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We elaborate on a Hilbert-Schmidt distance measure assessing the intrinsic metrological accuracy in the
detection of signals imprinted on quantum probe states by signal-dependent transformations. For small signals
this leads to a probe-transformation measure � fully symmetric on the probe � and the generator G of the
transformation ��� ,G�=��G ,��. Although � can be regarded as a generalization of variance, we show that no
uncertainty relation holds for the product of measures corresponding to complementary generators. We show
that all states with resolution larger than coherent states are nonclassical. We apply this formalism to feasible
probes and transformations.

DOI: 10.1103/PhysRevA.77.063813 PACS number�s�: 42.50.St, 42.50.Dv, 03.65.�w

I. INTRODUCTION

Quantum metrology is a key issue of quantum mechanics
involving fundamental concepts such as uncertainty rela-
tions, complementarity, and nonclassical properties. The ba-
sic objective of quantum metrology is to infer the value of a
given unknown signal � as accurately as possible at mini-
mum cost. Signals � are encoded on quantum states by
�-dependent unitary transformations U� acting on an input
probe state �, so that all the information about � is contained
in the output probe state ��=U��U�

†.
The intrinsic accuracy of the detection depends primarily

on the contribution of two independent factors: the prepara-
tion of the probe � and the encoding transformation U�.
While most works on quantum metrology focus on the opti-
mization of the input probe state � �1,2�, recently, the advan-
tages of investigating optimal encoding transformations U�

has been put forward, allowing more robust and accurate
detection schemes �3�. In this work we elaborate on the as-
sessment of the intrinsic accuracy by using the Hilbert-
Schmidt distance between � and �� �4–8�. More specifically,
we show the following.

�i� For small signals, the Hilbert-Schmidt distance be-
comes a probe-transformation measure � fully symmetric on
the probe � and the generator G of the transformation
��� ,G�=��G ,��. This acquires the form of a generalization
of variance previously used in quantum mechanics and clas-
sical optics �9,10� �Sec. II�.

�ii� We derive new expressions for the probe-generator
measure ��� ,G� �Sec. II�.

�iii� We demonstrate that ��� ,G� is always bounded from
above by variance �Sec. II�.

�iv� Despite resembling a generalization of variance, we
show that no uncertainty relation holds for the product
��� ,A���� ,B� for complementary generators A , B �Sec.
II�.

�v� We determine optimum generators leading to maxi-
mum resolution for fixed input probe states.

�vi� We show that the probe-generator measure ��� ,G�
predicts nonclassical behavior for all states providing larger
resolution than coherent states �Sec. III�. By nonclassical be-
havior we mean a phase-space representative P��� less well
behaved than a probability density in that it takes negative
values or is more singular than a � function �11�.

�vii� We apply this formalism to feasible Gaussian probes
and standard transformations, determining which probes
reach optimum intrinsic resolution �Sec. IV�.

II. INTRINSIC METROLOGICAL RESOLUTION

The signal to be detected, �, is encoded in the input probe
state � by a unitary transformation. For definiteness, we fo-
cus on the most common and practical case of constant gen-
erators G independent of the parameter �, U�=exp�i�G�,

�� = exp�i�G�� exp�− i�G� , �2.1�

where G is the Hermitian generator of the transformation.
The intrinsic accuracy is given first and foremost by the dis-
tinguishability between � and ��. A convenient measure of
distinguishability is the Hilbert-Schmidt distance

dHS
2 ��� = tr��� − ���2� = tr��2� + tr���

2� − 2tr����� . �2.2�

The overlap term tr����� represents the survival probability,
expressing the inertia of � to the changes generated by G.
There are many distance measures that may be used, leading
to largely equivalent results. Among them, the Hilbert-
Schmidt distance is selected here because of conceptual and
computational simplicity, and its proximity with experimen-
tal procedures �7�.

