed chirality, and a strong
magnetic field regime with an opposite right-handed chiral-
ity. For intermediate couplings, we obtain the complete en-
ergy spectrum and the associated eigenstates in Sec. IV. To
accomplish such task, we perform a unitary transformation
which turns the Hamiltonian into a single-mode interaction
which can be easily diagonalized. This exact solution shows
how an unusual competition between chiral terms arises, and
leads to a relativistic level crossing phenomenon for a critical
value of the JC and AJC couplings, which is described in
detail in Sec. V. In this sense, several analogies with second
order quantum phase transitions occur, such as the energy
gap suppression, the divergence of quantum fluctuations, and
the existence of an order parameter that reveals the existence
of a quantum phase transition. Furthermore, we also show
that the statistical nature of the chiral phonon distribution
displays an abrupt change across the critical point, where
super-Poissonian chiral phonons turn into sub-Poissonian
phonons and vice versa. Finally, in the Appendix, we give
some details for the construction of the system eigenstates,
which are closely related to SU(1,1) coherent states.

II. EXACT MAPPING ONTO A SIMULTANEOUS JC-AJC
HAMILTONIAN

Let us first provide the exact mapping onto a pair of si-
multaneous JC and AJC couplings with opposite chiralities.
We shall work in the axial gauge, where a constant magnetic
field B=Be, is described by the following vector potential

:=§[—y,x,0]. In this setup, the dynamics of a relativistic
fermion is described by two different frequencies, the Dirac
oscillator frequency w and the cyclotron frequency w,:
=eB/m. In this regard, we must introduce a pair of sets of
creation-annihilation operators

1(1 A ) : 1(1 A )
== — 41D . .= T= _i_ - il
a; \,‘"2 Arl lhpt a; \’E Ar lﬁp

K

1 (1 +,5 4 1(1 A 3
ai=" "\ ZritiDif, i = =\ =Tl D
A AV

associated to the frequencies w and @: =w,./2, respectively.

Here, A: =\A/mw and A: =\h/ma represent the oscillator’s
ground-state width associated to each frequency, and we
have introduced i=x,y to account for the two possible direc-
tions of motion [17]. The substitution of these operators in
Eq. (2), followed by the introduction of the chiral annihila-
tion operators for each frequency:

1 1
a:=—(a,-ia,), a;=-—(a -+ia,),
r \2 X \2 x y
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FIG. 1. (Color online) Level scheme representation of the rela-
tivistic interaction, which gives rise to spin-flip transitions accom-
panied by the simultaneous creation and annihilation of chiral
phonons. Note that there are two different spin-flip channels de-
pending on the phonon chirality. Namely, the right-handed channel
XDt + 1)< | xow)ii),  and  the  left-handed  channel
|x)n) | x1)n;+1). Here we have introduced the Pauli spinors
|XT>: =(1,0)" and |Xl>: =(0,1)", and the left-handed |n;):
=(n;!)~"*(a})"|vac) and right handed |7,): =(7,!)~"/*(a’)™|vac) chi-
ral Fock states.

1 1
a,:= ?(ax - lay)’ ar = _/_(ax + lay)» (4)
V2 V2
and the consequent creation operators JI,EZ,aj,aI, leads to
the following bichromatic relativistic Hamiltonian:

) 1 i2¢a] - Ny
H=mc _ - . )
—iV2&a,+ i\/z_ga,' -1

where the two important parameters &:=7%w/mc* and &
=hd/mc? represent the strength of the oscillator and mag-
netic field coupling with respect to the particle rest mass
energy, respectively. This Hamiltonian in Eq. (5) can be re-
written as simultaneous JC and AJC interactions with oppo-
site chiralities

H=d0, - H?C(gr) + H/}iJC(gz)’ (6)

where 8:=mc? stands for the detuning parameter propor-
tional to the rest mass energy, H}Dc(g,) represents a right-
handed Jaynes-Cummings Hamiltonian

Hyc(g,) = 8,0"a,+ 8,07, (7)

with g,: =imc2\/2_g as the interaction coupling strength.
Analogously, the term Hy(g;) stands for a left-handed Anti-
Jaynes-Cummings interaction

Hyo(g) =g0%a] +g/o7a,, (8)

with a similar coupling strength g;: =imc?\2&. The relativis-
tic Hamiltonian in Eq. (6) is depicted in Fig. 1, where the JC
and AJC couplings give rise to a pair of channels through
which the relativistic particle can perform spin-flip transi-
tions.

III. WEAK AND STRONG MAGNETIC FIELD REGIMES

The exact mapping of this relativistic model onto a simul-
taneous JC and AJC couplings allows a neat description of
the interaction in terms of a energy level scheme (see Fig. 1).
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The presence of the pair of simultaneous couplings ngc(g,),
and H}jc(g,) in Eq. (6), forbids a straightforward solution of
the complete Hamiltonian by analogy to JC-like solutions
[10,11]. Nonetheless, these techniques can be used to obtain
the energy spectrum and corresponding eigenstates in two
limiting regimes.

A. Weak magnetic field £<£

In this regime, the Hamiltonian in Eq. (5) becomes

=280, +g0*a] + gjo"a;+ O(&9), 9)

and we can obtain a first approximation to the energy spec-

trum neglecting corrections of order O(E/ £). Consequently,
the relativistic Hamiltonian can be approximately described
by a left-handed AJC coupling which can be directly solved
[18]. The energy spectrum becomes E“= +EW +mc?[1
+2&(n;+1)]"2, where n,=0,1, ..., represents the ‘number of
left-handed phonons. The corresponding eigenstates form an
AJC doublet which can be described as

|+EW> Cn +|nl+ 1>|XT> + lC:},I|nl>|Xl>7 (10)

where we have introduced the set of left-handed Fock states
)z =(n0)~"%(a])"|vac), |x):=(1,0)" and |x):=(0,1)
stand for up and down Pauli spinors, and certain normaliza-
tion constants C,, . : =[(E3']imcz)/ 2E;”]]”2.