All similar measures of distinguishability between density
matrices � and �� that may be used, such as relative entropy,
trace distance, Bures distance, Hellinger distance, have draw-
backs, such as not leading to proper distance measures �rela-
tive entropy�, lack of physical interpretation, or rather com-
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plex evaluation procedures �Hellinger and Bures distances�.
Further comparison of properties can be found in Refs.
�4,12�. In this regard, the main drawback of the Hilbert-
Schmidt distance quoted in the literature is the no-monotony
decrease under quantum operations. For instance, this causes
a problem in using this distance to quantify entanglement
when constructing entanglement monotones, as discussed in
Ref. �8�. More properly, only monotonicity under local op-
erations and classical communication �LOCC� is needed, and
general monotonicity is a sufficient condition. Monotonicity
is satisfied by distinguishability measures such as the relative
entropy and Bures distance �8�.

Let us explain why monotonicity is not necessary in our
context so that the Hilbert-Schmidt distance can be safely
used for our purposes. Monotonicity of a distance measure
d��1 ,�2� means that d��1 ,�2��d�E��1� ,E��2�� where E are
quantum operations �completely positive trace-preserving
maps�. The key point is that this property is always discussed
in terms of completely independent density matrices �1,2.
However, in our case �1,2 are not independent, since one of
them is the result of a signal-dependent transformation K
acting on the other, �2=K��1�. Since in general E�K����
�K�E����, there is no point comparing d�� ,K���� and
d�E��� ,E�K�����, since the last one is not of the form
d��� ,K�����. In physical terms E cannot act on � and K���
simultaneously, since � and K��� never coexist �the former
precedes the latter�. In other words, in our case the distance d
must be understood as a function of U� and �, so that the
application of other transformations is out of the scope of our
problem.

A. Probe-generator measure

Concerning metrological applications we are mostly inter-
ested in very weak signals, so we may consider the limit �
→0. Considering a power series for dHS

2 ���, the first nonva-
nishing term is

dHS
2 ��� � 2�2�2��,G� , �2.3�

where the probe-generator functional �2�� ,G� is

�2��,G� = tr��2G2� − tr��G�G� . �2.4�

Therefore ��� ,G� measures the capability of G to efficiently
imprint small signals on the input probe �, so that larger
�2�� ,G� implies larger resolution. The performance measure
�2.3� can be regarded as a generalization of the more familiar
estimation uncertainty �� �1,2�,

�� �
1

2��G
, �2.5�

where ��G is the variance,

���G�2 = tr��G2� − �tr��G��2. �2.6�

The probe-generator measure ��� ,G� can be regarded as a
generalization of variance, since for pure states �2=�
= �		
	� we have �10�

�2��		,G� = 
	�G2�		 − 
	�G�		2 = ��	G�2. �2.7�

However, a literal strict interpretation of �2�� ,G� as an un-
certainty measure is questionable, or even misleading, as
shown below.

Let us note the complete symmetry between � and G,
��� ,G�=��G ,��. This symmetry suits the idea of the joint
accountability of probe and transformation for metrological
performance.

B. Equivalent expressions

The probe-generator functional � can be expressed also
as

�2��,G� = −
1

2
tr���,G�2� =

1

2
tr��d��

d�



�=0

2 � . �2.8�

This can be regarded as the analog of the Wigner-Yanase
skew information after replacing �� by � �4,5�.

In terms of the spectrum and statistics of G the following
expression holds

�2��,G� =
1

2�
j,k

�gj − gk�2�
gk���gj	�2, �2.9�

where G�gj	=gj�gj	. This has been used in classical optics to
assess effective spatial correlations of light beams �9�.

According to the full symmetry between G and � we can
derive a relation dual to Eq. �2.9� in terms of the spectrum of
�,

�2��,G� =
1

2�
j,k

�rj − rk�2�
rk�G�rj	�2, �2.10�

where �rj	 is the orthonormal basis defined by the eigenvec-
tors of �, ��rj	=rj�rj	, including those with vanishing eigen-
value. Furthermore, ��� ,G� can also be related to a kind of
weighted version of variances of weak values. This can be
seen after expressing � in the P��� representation,

� =� d2�P �����	
�� , �2.11�

where ��	 are coherent states �11�. Using this representation
in Eq. �2.4� we get

�2��,G� =� d2� d2
 P���P�
��
��
	�2�G�2���,
�

− �G�1���,
��2� , �2.12�

where G�k��� ,
� is the weak value of Gk in the coherent
states ��	 and �
	 �13�,

G�k���,
� =


�Gk��	



��	
. �2.13�

Further expressions for �2�� ,G� can be obtained for Carte-
sian conjugate variables in terms of the Wigner function �10�.