B. Strong magnetic field £> ¢

In this limit, the Hamiltonian in Eq. (5) becomes

=260,-g,0a,-go7a +0(&), (11)
and we can find the energy spectrum up to O(&/ &), which
becomes E'= + ES = +mc[1+2&(,+1)]"%,  where 1,
=0,1,..., is the number of right-handed phonons. The cor-

respondmg eigenstates form a JC doublet [18] with the fol-
lowing structure:

% E;)=C; -lmlx) i <+ Dlx),  (12)

with |i2,): = (7, )‘”2(&'*)”’|vac> as right-handed Fock states
and C‘ :=[(E; =mc?)/2E; ]”2

The latter results can be understood as follows, in the
regime where £/£—0, the relativistic system is found in a

phase with left chirality. Conversely, in the limit where ére
— 0, a notorious right-handed chiral phase arises. Therefore,

a modification of the coupling strengths E,E leads to a
change of the chiral symmetry, which can be interpreted in
the language of quantum phase transitions. We will consider
a zero-temperature setup, where thermal fluctuations do not
exist and the chirality transition can only be driven by quan-
tum fluctuations. As we show below, the complete relativistic
energy spectrum can be obtained for all possible couplings
¢, E This spectrum presents two crucial properties which re-
semble the usual setting in quantum phase transitions: the
energy spectrum is nonanalytical for a critical coupling
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(£/¢),=1, and the system becomes gapless at this critical
point AE—0 when |(£/&)—(&/£).]—0.

IV. EXACT SOLUTION: ENERGY SPECTRUM
AND ASSOCIATED EIGENSTATES

The particular structure of the Hamiltonian in Eq. (5) sug-
gests a different description where the spinorial degrees of
freedom are coupled to a unique bosonic operator b (q,
—(€/¢)"?a’) which mixes both chiralities depending on the
relative coupling strength &/&. In this regard, we derive a
unitary transformation which converts the bichromatic
Hamiltonian in Eq. (6) into a monochromatic JC (AJC) term
that involves such bosonic degree of freedom » with a cer-
tain chirality that depends on external parameters §>§ (&
< E). This transformation, which turns out to be a two-mode
squeezing operator, allows an insightful derivation of the en-
ergy spectrum and its associated eigenstates whose proper-
ties depend strongly on the magnitude of the magnetic field
applied. As we shall discuss, certain properties of the system,
such as chirality, squeezing, phonon statistics, and entangle-
ment, are conditioned to the value of the magnetic field.
Moreover, as the magnetic field is varied, a sudden quantum
phase transition occurs at £=¢, where both chiralities con-
tribute identically, and the critical theory becomes that of a
relativistic free fermion.

A. Left-handed regime £< &

Under these circumstances, the relativistic Hamiltonian in
Egs. (6)—(8) can be unitarily mapped onto a single-mode
anti—Jaynes-Cummings Hamiltonian by means of the follow-
ing unitary transformation:

U,: = evaiaa), (13)

where the real parameter « depends on the relative strength
of the oscillator and magnetic field couplings

M_wc) 1

1
a: = —arctanh(
A Vo — u\@

and _we have introduced w: =(A/A-A/A)/2 and X\
t=\ 42+ 1. The transformation laws for the chiral operators
under the unitary in Eq. (13) can be described as follows:

. 1
UlaU,= (cosh()\a) + %sinh()\a))a, - Xsinh()\a)&”i,

1
ULE,UD( (cosh()\a) —smh()\a))a —Xsmh()\a)a,,

(15)

which lead to the following transformation of the complete
original Hamiltonian into a single-mode AJC term

H{\(g]): = UHU, = 80, + g|o*a] +(g]) 07a;, (16)

with a modified coupling strength g;: =imc2V’TQ, where
L(£,8): =E—E-2u(EE)"? is related to the initial relevant pa-
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rameters. Once the single-mode Hamiltonian in Eq. (16) has
been obtained, we can calculate the energy spectrum and
corresponding eigenstates of the original Hamiltonian by
solving the single mode coupling. Two Hermitian operators
related through a unitary transformation share a common
spectrum, and therefore the energy eigenvalues of the Hamil-
tonian in Eq. (6) can be obtained in analogy to the weak
magnetic field regime

E= *E, = imc2\/1+2g,(g,§)(n,+ 1), (17)

where n;=0,1,..., represents the number of left-handed
quanta. The associated eigenstates are obtained by means of
the unitary transform applied to the single-mode left-handed
eigenstates

|2 E,) = U(C, «lnj+ Dlxp) 7 iC, <[n)lx)),  (18)
where the normalization constants depend on the energies
Cpp=:=[(E, = mc2)/2Enl]”2. The transformation in Eq. (13)
can be rewritten in the monochromatic scenario as

Ua — e—(aﬁ/Z)(—a,ﬂﬁaia}L) , (19)

where :=(A/ A+A/A)/2. This transformation can be im-
mediately related to a two-mode squeezing operator in the
context of quantum optics with squeezing parameter z
:=—a/2E€R [19]. The action of such an squeezing opera-
tor (19) over left-handed chiral Fock states gives rise to
SU(1,1) coherent states =U'|np|vac), [36] (see the
Appendix for some details)

(m+n,)