C. Variance bound

Using Eq. �2.9� we can demonstrate that � is always
bounded from above by the variance
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�2��,G� � ���G�2, �2.14�

the equality being reached for pure states. To this end we
note that the density matrices � and � have the same vari-
ance ��G=��G, where � is a pure state �= �		
	� with

�		 = �
k

�
gk���gk	ei
k�gk	 , �2.15�

where 
k are phases. Thus, by construction � is positive and
Hermitian, and it holds that

�
gk���gj	�2 = 
gk���gk	
gj���gj	 . �2.16�

The equality ��G=��G holds because the variance of G
depends exclusively on the diagonal matrix elements, which
are equal for both density matrices 
gk���gk	= 
gk���gk	. Fur-
thermore, the positivity of � implies that

�
gk���gj	�2 � 
gk���gk	
gj���gj	 = �
gk���gj	�2. �2.17�

Thus, from Eqs. �2.7�, �2.9�, and �2.17� we get

�2��,G� � �2��,G� = ���G�2 = ���G�2, �2.18�

which demonstrates Eq. �2.14�.

D. Lack of uncertainty relation

The dependence of ��� ,G� on the coherence terms

gk���gj	 reveals that this is more than a measure of fluctua-
tions. In this regard, for example, we have ��� ,G�=0 if and
only if

� = �
j

pj�gj	
gj� , �2.19�

with pj �0 and � jpj =1, so that ��G can take any value
depending on pj. This is further discussed in Sec. IV C.

Moreover, despite that � resembles a generalization of
variance, it does not lead to any uncertainty relation when
applied to complementary observables. More specifically, we
show that there is no lower bound for the product
��� ,X���� ,Y�, where X and Y are two Cartesian conjugate
observables, analogous to position and linear momentum,

X =
1
�2

�a + a†�, Y =
i

�2
�a† − a� , �2.20�

with �X ,Y�= i and a† and a creation and annihilation opera-
tors with �a ,a†�=1. In such a case, we show in more detail in
Sec. IV A that for the squeezed vacuum states �4.5� we get

�2��,X� =
1

8�X��Y�3 , �2��,Y� =
1

8�Y��X�3 ,

�2.21�

so that

���,X����,Y� =
1

8��X�2��Y�2 . �2.22�

There is no lower bound for this product since
��� ,X���� ,Y�→0 when �X→� or �Y →�. Moreover, we
can notice that we can have ��� ,X�→0 and ��� ,Y�→0
simultaneously.

One may wonder whether the lack of an uncertainty rela-
tion is related to the lack of monotonicity of the Hilbert-
Schmidt distance. As a first qualitative argument, we note
that, roughly speaking, lack of monotonicity is related to
increase of distance, while the lack of an uncertainty relation
is given by the completely opposite effect, i.e., decreasing
distances. Anyway a simple and expeditious procedure to
solve this question is to show that the lack of an uncertainty
relation also occurs for a probe-transformation measure
�quantum Fisher information� derived from a monotonic dis-
tance measure �4,14,15�

IF��,G� =
1

2�
j,k

�rj − rk�2

rj + rk
�
rj�G�rk	�2, �2.23�

where, as in Eq. �2.10�, �rj	 are the eigenvectors of � with
eigenvalues rj, and the sum includes the cases with rj +rk
�0. This measure is the infinitesimal local form of the Bures
distance �4,14�

dB
2��1,�2� = 2�1 − tr���1

1/2�2�1
1/2�1/2�� , �2.24�

which satisfies monotonicity �8�. Let us compute IF�� ,X� and
IF�� ,Y� for the quadratures �2.20� in the thermal state

� = �1 − ���
n=0

�

�n�n	
n� , �2.25�

where ��1 is a real parameter, and �n	 are the number states
a†a�n	=n�n	. After a simple calculation it can be seen that

IF��,X� = IF��,Y� =
1 − �

2�1 + ��
. �2.26�

Therefore, when �→1 we get IF�� ,X�IF�� ,Y�→0 demon-
strating that the lack of uncertainty relation is not a conse-
quence of the lack of monotonicity.

On the other hand, there are uncertainty relations involv-
ing the product of ��� ,A� for one observable with a different

measure �̃�� ,B����� ,B� for the other one �10�, such as

�̃2��,G� =
1

2�
j,k

�gj + gk�2�
gk���gj	�2. �2.27�

Related uncertainty relations have been proposed in Refs.
�4,16�.

Seemingly, Ref. �9� introduces a lower bound for the
product of the same measure � for Cartesian conjugate vari-
ables within a classical optics framework. However, a closer
inspection reveals that such a bound is actually another ex-
ample of the unbalanced case in Ref. �10� with different
measures. Moreover, a balanced uncertainty relation might
be seemingly derived from the following formula in Ref. �5�

4IW��,A�IW��,B� � �tr���A,B���2, �2.28�

where IW�� ,A�=�2��� ,A� is the Wigner-Yanase skew infor-
mation, which is the local infinitesimal form of the Hellinger
distance �4,15�
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dH��1,�2� = tr���1
1/2 − �2

1/2�2� . �2.29�

However, Eq. �2.28� does not hold �17�, as revealed by a
simple counterexample, since Eq. �2.28� is violated by

� = �0.75 0

0 0.25

 , �2.30�

for A=�x and B=�y, where �x,y are the corresponding Pauli
matrices. In this case we have IW�� ,�x�= IW�� ,�y�=0.134
while �tr����x ,�y���2=1. The lack of a true uncertainty rela-
tion for this measure can be further demonstrated again by
computing IW�� ,X� and IW�� ,Y� for the quadratures �2.20� in
the thermal state �2.25�, leading to

IW��,X� = IW��,Y� =
1 − ��

2�1 + ���
, �2.31�

so that IW�� ,X�IW�� ,Y�→0 when �→1. This agrees with the
general relation IW�� ,A�� IF�� ,A� �15�.

Finally, it is worth noting that there are fluctuation mea-
sures that seem to defy the existence of an uncertainty rela-
tion for complementary observables, as shown in Ref. �18�.
Nevertheless, note that �→0 in this context does not mean
arbitrary precision. On the contrary, it means complete lack
of measuring resolution in the form of indistinguishability
between input � and transformed �� states. We recall that, as
shown in this work, � is a measure of intrinsic resolution
rather than a measure of uncertainty.

E. Optimum generators

The full symmetry between states and transformations in-
vites one to look for the optimum generator G leading to
maximum intrinsic resolution for a fixed probe state �. This
is the dual of the most common operation in quantum me-
trology of determining the optimum � for fixed G �1�.

Despite the symmetry between � and G these two opera-
tors belong to different classes, unit-trace Hermitian positive
definite for �, and just Hermitian for G. Therefore, in order
to fully exploit the �,G symmetry in the above calculus we
restrict ourselves to finite-trace Hermitian positive definite
generators. This implies no loss of generality for finite-
dimensional G or �, since finite dimension guarantees finite
trace and also positivity by adding a constant to G without
altering either U or �.

In such a case � and G can safely exchange their roles in
the above calculus so that the variance bound �2.14� leads us
to consider pure generators of the form G� �		
	�, where �		
is a normalized vector to be determined by the condition of
maximum variance of the � operator

��	��2 = 
	��2�		 − 
	���		2. �2.32�

Maximum variance is given by the extremal dichotomic sta-
tistics provided by states of the form

�		 =
1
�2

��rmax	 + �rmin	� , �2.33�

where �rmax,min	 are the eigenvectors of � with extreme eigen-
values. This is a coherent superposition of states with ex-

treme eigenvalues fully analogous to an equivalent result for
probe optimization for a fixed generator �2�. Maybe genera-
tors of the form G� �		
	� are rather exotic and void of
practical implementations. Nevertheless this example illus-
trates the fundamental symmetric role of probes and genera-
tors.