( 1)"tanh™|z||m + n;,m),

i
m=0

(20)

where we have introduced the normalization constant N
:=cosh"*Vz|. Since right-handed operators are not present
in the effective Hamiltonian of Eq. (16), and consequently do
not participate in the relativistic dynamics, we have chosen
the right-handed vacuum for simplicity. The state corre-
sponding to n;=0 can be identified with the two-mode
squeezed vacuum state, an archetypical state in the field of
quantum optics that becomes highly nonclassical for a large
squeezing parameter. Therefore, the energy eigenstates of the
relativistic fermion in Eq. (18) can be expressed as

|+E,)=C,,=

21

zn+ Dlxp) * iCp, =2,

which is identical to an AJC-like doublet where SU(1,1) co-
herent states are entangled with the relativistic spinors. Such
a state possesses remarkable nonclassical properties, such as
spin-orbit entanglement or sub-Poissonian statistics. With re-
spect to the weak magnetic field eigenstates in Egs. (10),
these states present certain novel features, such as an inter-
mode chiral entanglement, or bosonic statistics which de-

pend on the coupling strength £/ £ All these interesting prop-
erties will be described in detail in forthcoming sections. We
shall be also interested in the properties of the fermionic
ground state Eg=mc2
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)= 2.0)lxp) = » |2 (= 1)"tanh™|z][m,m)|x1).

osh
(22)

which can be notably interpreted as a spin-up squeezed
vacuum state, where the squeezing parameter z=—au/2 de-

pends on the relative coupling strengths £E

B. Right-handed regime E> &

In this case, the original Hamiltonian in Egs. (6)—(8) is
transformed into a Jaynes-Cummings Hamiltonian under the
action of

Uy = ea(a,a,,—aja})’ (23)

where the parameter @ in this regime becomes

)\ \r'z )

= (24)
\/—6 + ,u,\@

a:=

larctanh(
A

The chiral operators are once again transformed according to
Egs. (15) when the substitution a— & is performed. In this
situation, the transformed Hamiltonian becomes a single-
mode Jaynes-Cummings term

Hye(g)): = UsHU = 80+ g/o*a, + (g))"07a),  (25)

where the new coupling strength is g;:=imc2€Z, and

L(€,8): =E—E+2u(88) V2. Analogously to the left-handed re-

gime E< &, we obtain a single-mode Hamiltonian which can
be easily diagonalized following the same procedure as in
the strong magnetic field limit, and provides the solution to
the complete bichromatic interaction in Eq. (6). In this sense,
the energy spectrum becomes

E= + B = = me\N1+24ED+1),  (26)

where 71,=0,1,..., represents the number of right-handed
quanta. Applying the unitary transform in Eq. (23) to the
single-mode eigenstates, one obtains the corresponding
eigenstates of the complete original Hamiltonian

|iEﬁr> = Ug(éﬁr,t|ﬁr>|XT> + iéﬁr,1|ﬁr+ 1>|X1>), (27)

where E’ﬁr,i:=[(Eﬁrimc2)/25,7r]”2. In this regime, the
transformation in Eq. (23) in the single-frequency domain
becomes

Us= e—(amz)(—aﬁ,mj'a}'), (28)
which can be reinterpreted once more as a two-mode squeez-
ing operator with a different squeezing parameter
Z:=—au/2€R. This operator transforms the right-handed
chiral Fock states |i7,) into SU(1,1) coherent states |Z,7i,
:=Ul|vac),|@i,), where we have chosen the left-handed
vacuum for simplicity (see the Appendix)
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)= N~2 \/ ( 1)"tanh™|Z]|7 + 7, 7),

m—O

(29)

where we have introduced the following normalization con-
stant N : =cosh™*|z]. Such coherent states in Eq. (29)
appear in doublets in the fermionic eigenstates of Eq. (22)

Zi,+ Dlx,).  (30)

Once again, one can identify these eigenstates as JC-like
doublets where SU(1,1) coherent states become entangled
with the relativistic spin degree of freedom. Conversely to
the fermionic ground state of the left- handed regime in Eq.
(22), the ground state in this regime Ez= mc*\1+2¢,, cannot
be expressed solely by the two-mode squeezed vacuum, but
rather by

|iEﬁr> = 6’}’7 Z,

—iCy_

Z D)) (BD)

which in addition to the two-mode squeezed vacuum, also
includes the 77,=1 SU(1,1) coherent state.

C. Critical regime £=¢

In this regime, the effective Hamiltonian can be directly
obtained from Eq. (2)

H¢ = gfge_ E pj+0'mc (32)

which corresponds to the Dirac Hamiltonian of a two-

dimensional free fermion. In the critical regime E: ¢, the
magnetic field coupling cancels the effect of the Dirac string
coupling, and the fermion behaves as a free relativistic par-
ticles. The critical energy spectrum becomes

E‘= T E,==* Vm?c* + p2c?, (33)
where p=(p,.p,) stands for the two-dimensional fermion
momentum. The corresponding eigenstates can be described
as follows:

mc* + E€ ( c(p +ip,) )
+ES) = —E X Py 34
| p> \/ iZE; |XT> 2+ EC |X1> |P> (34)

where |p): =|px,py> are two-dimensional plane wave solu-
tions. Note that these solutions describe the relativistic fer-

mion at the critical point E: ¢, but any small perturbation of
the magnetic field or the Dirac string coupling will dramati-
cally change the system properties. As we discuss below, this
dramatic change shares many analogies with a quantum
phase transition.