III. OPTIMUM NONCLASSICAL STATES

In this section we show that for three representative gen-
erators G �position, number, and number difference� all
states providing larger resolution than coherent states are
nonclassical, in the sense of lack of positive definite P���
distribution in Eq. �2.11�.

A. Position operator

Let us consider transformations generated by the position
operator X in Eq. �2.20� that produces the displacement of
the conjugate observable U�

†YU�=Y +�. Better resolution
than the one provided by coherent states ��	 �with a��	
=���	� means that

�2��,X� � �2���	,X� = ���X�2 =
1

2
. �3.1�

By using Eqs. �2.12� and �2.13� we get

�2��,X� =
1

2
� d2� d2
 P���P�
��
��
	�2�1 + Re��� + 
��2�

− �� + 
��2� , �3.2�

where Re represents the real part. We have used the fact that
�2�� ,X� is a real quantity, so that the contribution from the
imaginary part of ��+
��2 must vanish.

Condition �3.1� is equivalent to

� d2� d2
 P���P�
�f��,
� � 0, �3.3�

where

f��,
� = 1 − �
��
	�2�1 + Re��� + 
��2� − �� + 
��2� ,

�3.4�

and we have used that �d2� P���=1. Since for all complex
numbers A Re A� �A� holds, we get

1 + Re��� + 
��2� − �� + 
��2 � 1, �3.5�

so that f�� ,
��0 and Eq. �3.3� implies that P��� takes
negative values or is more singular than a � function. There-
fore, the improvement of the intrinsic metrological resolution
beyond coherent states implies nonclassical character for the
probe.

B. Number operator

Next we consider transformations generated by the num-
ber operator G=N=a†a, so that � is a phase shift U�

†aU�

=exp�i��a. Intrinsic resolution beyond coherent states ��	
means that
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�2��,N� � �2���	,N� = ���N�2 = 
��N��	 . �3.6�

In these schemes the accuracy increases when the mean
number increases. Therefore, for a proper comparison be-
tween the performances provided by different states it is con-
venient to consider probes with fixed mean number tr�N��
= 
��N��	, so that condition �3.6� becomes

�2��,N� � tr�N�� . �3.7�

Using the P��� representation we get

�2��,N� =� d2� d2
 P���P�
��
��
	�2�Re���
��2�

− ��
��2� + tr�N�2� , �3.8�

where again Re represents the real part and we have used the
fact that �2�� ,N� is a real quantity so that the imaginary part
of ��
��2 does not contribute. Since for all � tr�N�2�
� tr�N�� holds, condition �3.7� implies

� d2� d2
 P���P�
��
��
	�2�Re���
��2� − ��
��2� � 0.

�3.9�

Taking into account that Re A� �A� we get

Re���
��2� − ��
��2 � 0, �3.10�

so that the fulfillment of condition �3.7� requires nonclassical
probes.

C. Number difference operator

Finally we consider a two-mode situation with generator
G=Jz=N1−N2 with Nj =aj

†aj, j=1,2, so that in this case � is
a phase-difference shift U�

†a1a2
†U�=exp�2i��a1a2

†. This is
perhaps the most common transformation in quantum me-
trology, including all linear interferometric and spectroscopic
schemes. Intrinsic resolution beyond the one provided by
two-mode coherent states ��1	��2	 means that

�2��,Jz� � ���1,�2
Jz�2 = tr��N1 + N2��� , �3.11�

and here again we consider the same total mean number
N1+N2 in � and ��1	��2	. In this case

�2��,Jz� = �2��,N1� + �2��,N2� − 2�tr��2N1N2�

− tr��N1�N2�� . �3.12�

Denoting �= ��1 ,�2� and �= �
1 ,
2�, the last term enclosed
within square brackets can be rewritten as

� d2� d2� P���P����
���	�2f��,�� , �3.13�

where

f��,
� = Re�
1
��1
2

��2 − 
1�1
�
2

��2� =

− 2 Im�
1
��1�Im�
2

��2� , �3.14�

so that Eqs. �3.8� and �3.11� imply

�2��,Jz� =� d2� d2� P���P����
���	�2h��,�� � 0,

�3.15�

where

h��,�� = Re���1
1
��2� − ��1
1

��2 + Re���2
2
��2� − ��2
2

��2

+ 4 Im�
1
��1�Im�
2

��2� . �3.16�

By expressing � j
 j
� in terms of their real and imaginary

parts, � j
 j
�=aj + ibj, we get that h�� ,�� is always negative or

zero,

h��,�� = − 2�b1 − b2�2 � 0. �3.17�

Therefore, also for this two-mode generator, resolution be-
yond coherent states implies nonclassical behavior.