We have thus provided a complete solution of the relativ-
istic Hamiltonian that describes the properties of a Dirac os-
cillator subjected to an additional constant magnetic field. A
unitary transformation that connects the bichromatic full
Hamiltonian with single-mode JC-like interactions has been
described in Egs. (13) and (23). With the aid of such trans-
formation, one can obtain the exact energy spectrum for all
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100 2

FIG. 2. (Color online) Fermionic energy spectrum as a function
of the relative coupling strengths &/¢ and the number of chiral
phonons n, (n,=n; if £<& and n,=, if £>§£). The two energy
sheets correspond to positive- and negative-energy solutions |iEn,>
for £< & and |iEﬁr) for £> &.

possible values of the coupling parameters g,E, which re-
sponds to the analytical expressions in Egs. (17) and (26). In
this regard, one can study the transition between the weak

£/£€—0 and strong ElE—w coupling regimes which endows
the relativistic system with a chiral symmetry change, as
discussed in the previous section.

From a practical point of view, the magnetic field depen-
dence of this relativistic system might be understood as an
accessible method to prepare a certain relativistic state with
specific properties. An adiabatic control of the applied mag-
netic field opens up the possibility of controlling a wide
range of properties of this relativistic fermion, such as its
chirality, squeezing, phonon statistics, and entanglement,
which shall be discussed below.

V. CHIRALITY QUANTUM PHASE TRANSITION

In previous sections, we have described how the value of

the relative coupling strength E/ & is responsible for the
chirality of the system, which can be right or left handed by
an appropriate tuning of the coupling strengths. This drastic
modification can only be driven by means of quantum fluc-
tuations, and therefore a quantum phase transitions occurs in
this relativistic system. In this section we study several prop-
erties which are clear signatures of a quantum phase transi-
tion phenomenon, such as the vanishing of the gap at the
critical point, the existence of an order parameter which
takes on different values in the distinct chiral phases, the
divergence of quantum fluctuations, and the maximization of
entanglement across the critical point.

A. Energy level crossing

Here, we study the properties of the relativistic energy
spectrum described in Egs. (17) and (26), which are repre-
sented in Fig. 2. Here we represent the energies of different
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FIG. 3. Energy levels for the first excited eigenstates as a func-
tion of the relative coupling strengths &e, showing the nonanalytic
behavior at (£/&).=1.

eigenstates |iE,,[),|tEﬁr> with respect to the relative

strength E/ &

We clearly observe two crucial signatures of a quantum
phase transition (see also Fig. 3 for a two-dimensional sector
of the above energy spectrum). The energy spectrum is

nonanalytical for a critical coupling (& &.=1. The system
becomes gapless at this critical point AE—0 when |(£/¢)

—(&/ &).|— 0. Furthermore, we can obtain an analytical ex-
pression of the gap close to the critical point. In terms of the
coupling strengths g, and g; in Egs. (7) and (8), we obtain the
following universal scaling law for the energy gap close to

the critical point (g,/g)).=(&/ &)?=1:
g _ (8_)
8 \8i/¢

il
81 81/ ¢
and we can readily identify the scaling exponents zv=1. The
critical exponent z is a dynamical exponent related to the
decay of the system fluctuations with time, and in a Lorentz
invariant model is expected to be z=1. Consequently, the
remaining exponent, which characterizes the scaling of the
correlation length close to the phase transition, becomes v
=1 in this relativistic model.

Finally, it is also important in quantum phase transitions
to study the properties of the system ground state. In this
case, the fermionic ground state in the left-handed regime is
described by Eq. (22), while the ground state in the right-
handed scenario becomes that of Eq. (31). The energy of
such a ground state is nonanalytical at the critical point a
follows from Fig. 4.

v

AE ~ mc? =:mc? , (35)

B. Order parameter

Another clear signature of quantum phase transitions is
the appearance of an order parameter, a physical magnitude
which acquires different values in the phases involved, and
becomes indeterminate at the critical point. Therefore, an
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FIG. 4. (Color online) Ground-state energy as a function of the

relative coupling E/E As the magnetic filed is increased, the

cd, e

ground-state energy changes from E,=mc?— Ez=mc’\1+2¢,
which becomes nonanalytical at the critical point.

order parameter is able to witness the abrupt change in the
properties of the system. In this relativistic scenario, the or-
der parameter turns out to be the z component of the orbital
angular momentum L,=xp,—yp,, an observable which is in-
timately related to the symmetry properties of the system,
since J,=L_+S is a conserved quantity. Note that this opera-
tor is also connected to the system chirality, since left-handed
states fulfill (L.);=<0 whereas right-handed states fulfill
(L.),=0. In order to evaluate the angular momentum expec-
tation value, it is useful to express the unitary transforma-
tions in Egs. (19) and (28) in terms of canonical conjugate
position and momentum operators

Us= QAR (Xp tp x4yp +pyy) 4 E> &,

Ug= e @Encnsmiry) if E>¢ (36)

Using the transformations in Egs. (36), one can obtain the
expressions of the transformed position and momentum op-
erators

T _ ap/2
Ux;U,=e""x,

it £>¢
(37)

T _ au2
UaUy=e"x,,

with i=x,y, which leads to the corresponding relations for
the orbital angular momentum

U LU, =Uyxp,—yp UL =L, if E<E,

UsL U= Uglxp, —yp)UL=L, if E>¢&  (38)

We observe from the expressions in Egs. (38) that the z com-
ponent of the orbital angular momentum operator is not al-
tered by the squeezing transformation. In the language of Lie
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E/&.=1 £/¢

FIG. 5. (Color online) Mean value of the z component of the
orbital angular momentum (in units of 7) across the critical point.
Note that, as the critical region is traversed, the sign of this order
parameter changes and indicates that the phase transition has
occurred.

algebras, this property is equivalent to L, being the Casimir
operator associated with the underlying SU(1,1) algebra (see
the Appendix). Therefore, we can easily obtain its expecta-
tion value in the eigenstates of Egs. (18) and (27)

E,,]imc2 _
L)p y=— —— =0 if £<g,
(Lsry==hm+ =" ——| =0 it E<¢

n;

E. ¥ mc?
I

L)+ y= +h| i, + —— =0 if £>¢&
" 2E;
(39)

which show how the orbital angular momentum takes on
negative values in the left-handed chiral phase, whereas it
attains positive values in the right-handed chiral regime (see
Fig. 5). Consequently, the orbital angular momentum plays
the role of an order parameter which witnesses the quantum
phase transition and macroscopically reveals such an effect
by a change of its sign. Note that there is no apparent scaling
law for the order parameter in the vicinity of the critical
point. In this regard, the observable defined above is not a
strict order parameter in the usual sense of quantum phase
transitions, since it lacks the scaling property. Nonetheless, it
still witnesses the phase transition and the abrupt change in
the chirality, and we can thus consider it as an order param-
eter analog.

C. Divergence of quantum fluctuations

In the vicinity of a critical point, the gap of the system
becomes negligible and excitations can be easily produced
(see Fig. 3). Under such conditions, the system becomes
highly fluctuating. As discussed previously, a quantum phase
transition can only be driven by quantum fluctuations which
lead to an abrupt change in the physical properties of the
system when the critical region is crossed. In our case, it is
possible to calculate analytically the divergences in the quan-
tum fluctuations of the fermion position Ax;= V(xf)—(x,-)z.

We shall not only focus in the ground-state fluctuations in
Egs. (22) and (31), but we shall investigate the quantum
fluctuations of the whole energy eigenstates in Egs. (21) and
(30). Using the transformations described in Eq. (37), we
obtain
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FIG. 6. Quantum fluctuations in the fermion position Ax; (in
units of vacuum fluctuations Ax;|,) for the first excited positive-

energy eigenstates |+E”z>’ +E,~,~) as a function of the relative cou-
r

pling strengths £/£ We note that the negative-energy eigenstates
display similar fluctuations in position.

AxihtE )= Axi|vacV’Z€+(aﬂ/2) if £<¢,
ny

+Ham)

T = e 7
Axi||igﬁ>: A-Xi|vzi(:\”77ie if §>§, (40)

where i=x,y, Ax|y.: =A/\2 stand for the fluctuations of

the vacuum in modes a,,q;, whereas Kxi|vacz =A/\?2 are the
vacuum fluctuations in modes a,,a;. We have also introduced
Nei=n+3/2%mc?/2E, and  F.:=i,+3/2%mc?/2E;,
which depend on the number of quanta. We have represented
in Fig. 6 the fluctuations in the fermion position for different

eigenstates as the relative coupling £/ & is varied. We observe

how these fluctuations diverge at the critical point (E/ f.=1
for all the eigenstates, representing yet another signature of a
quantum phase transition.

Nonetheless, we have remarked in Egs. (19) and (28) that
the unitary transformation involved corresponds to a squeez-
ing transformation in the language of quantum optics. As a
consequence, a squeezing of certain fluctuations must also
become apparent for a certain observable. This is the case of
the fermionic momentum, whose fluctuations Ap;
= v’(pf)—(p,-)z for different eigenstates are the following:
~(afi2)

Apilisg,)= APilvac\ T, =€ if £<¢,

Apiliziy= Apilac\ 77 ze” @D i E> £ (41)

where Ap)|,..=fi/A\2 and Ap)|,..=fi/A\2 stand for the
vacuum fluctuations in each regime. Remarkably, the fluc-
tuations in the momentum vanish as the system approaches
the critical point (see Fig. 7). Therefore, the squeezing occurs
in the relativistic momentum.
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FIG. 7. Quantum fluctuations in the fermion momentum Ap; (in
units of vacuum fluctuations Ap,|o) for the first excited positive-

energy eigenstates |+E,,]>, +E,;r> as a function of the relative cou-
pling strengths £/& We note that the negative-energy eigenstates

display similar fluctuations in momentum.

With these observations, we have a full description of the
system for any value of the relative coupling. Left-handed

regime £< & The relativistic eigenstates are described by an
AJC-like doublet of SU(1,1) coherent states entangled with
Pauli spinors (21), which are rotating clockwise [see Eq.
(39)]. Critical regime &=§& The critical properties are de-
scribed by those of a relativistic free fermion. Right-handed
regime £> & The relativistic eigenstates are described by an
JC-like doublet of SU(1,1) coherent states entangled with
Pauli spinors (30), which are rotating counterclockwise [see
Eq. (39)].

D. Phonon statistical properties

In this section we study the statistical properties of the
chiral phonon distribution. The statistical properties of a
bosonic ensemble can be classified according to its quantum
fluctuations. Poissonian statistics: In this case, the phonon
number distribution is a Poissonian random variable. Quan-
tum fluctuations in the number of bosons fulfill An:y’%,
where n=a'a is the bosonic number operator and An
=\(n?)—(n)?. Super-Poissonian statistics: In this regime, the
quantum fluctuations of the bosonic ensemble are bigger
with respect to the Poissonian distribution An>{(n), and
therefore the phonons are said to be noisier. Sub-Poissonian
statistics: The quantum nature of a bosonic ensemble allows
a further possibility, which is evidence of nonclassical be-
havior, that of sub-Poissonian statistics. Under these circum-
stances, the statistical fluctuations become lower than those
of a Poissonian distribution An<\(n) and consequently the
bosons are said to be quieter quantum entities.