IV. EXAMPLES

In this section we apply the above formalism to practical
probes with Gaussian wave functions �coherent, squeezed,
and thermal-chaotic states�, and standard generators �phase-
space displacements and rotations�, looking for optimal in-
trinsic resolution. Focusing on light beams, we consider defi-
nite energy resources represented by fixed mean number of
photons. Finally, we present also the simplest case of a two-
dimensional system in order to illustrate some properties of
�.

A. Optimum Gaussian states for displacements

Let us consider signals encoded by Y displacements gen-
erated by X. Our objective is to obtain maximum intrinsic
resolution when using probe Gaussian states with constant
energy, i.e., fixed mean number of photons n,

n = tr��a†a� =
1

2
�tr��X2� + tr��Y2� − 1� , �4.1�

which is equivalent to

n = tr��a†a� =
1

2
���X�2 + ��Y�2 + 
X	2 + 
Y	2 − 1� ,

�4.2�

where 
X	, 
Y	, �X, and �Y are the corresponding mean
values and variances, with �X�Y �1 /2. Calculations are
much simplified if we use the Wigner representation so that
the overlap between two states � and �� is computed as �11�

tr����� = 2�� dx dy W��x,y�W���x,y� . �4.3�

Under phase-space displacements the Wigner function trans-
forms as a classical distribution,

W��
�x,y + �� = W��x,y� . �4.4�

Furthermore, Wigner functions for Gaussian states are al-
ways positive.

Let us consider � with the Gaussian Wigner function
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W��x,y� =
1

2��X�Y
exp�−

�x − 
X	�2

2��X�2 −
�y − 
Y	�2

2��Y�2 
 .

�4.5�

The Hilbert-Schmidt distance between �� and � for the state
�4.5� can be computed exactly,

dHS
2 ��� =

1

�X�Y
�1 − exp�−

�2

4��Y�2
� . �4.6�

Optimum resolution requires minimum �Y for fixed n. As
reflected by Eq. �4.2�, displacement and squeezing compete
for the photons since reducing �Y implies increasing �X.
Since displacement has no effect on the resolution �4.6�, op-
timum results are obtained by employing all photons in
squeezing so that 
X	= 
Y	=0.

For small signals, Eq. �4.6� becomes

dHS
2 ��� �

�2

4�X��Y�3 , �4.7�

so that

�2��,X� =
1

8�X��Y�3 , �4.8�

and similarly

�2��,Y� =
1

8�Y��X�3 . �4.9�

For coherent probes �X=�Y =1 /�2 we get �2���	 ,X�=1 /2.
Looking for larger resolutions, let us express �X and �Y as
functions of the mean energy n and the factor p=�X�Y
�1 /2,

��X�2 � n + �n2 − p2,

��Y�2 � n − �n2 − p2, �4.10�

where we have considered 2n+1�2n. Let us note that p
represents the purity of the probe since tr��2�=1 / �2p�. On
the other hand, since 
X	= 
Y	=0 and ��Y�2� p2 / �2n� for
n�1, we have that n represents the amount of squeezing for
fixed p. Using Eq. �4.10� in Eq. �4.8�, we get

�2��,X� �
1

8p�n − �n2 − p2�
. �4.11�

Maximum metrological resolution implies maximum �,
which is achieved for minimum p, i.e., p=1 /2 �pure mini-
mum uncertainty states�, so that for n�1

�2��,X� � 2n . �4.12�

Therefore the maximum accuracy for displacements of
Gaussian probes is obtained for pure nonclassical squeezed
vacuum states with