In this section we show how the relativistic phonon dis-
tribution attains different statistical properties depending on
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the relative coupling parameter £/ & In particular, we show
how the quantum noise of the chiral phonon distribution
changes from sub-Poissonian to super-Poissonian as the criti-
cal point is crossed. In order to quantify the Poissonian char-
acter of the chiral boson ensemble, we shall make use of the
chiral Mandel Q parameters, defined as follows:

I
Cr="y T 20

A positive sign in such parameters reveals the super-
Poissonian nature of the bosonic ensemble, whereas a nega-
tive sign shows the sub-Poissonian bosonic statistics which
stress the nonclassical nature of the ensemble. The corre-
sponding fluctuations in the system eigenstates (21) and (30),
can be calculated using the expressions in Egs. (A6) and

(A7) in the Appendix. In the left-handed regime E< ¢ we
have found

1. (42)

bl

<nr>|iEn,) l/ES sinh2|z

<nl>\tEnl> =7+ 005h2|Z| -1,

A”r|\2:En> = 7. sinh?|z|cosh?|z| + « sinh¥|z
1

s

A”lhziEn) = 7. sinh?|z|cosh?|z| + k coshz|,  (43)

where the parameters 7. have been previously introduced
and K::i(l—mzc“/E,'llz). Analogously, in the right-handed

case §> ¢

(et = e cosilA - 1,
(i)« E,) = 7= sinh’[2],
Aﬁrhzié,;) = 7= sinh?|Z]cosh?|Z] + & cosh*|z],

Aﬁ,hi 5., = 7= sinh?lZlcosh?3 + R sinhz],  (44)

where 7. have already been introduced, and the parameter
R =}1( 1-m?c*/EL?). These expressions allow us to study in
detail the statistical nature of the chiral phonon ensemble by
means of the Mandel parameters in Eq. (42), which have
been represented in Figs. 8 and 9. In this figures we notice

the following. Left-handed regime £<& 1In this limit, the
chiral Mandel parameters become Q;<<0= sub-Poissonian
statistics  of  quieter left-handed phonons Q,>0
= super-Poissonian  statistics of noisier right-handed

phonons. Right-handed regime §> & In this limit, the chiral
Mandel parameters become Q,> 0= super-Poissonian statis-
tics of noisier left-handed phonons, Q,<<0= sub-Poissonian
statistics of quieter right-handed phonons.

Therefore, we observe how the statistical nature of the
relativistic phonons is completely controlled by the relative
coupling strength. Remarkably enough, the level of quantum
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£/€
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FIG. 8. (Color online) Left-handed Mandel parameter Q; for the

iE,T )} as a function of the relative cou-
v

energy eigenstates {| iEnl> ,
pling strengths /& Note that as the magnetic field is raised, the
ensemble of left-handed phonons changes from sub- to super-
Poissonian statistics.

noise in the chiral ensembles can be controlled by means of
external parameters. Furthermore, a notorious transition be-
tween sub- and super-Poissonian statistics occurs as the sys-
tem crosses the critical region. This fact shows how a quan-
tum phase transition can also be intrinsically related to the
statistical nature of the system. Note also that close to the
critical point Q;,0,> 1, and both ensembles become super-
Poissonian indicating how quantum fluctuations diverge at
the critical point of a quantum phase transition.

E. Entanglement at the critical point

In previous sections, we have seen how several signatures
of a quantum phase transition occur in this relativistic sys-

-2;\)"0 Tos é /&

FIG. 9. (Color online) Right-handed Mandel parameter Q, for
the energy eigenstates {]| iE,,l>,|ib~?,7y>} as a function of the relative

coupling strengths E/ &. Note that as the magnetic field is raised, the
ensemble of right-handed phonons changes from super- to sub-
Poissonian statistics.
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FIG. 10. (Color online) The relativistic degrees of freedom can
be described as a tripartite system with a Hilbert space H="H,
®H;® H, that includes continuous-variables corresponding to the
chiral degrees of freedom, and discrete variables related to the
spinorial degree of freedom.

tem. We have described in detail the closure of the energy
gap at the critical point, the existence of an order parameter
which turns out to be the orbital angular momentum, and the
divergence of quantum fluctuations as one explores the criti-
cal region. An additional feature in quantum phase transi-
tions is the divergence of quantum correlations as the system
crosses the critical region [20,21]. Correlations of a quantum
nature, known as entanglement, lie at the heart of quantum
mechanics and are responsible for nonlocal phenomena in
the quantum regime. Furthermore, they are of utmost rel-
evance in the fields of quantum information and computa-
tion, where they constitute a resource for information pro-
cessing tasks [22-24]. In the particular case of fermions,
entanglement has been previously studied for relativistic
field theory [25,26] (see Ref. [27] for a recent review). In this
section we provide a description of fermionic entanglement
across a quantum phase transition, that of a relativistic Dirac
oscillator subjected to a magnetic field.

In our case, the underlying Hilbert space can be described
as a tripartite system composed of continuous-variables as-
sociated to the chiral degrees of freedom, and discrete vari-
ables related to the spin degree of freedom (see Fig. 10). To
quantify quantum correlations in this hybrid system we make
use of the machinery of discrete-variable [28] and
continuous-variable [29] entanglement measures. In particu-
lar, we obtain the von Neumann entropy of the reduced den-
sity matrices over all possible bipartitions

pr = Tr(Tr|yX¢l),  p,: = Try(Tr| )y

),

Psi = TI'[(TI‘,|(//><(//), (45)

where the subindexes /,r,s stand for the left-handed, right-
handed, and spinorial degrees of freedom, |} is a particular
pure state, and the von Neumann entropy is defined as
S(p): ==Tr(p log p). Such magnitude, when calculated over
reduced density matrices, quantifies the amount of entangle-
ment between two parties. In our case, it quantifies the
amount of entanglement between different relativistic de-
grees of freedom.

Left-handed regime £< ¢ The ground state of the relativ-
istic spin-1/2 oscillator in Eq. (22) is described by means of
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FIG. 11. (Color online) Von Neumann entropy of the single-

mode reduced states p,, with a=1[,r indexing the mode chirality, as

a function of the coupling strength ratio &/& One directly observes
that the entanglement of the continuous-variable degrees of freedom
with the rest of the system diverges as one approaches the critical
region.

a spin-up two-mode squeezed vacuum state, with the follow-
ing reduced density matrices:

E tanh?"

. cosh2| et
tanh?"|z
pr= cosh2| |,,2_0 "
ps=xpxil- (46)

The reduced chiral degrees of freedom are described by
means of a mixed thermal state with an effective temperature
Teff: =ﬁw/2kB
stant. Remarkably, the entropy of a thermal state can be
given in terms of its mean number of quanta (n) [30,31],
and we obtain S;:=S(p,)=sinh?z|log(1+co sech?|z|)
+log(cosh?|z|)=S(p,)=:S,. There exists thus a certain
amount of chiral entanglement, which depends on the rela-
tive coupling strength and diverges as one approaches the

critical point (& £).=1 (see Fig. 11). Conversely, the reduced
spin density matrix is in a spin-up pure state with vanishing
entropy S,:=S(p,)=0 (see Fig. 12). This remarks the fact
that there is no spin-orbit entanglement between the discrete-
and continuous-degrees of freedom, which is in accordance
to the ground state structure in Eq. (22), which is biseparable
with respect to the spin-orbit bipartition.

Right-handed regime £> . In this limit, the relativistic
ground state in Eq. (31) can no longer be described by a
spin-up squeezed vacuum state, but rather by means of a
SU(1,1) doublet, where chiral coherent states are entangled
with spin states. The reduced density matrices become
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FIG. 12. (Color online) Von Neumann entropy of the spinorial
reduced state p; as a function of the coupling strength ratio E/E We
observe that the entanglement of the spin degree of freedom to the
rest of the system increases with the magnetic field.

— 3 tanhz’”lﬂ(% hzﬂ)

pi=
05h2|~1 =0

y_(ﬁ,+1))|~

tanh2” <
E Z] y+ OSh2 | ,Z.1

cosh2|?]

(47)

ps= vilx)x;

where y.:=(\V1+2Z,+ 1)/2y1+2¢,. In this regime, the re-
duced chiral degrees of freedom cannot be described by
means of effective thermal states, nor can the reduced spin
degrees of freedom be identified with a pure state. Nonethe-
less, the density matrices in Eqs. (47) are already in diagonal
form, and the von Neumann entropy can be expressed as
follows:

=- E @% log @%1,

=0

[

S,=— >, 0 log O,

1,20

S——l{l( & )+ ! 1
T M0+ T ie2g

21
with the parameters @%' =l::Tl;2i§( ot a) and @r
tanhz”' 1zl ( 7 (77,+1)
Y+

= cost] CthZ‘a) These magnitudes, which represent
entanglement between all possible bipartitions of the system
have been represented in Figs. 11 and 12. We observe certain
peculiarities with respect to the left-handed regime, such as a
finite spinorial entanglement which tends to its maximal

(vl+2§,+1>]
Vi+24-1) )
(48)

smh7

value S™*=log 2 as the magnetic field is raised &/ é— . We

063815-10



CHIRALITY QUANTUM PHASE TRANSITION IN THE ...

also observe that the continuous-variable entanglement is no
longer equal for opposed chiral modes, which is a conse-
quence of a finite orbital angular momentum in the ground
state. In addition, one can see from Eq. (31) that the relativ-
istic ground state presents genuine tripartite entanglement,
where all the degrees of freedom are correlated among each
other.

VI. CONCLUSIONS

In this work we have studied the properties of a relativis-
tic spin-1/2 Dirac oscillator subjected to a constant magnetic
field. The relativistic Hamiltonian can be mapped onto a
couple of Jaynes-Cummings and anti—Jaynes-Cummings
terms, which describe the interaction between the relativistic
spinor and bosons that carry an intrinsic chirality. These
models, which are of paramount importance in quantum op-
tics, become useful in this relativistic scenario, and allow an
insightful description of interplay between opposed chirality
interactions. The study of this relativistic system in the limits
of a weak and strong magnetic field points toward the exis-
tence of two different phases, each described by an opposed
chirality. In the intermediate regime, an intriguing trade-off
between left- and right-handed interactions leads to the ap-
pearance of a quantum phase transition, which we have de-
scribed in full detail.

The remarkable possibility to find the exact solution of
this relativistic system has allowed us to describe analyti-
cally several properties of this phase transition. We have dis-
cussed the nonanalytic nature of the energy spectrum at the
critical point, and the sudden extinction of the energy gap,
which are archetypical properties of quantum phase transi-
tions. We have also proved that there is an order parameter,
the z component of the orbital angular momentum, that wit-
nesses the chiral phase change. In the critical region, we have
shown that the quantum fluctuations in the fermion position
diverge, which is a typical sign of quantum phase transition.
Conversely, the quantum fluctuations in momentum vanish at
the critical point, since a particular squeezing of this canoni-
cal variable occurs due to the interplay of the interactions.
We have discussed the bosonic ensemble statistics, and their
behavior across the phase transition. In this regard, we have
found that super- or sub-Poissonian nature of such ensemble
can be controlled at will by an appropriate modification of
the magnetic field strength.