��Y�2 �
1

8n
, ��X�2 � 2n . �4.13�

B. Optimum Gaussian states for phase shifts

In this case we consider signals encoded on Gaussian
states with fixed mean energy �mean number n� by phase
shifts generated by the number operator N=a†a. The goal is
to obtain maximum intrinsic resolution. Here again we use
Gaussian Wigner functions centered at point �x0 ,0� and
squeezed along the y direction, so that the overlap under
small rotations is minimum,

W��x,y� =
1

2��X�Y
exp�−

�x − x0�2

2��X�2 −
y2

2��Y�2
 ,

�4.14�

with �X��Y and

n = tr��a†a� =
1

2
���X�2 + ��Y�2 + x0

2 − 1� . �4.15�

Also in this case the Wigner function transforms just by the
transformation of its variables, as a classical distribution

W��
�x,y� = W��x cos � + y sin �,y cos � − x sin �� .

�4.16�

All this leads to the following exact result for the Hilbert-
Schmidt distance between � and ��:

dHS
2 ��� =

1

�X�Y
�1 −

exp A
�B


 , �4.17�

with

A = −
x0

2sin2��/2�
��X�2sin2��/2� + ��Y�2cos2��/2�

�4.18�

and

B

=
��X�4 + ��Y�4 + 6��X�2��Y�2 − ���X�2 − ��Y�2�2cos�2��

8��X�2��Y�2 .

�4.19�

From Eqs. �2.3� and �4.17� we get

�2��,N� =
���X�2 − ��Y�2�2 + 2x0

2��X�2

16��X�2��Y�2 . �4.20�

From Eq. �4.15�, denoting again p=�X�Y, we have

���X�2 − ��Y�2�2 = �2n + 1 − x0
2�2 − 4p2 �4.21�

and

��X�2 =
1

2
�2n + 1 − x0

2 + ��2n + 1 − x0
2�2 − 4p2� .

�4.22�

Therefore for fixed n and x0 the maximum � is obtained for
minimum p, i.e., for pure states p=1 /2. Then, the maximum
when x0 is varied for fixed n is obtained when x0=0, leading
to
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�2��,N� � n2, �4.23�

which is achieved for the same squeezed vacuum states in
Eq. �4.13�. The resolution �4.23� is notably larger than that
obtained for coherent states �X=�Y =1 /�2 with the same
mean number n=x0

2 /2,

�2���	,N� �
n

2
. �4.24�

C. Two-dimensional space

Let us consider an arbitrary Hermitian generator in a two-
dimensional space, which can be always expressed in the
basis of its eigenvectors as

G = �g1 0

0 g2

 . �4.25�

An arbitrary probe state reads in the same basis

� = � q ��q�1 − q�

���q�1 − q� 1 − q

 , �4.26�

with 1�q�0 and ����1. In this case we have

�2��,G� = q�1 − q��g1 − g2�2���2 = ���2���G�2,

�4.27�

which agrees with the general bound in Eq. �2.14�.
We can appreciate that the main difference between

��� ,G� and ��G is that � depends on the coherence term
�� 
g1���g2	. In particular, for �=0 we have ��� ,G�=0 ir-
respective of ��G. This is because in such a case �� ,G�=0
so that � is invariant under the transformations generated by

G. Therefore, although for pure states � becomes the vari-
ance, in the general case it is significantly different from a
measure of fluctuations.

V. CONCLUSIONS

The Hilbert-Schmidt distance is a simple measure of the
intrinsic metrological resolution provided by a combination
of the initial probe state and imprinting transformation. We
have shown that for small signals this becomes a probe-
transformation measure fully symmetric on the input probe
state and on the generator of the transformation. For pure
states this coincides with the variance, but in the general case
it expresses a rather different concept, i.e., metrological res-
olution. The idea that the probe-transformation measure is
not always a proper measure of uncertainty is demonstrated
by the lack of an uncertainty relation when it is applied to
complementary generators.

Furthermore, we have shown that all states providing res-
olution larger than coherent states are nonclassical. This is
remarkable since this corresponds to states with probe-
transformation measure larger than for coherent states, while
nonclassical behavior is usually ascribed to reduced vari-
ances. Nevertheless, for the examples presented in Sec. IV, a
probe-transformation measure beyond coherent states be-
comes fully equivalent to a reduced variance below the
vacuum level.
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