Entanglement properties between the various degrees of
freedom of this relativistic system has also been accom-
plished. This hybrid system consists of a couple of
continuous-variable degrees of freedom associated to the chi-
ral modes, and a discrete-variable associated to the spin,
therefore constituting a tripartite system. We have shown that
an entanglement measure, the von Neumann entropy of the
reduced states, over all possible bipartitions can be obtained
for the system ground state. At the critical point, the quantum
correlations of the chiral degrees of freedom diverge, which
can be also considered as a sign of quantum phase transi-
tions.

Finally, let us also comment on the possibility of realizing
the Dirac Hamiltonian of Eq. (2) in an ion trap experiment.

PHYSICAL REVIEW A 77, 063815 (2008)

As proposed in Ref. [10], it is possible to obtain an effective
Hamiltonian equivalent to the bare 2+ 1 Dirac oscillator. The
same techniques would suffice to include additional terms
that describe the magnetic field coupling in Eq. (2). For ex-
ample, this can be achieved by a suitable combination of two
stationary waves tuned above and below the resonance fre-
quency [32] (note that the tilded annihilation operators do
not represent independent modes with respect the untilded
operators, as pointed out in Ref. [17]). Therefore, once the
2+ 1 Dirac oscillator has been realized with an ion trap table-
top, it seems straightforward to simulate the chirality quan-
tum phase transition described in this paper. An alternative
approach, which would provide us with states with a remark-
able chirality, squeezing, phonon statistics, and entangle-
ment, is to perform the couple of squeezing transformations
described in Egs. (36) to a trapped ion subjected to first blue-
or red-sideband excitations in Egs. (16) and (25). The
squeezing transformations can be achieved following differ-
ent procedures, such as a sudden variation of the trapping
frequencies [33,34].
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APPENDIX: SU(1,1) COHERENT STATES

In this appendix we review the properties of two-mode
SU(1,1) coherent states. Such states arose from a group the-
oretical approach to the generalization of the usual Glaubler
coherent states [35], which can be constructed for an arbi-
trary Lie group [36]. In this case, we shall restrict our atten-
tion to the SU(1,1) group, whose generators {K,,K,,K_}
have the following Lie algebra:

[K()7Kt]: * Kt’ [K—’K+]:2KO' (Al)
The Schwinger representation of algebra (A1) consists of a
pair of commuting bosonic harmonic oscillator operators
a,,a; related to the group generators as follows [37,38]:

1 +
Ko=§(a:ar+a}az+1), K,=alaj=(K)". (A2)

This two-mode representation is very useful, since one can
use the disentangling theorem [36] to calculate the SU(1,1)
coherent states |z,n,)=U"|n)|vac), in Eq. (20) in the usual
Fock basis |n,,n;)

. -2 ~
Uly — eZ(K+—K_) — etanh zK+elog(cosh z)KO/Ze tanh zK_ )

(A3)

Such factorization of the exponential (A3) allows the follow-
ing expression for the SU(1,1) coherent states:
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(m+n)!

(= 1)™tanh™|z||m + n;,m),

2, nl> = an E
m=0

n; ! m!
(A4)

which has been used in Eq. (20) of the left-handed regime

E>E Analogously, one can obtain the corresponding
SU(1,1) coherent states in the right-handed regime, using a
similar disentangling theorem

TR anty 2+ 7, ),
n

z, ﬁr> — Nﬁrz (+—
m=0

Lm!

(AS)

which was used in Eq. (29).

In the Lie algebraic language, the Casimir operator C
commutes with the generators {K,, K.} of the algebra. In the
SU(1,1) case, the Casimir operator turns out to be the z com-
ponent of the orbital angular momentum C=L,, which is
therefore left unchanged under the action of the squeezing
operator [UL,LZ]:O. This fact has been used in Sec. V,
where the expected value of such Casimir operator is used as
an order parameter that reveals the existence of a quantum
phase transition.

SU(1,1) coherent states present several remarkable non-
classical properties, which attain an special interest in quan-
tum optics since they can be engineered in experiments by
means of a degenerate parametric amplifier. In the relativistic
setting, they arise naturally as the eigenstates of a relativistic
oscillator subjected to a magnetic field along the z axis. In
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particular, we shall be interested in the following properties
of such states, which have been extensively studied in Ref.
[37]

s

<”r>|z,n,> =(n;+ 1)Sh2|z

(nl>|z’nl> = n,Ch2|Z| + Sh2|Z s

<n%>‘z,nl> = (nl + 1)2Sh4|Z| + (l + nl)Ch2|Z|Sh2|Z| s

(1) = ich?lz| + sh¥(z] + (1 + 3n)ch?e]sh?z

. (A6)

for the SU(1,1) coherent states in the left-handed regime,
where sh|z|: =sinh|z|, and ch|z|: =cosh|z|, and we use the chi-
ral number operators n,:=a'a,, and n;: =a}al. Analogously,
the corresponding coherent states in the right-handed regime
fulfill the following:

(ziy=(1+ i1,)sh?|Z],
<ﬁr>|5ﬁr) = ﬁrCh2|a + Shzla >
(ADry = (7, + 1)7sh*[7] + (1 + 7, )ch?2fsh?[2],

()i y = Mrch[2] + sh'[2] + (1 + 37,)ch?Zlsh[2], (A7)

where sh|Z]: =sinh|Z], and ch7: =cosh|Z], and we use the chi-
ral number operators 1,.: =z7f(7,, and 7;: =E,TE,. These expres-
sions (A6) and (A7) are extremely useful for the study of the
relativistic phonon statistics in Sec. V.
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